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Abstract: In this paper we present a stochastic model predictive control (SMPC) approach for
networked control systems (NCSs) that are subject to time-varying sampling intervals and time-
varying transmission delays. These network-induced uncertain parameters are assumed to be
described by random processes, having a bounded support and an arbitrary continuous probabi-
lity density function. Assuming that the controlled plant can be modeled as a linear system, we
present a SMPC formulation based on scenario enumeration and quadratic programming that
optimizes a stochastic performance index and provides closed-loop stability in the mean-square
sense. Simulation results are shown to demonstrate the performance of the proposed approach.

1. INTRODUCTION

In recent years, a vast literature has been produced on
modeling, analysis and control design of Networked Con-
trol Systems (NCSs) (see, e.g., Antsaklis and Baillieul
(2007); Bemporad et al. (2010); Hespanha et al. (2007);
Zhang et al. (2001) and references therein). Besides the
many advantages offered by NCSs, such as increased sys-
tem flexibility and low installation and maintenance costs,
the presence of a network also introduces sources of un-
certainty that need to be properly managed. These uncer-
tainties are caused by time-varying delays, time-varying
sampling intervals, and packet dropouts. A traditional
approach to deal with such phenomena is to attribute
deterministic bounds to them, neglecting any available
statistical information. However, network-induced distur-
bances can be often, and more accurately, modeled as
random processes described by a probability distribution.
A common way to tackle such stochastic disturbances
which have a probabilistic description is to assume that
they can take only a finite or countable number of values,
assigning a realization probability to every possible value
(see, e.g, Montestruque and Antsaklis (2004); Seiler and
Sengupta (2005)). Nonetheless, with this approach nothing
can be concluded about the stability of the closed-loop
system if the uncertain parameters have a continuous,
uncountable domain.

In this paper, we consider a linear plant and propose a
control scheme to stabilize the NCS system in the pres-
ence of time-varying sampling intervals and time-varying
delays, which are modeled as random processes described
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by continuous probability density functions (PDFs). For
stability analysis of such systems given a controller and
dealing with continuous PDFs two lines of research can
be distinguished. First there is the approach of Antunes
et al. (2009), based on the modeling of continuous-time
impulsive systems. Alternatively, Donkers et al. (2010) use
a NCS model in the discrete-time domain, in such a way
that the statistical properties of the network model are
preserved in a suitable sense. As in this paper the objective
is controller synthesis based on Model Predictive Control
(MPC) for NCS, we will exploit the approach of Donkers
et al. (2010) since MPC is typically suitable for discrete-
time models.

The basic idea of MPC is to obtain the control input
by solving at each sampling time an open-loop finite-
horizon optimal control problem based on a given pre-
diction model of the process, by taking the measured (or
estimated) state as the initial state. Recently stochastic
MPC (SMPC) control schemes were formulated, where
the available statistical information on the disturbance is
exploited in order to minimize a stochastic performance
index (see, e.g., Couchman et al. (2006); Primbs (2007),
and references therein). In this work we adopt a formula-
tion derived from Bernardini and Bemporad (2009) based
on scenario enumeration, which exploits ideas from multi-
stage stochastic optimization to possibly improve closed-
loop performances with respect to standard deterministic
MPC algorithms. Integrating the NCS models of Donkers
et al. (2010) with the SMPC of Bernardini and Bemporad
(2009) offers a general framework for MPC control of
stochastic NCSs.
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Fig. 1. NCS overview scheme

2. NCS MODEL AND PROBLEM STATEMENT

In the following we describe a NCS that includes un-
known time-varying sampling intervals and unknown time-
varying delays. A schematic of the considered NCS is
shown in Fig. 1. It consists of a linear continuous-time
plant

ẋ(t) = Ax(t) +Bu(t) (1)
with A ∈ Rnx×nx and B ∈ Rnx×nu , and a discrete-time
controller, connected over a communication network that
induces network delays, namely the sensor-to-controller
delay τsc and the controller-to-actuator delay τ ca. A
complete measurement of the state vector x(t) is assumed
to be available at the sampling time instants

sk =
∑k−1

i=0
hi ∀k ≥ 1, s0 = 0, (2)

which may not be equidistantly spaced in time due to
the time-varying sampling intervals hk > 0. The sequence
s0, s1, s2, . . . is assumed to be strictly increasing, i.e.,
sk+1 > sk, for all k ∈ N. We denote by xk = x(sk)
the kth sampled value of the state x and by uk the
corresponding control value. The zero-order-hold (ZOH)
function in Fig. 1 transforms the discrete-time control
input uk to the continuous-time control input u(t) applied
to the plant.

In the presented model both the variable computation
time τ ck , needed to evaluate the control law, and the
time-varying network-induced delays, i.e., the sensor-to-
controller delay τsck and the controller-to-actuator delay
τ cak , are taken into account. We assume that the sensor
acts in a time-driven fashion (i.e., sampling occurs at the
times sk defined in (2)), and that both the controller
and the actuator act in an event-driven fashion (i.e., they
respond instantaneously to newly arrived data). Under
these assumptions, all three delays can be captured by
a single delay τk = τsck + τ ck + τ cak (see, e.g., Zhang et al.
(2001)). Considering this total delay τk, the continuous-
time input signal u(t) can be defined as

u(t) = uk if t ∈ [sk + τk, sk+1 + τk+1), ∀k ∈ N. (3)

Furthermore, we assume that both the sampling intervals
and the delays are bounded, with the delays equal or
smaller than the sampling intervals, i.e., τk ≤ hk, for all
k ∈ N. We also assume that the realizations of hk and τk
are driven by an Independent and Identically Distributed
(IID) random process, characterized by a given PDF, in
accordance with the following assumption.

Assumption 1. There exists a hmax such that, for each
k ∈ N, the sampling interval hk and the network delay
τk are described by an IID random process, characterized
by a PDF p : R2 → R+, with p(h, τ) = 0 for all (h, τ) 6∈ Θ,
where

Θ =
{

(h, τ) ∈ R2 | h ∈ (0, hmax] ∧ τ ∈ [0, h]
}
. (4)

By discretizing the linear plant (1) at the sampling times
sk, k ∈ N, we obtain

xk+1 = eAhkxk+

∫ hk−τk

0

eAsdsBuk+

∫ hk

hk−τk
eAsdsBuk−1.

Using now the lifted state vector ξk =
[
xTk uTk−1

]T
, that

includes the current system state and past system input
and whose dimension is nξ = nx + nu, the NCS is formu-
lated as the stochastically parameter-varying discrete-time
system

ξk+1 =

eAhk ∫ hk

hk−τk
eAsdsB

0 0


︸ ︷︷ ︸

ξk +

∫ hk−τk

0

eAsdsB

I


︸ ︷︷ ︸

uk.

=: Ãhk,τk =: B̃hk,τk (5)

The problem studied in this paper is to design a control
scheme for the NCS model given by system (5), in where
the sampling intervals and transmission delays satisfy As-
sumption 1. The purpose of the control action is optimize a
given performance index while guaranteeing mean-square
closed-loop stability, according to the following definition.

Definition 1. System (5) is said to be Uniformly Globally
Mean-Square Exponentially Stable (UGMSES) if there
exist c ≥ 0 and 0 ≤ λ < 1 such that for any initial
condition ξ0 ∈ Rnξ it holds that

E[‖ξk‖2] ≤ c‖ξ0‖2λk, ∀k ∈ N. (6)

3. OVERAPPROXIMATION OF NCS MODEL

Direct controller synthesis based on (5) is difficult, due
to the infinite number of possible values of the sampling
intervals and delays (hk, τk) ∈ Θ, and to the nonlinear
appearance of these uncertain parameters in the matrices
Ãhk,τk , B̃hk,τkof the discrete time NCS model. A way to
make the system (5) amenable for controller synthesis is to
overapproximate it by a system in which the uncertainties
appear in a polytopic and/or additive manner. This can be
achieved by using one of the available overapproximation
methods (see Heemels et al. (2010) for an overview and
thorough comparison of all the existing overapproximation
techniques). Here, we take a method derived in Cloost-
erman et al. (2009), that is based on the real Jordan
form of the continuous-time system matrix A, although
other techniques can be used as well. In the following this
method is briefly summarized.

Let the state matrix A = TJT−1, with J the real Jordan
form of A, and T an invertible matrix. The integrals in (5)
are computed by substituting eAs = TeJsT−1, in order to
obtain a model in which the uncertain parameters hk and
τk appear explicitly. This leads to a model of the form

ξk+1 = Ãhk,τkξk + B̃hk,τkuk, (7)

with (hk, τk) ∈ Θ, for all k ∈ N, where we can rewrite

Ãhk,τk and B̃hk,τk in (5) as

Ãhk,τk = F0 +
∑2ν

i=1
αi(hk, τk)Fi,

B̃hk,τk = G0 +
∑2ν

i=1
αi(hk, τk)Gi.

(8)

In (8), 2ν is the number of the functions αi(·, ·) due
to the two time-varying parameters hk and τk, with
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ν ≤ nx. We have ν = nx when each distinct eigenvalue
of A corresponds to one Jordan block only, and ν < nx
otherwise. The functions αi(hk, τk) are typically of the

form hj−1
k eλhk or (hk−τk)j−1eλ(hk−τk), j = 1, 2, . . . , r, if λ

is a real, nonzero eigenvalue of A, and hj−1
k or (hk−τk)j−1,

j = 2, 3, . . . , r+ 1, if λ = 0. When λ corresponds to a pair
of complex conjugate eigenvalues (λ = a ± b

√
−1) of A,

the functions αi(hk, τk) take the form hj−1
k eahk cos(bhk),

hj−1
k eahk sin(bhk), (hk − τk)j−1ea(hk−τk) cos(b(hk − τk)) or

(hk−τk)j−1ea(hk−τk) sin(b(hk−τk)), j = 1, 2, . . . , r, where
r is the size of the largest Jordan block corresponding to λ.

Now using the assumption that the sampling intervals and
delays are bounded and contained in the set Θ, as in (4),
we obtain the following set of pairs of matrices

F =
{(
Ãhk,τk , B̃hk,τk

)
| (hk, τk) ∈ Θ

}
that contains all possible matrix combinations in (7). The
set F is still not a finite set, due to the infinite number of
values that (hk, τk) can take. Hence, we compute a convex
overapproximation of the set F in the form of a convex
matrix polytope, i.e., of the convex hull of a finite num-
ber of vertex matrices. Contrarily to Cloosterman et al.
(2009), we will not compute a single overapproximation
intended to be valid for all (hk, τk) ∈ Θ, as this would
remove all information about the probability distribution
of hk and τk. Instead, following the approach presented
in Donkers et al. (2010), we partition the set Θ in polygons
θm ⊆ Θ, m ∈ {1, 2, . . . , S}, assign a probability p̃m =∫∫
θm
p(h, τ)dhdτ to each polygon, and make for every θm

a different overapproximation of the pair
(
Ãhk,τk , B̃hk,τk

)
.

Let θ1, . . . , θS be a collection of polygons satisfying

∪Sm=1θm = Θ, intθi 6= ∅, intθi ∩ intθj = ∅, (9)

for all i, j ∈ {1, 2, . . . , S} and j 6= i. Then, we have
F = ∪Sm=1Fm, where

Fm =
{(
Ãhk,τk , B̃hk,τk

)
| (hk, τk) ∈ θm

}
. (10)

The minimal and maximal values of all functions αi over
every polygon θm can be computed as

αi,m = inf
(h,τ)∈θm

αi(h, τ), αi,m = sup
(h,τ)∈θm

αi(h, τ),

for all i ∈ {1, 2, . . . , 2ν} and m ∈ {1, 2, . . . , S}. Since
each αi(h, τ) ∈ [αi,m, αi,m] for all (h, τ) ∈ θm, the sets
of matrices Fm can be individually overapproximated by
co{Hm}, i.e.,

Fm ⊆ co{Hm}, m = 1, 2, . . . , S, (11)

where

Hm =

{(
F0 +

2ν∑
i=1

αiFi, G0 +

2ν∑
i=1

αiGi

)
| αi ∈ {αi,m, αi,m}, i = 1, 2, . . . , 2ν

}
,

and thus it also holds that F ⊆ ∪Sm=1co{Hm}. For
enumeration purposes we also write

Hm =
{

(HF,m,j , HG,m,j) | j = 1, 2, . . . , 22ν
}
. (12)

Moreover, we define the set of all possible combinations of
S elements, obtained taking one element from each of the
sets Hm, m ∈ {1, 2, . . . , S}, as V = H1 ×H2 × . . .×HS .
We will also write V as

V = {((VF,1,j , VG,1,j), (VF,2,j , VG,2,j), . . . ,

(VF,S,j , VG,S,j)) | j = 1, 2, . . . , 22νS
}
. (13)

Remark 1. In the special case that there exists hnom such
that p(h, τ) = 0 for all h 6= hnom, i.e., the sampling interval
is constant, the proposed overapproximation procedure
has to be slightly modified. This is because we proposed
to form polygons θm ⊆ Θ ⊂ R2, m ∈ {1, . . . , S},
having the property that intSm 6= ∅, which is not useful
anymore. In this case, we propose to form line segments θm
defined as θm = co{(hnom, τ̃m,1), (hnom, τ̃m,2)}, for each
m ∈ {1, . . . , S}, where (hnom, τ̃m,l), l ∈ {1, 2}, denote the
vertices of the line segment θm. All other properties of
θm, m ∈ {1, . . . , S} still hold and the remainder of the
procedure can be applied mutatis mutandis. Note that in
this case the number of vertices in (12) is 2ν . A similar
adjustment is needed where there exists τnom such that
p(h, τ) = 0 for all τ 6= τnom, i.e., the delay is constant.

4. STOCHASTIC MPC DESIGN

The overapproximation described in Section 3 is used here
to design a SMPC controller that exploits the measure-
ments received at every time step to improve closed-loop
performance, while guaranteeing stability. This control
policy is derived from the approach presented by Bernar-
dini and Bemporad (2009), and relies on a decoupling
between stability enforcement and performance optimiza-
tion. Offline, a Lyapunov function and a feedback control
law which provide mean-square stability are obtained by
exploiting the NCS convex overapproximation. Online, a
stochastic MPC controller based on scenario enumeration
is applied to optimize the performance by relying on the
current state measurements and on the available stochastic
information on the network uncertainty, while retaining
stability.

4.1 Lyapunov function synthesis

Our first goal is to compute a Lyapunov function and
a control law which render the closed-loop NCS system
UGMSES. Here we consider quadratic Lyapunov functions
of the form V (ξk) = ξTkPξk, and assume that the control
law is given by a constant matrix gain K, i.e., uk = Kξk,
for all k. The Lyapunov matrix P will then serve to enforce
a stability constraint in the online control problem, while
the existence of the gain K will be used to prove the
recursive feasibility of the receding horizon policy.

Theorem 1. Suppose there exist polygons θ1, θ2, . . . , θS
satisfying (9), and an overapproximation of the NCS model
(5) defined by the set of vertices V as in (13) such
that (11) holds. Assume that the matrices Q ∈ Rnξ×nξ ,
W ∈ Rnξ×nξ , Y ∈ Rnu×nξ , such that Q = QT � 0,
W = WT � 0, are given by the solution of the semidefinite
programming problem

min
Q,W,Y

trace(W ) (14a)

s.t. trace(Q) = 1 (14b)

W �W0 (14c) Q Q MT
j

Q W 0

Mj 0 Q̃

 � 0, ∀j ∈ {1, 2, . . . , 22νS}, (14d)

where
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Mj =


√
p̃1(VF,1,jQ+ VG,1,jY )√
p̃2(VF,2,jQ+ VG,2,jY )

...√
p̃S(VF,S,jQ+ VG,S,jY )

 ,
p̃m =

∫∫
θm
p(h, τ)dhdτ , Q̃ = diag {Q, . . . , Q︸ ︷︷ ︸

S times

}, and W0 � 0.

Then, the closed-loop NCS (5) with uk = Kξk and K =
Y Q−1 is UGMSES.

Proof. We will show that V (ξk) = ξTkPξk, P = Q−1,
is a Lyapunov function for system (5) with uk = Kξk.

Using (7) and letting Ch,τ = Ãh,τ + B̃h,τK, we have that

E [V (ξk+1)] = E
[
ξTkC

T
hk,τk

PChk,τkξk
]

=

∫∫
Θ

ξTkC
T
hk,τk

PCT
hk,τk

ξkp(hk, τk)dhkdτk

≤
S∑

m=1

p̃m max
(hk,τk)∈θm

ξTkC
T
hk,τk

PChk,τkξk. (15)

According to Lemma 1 in Morozan (1983), UGMSES is
implied by requiring that, for some L = LT � 0,

E[V (ξk+1)]− V (ξk) ≤ −ξTkLξk,
for all k ∈ N, which, given (15) is satisfied, holds when

P − L−
S∑

m=1

p̃mC
T
hm,τmPChm,τm � 0 (16)

for all (hm, τm) ∈ θm, m = 1, 2, . . . , S. Since (16) still
yields an infinite number of LMIs (due to the fact that
(hm, τm) can take an infinite number of values), we use
the convex overapproximation of (5) and the collections of
pairs of matrices Hm, m = 1, 2, . . . , S, that satisfy (11).
Hence, Chm,τm in (16) for (hm, τm) ∈ θm can be written

as Chm,τm =
∑22ν

j=1 λm,j (HF,m,j +HG,m,jK), for some

λm,j ≥ 0, j = 1, 2, . . . , 22ν , with
∑22ν

j=1 λm,j = 1. There-

fore, by convexity we have that (16) is satisfied if

P − L−
S∑

m=1

p̃mC̃
T
m,jPC̃m,j � 0, (17)

for all j ∈ {1, 2, . . . , 22νS}, where C̃m,j = VF,m,j +
VG,m,jK. By substituting P = Q−1, L = W−1 � 0,
K = Y Q−1, pre- and post-multiplying by Q, and taking
a Schur complement, we have that (17) is equivalent
to (14d). Hence, the solution of (14) satisfies (16), and
the closed-loop system is UGMSES. 2

4.2 NCS prediction model

Although for (mean-square) stabilization purposes one
could just apply the constant state-feedback control law
uk = Kξk, ∀k ∈ N, we want to design a SMPC controller
based on an approximated model of the NCS dynamics (5)
to also optimize a certain performance criterion. We intro-
duce a new set of s polygons φ1, φ2, . . . , φs, which partition
the set Θ such that properties analogous to (9) hold. Then,
as prediction model we use the collection of the averaged
dynamics of the NCS model for every polygon φn, i.e., the
switching linear system defined as

ξk+1 =


Ā1ξk + B̄1uk if (hk, τk) ∈ φ1,
Ā2ξk + B̄2uk if (hk, τk) ∈ φ2,

...
...

Āsξk + B̄suk if (hk, τk) ∈ φs,

(18)

where

Ān =

∫∫
φn

Ãh,τp(h, τ)dhdτ, B̄n =

∫∫
φn

B̃h,τp(h, τ)dhdτ,

for all n ∈ {1, 2, . . . , s}, with Ãh,τ and B̃h,τ as in (5). Since
we assumed that (h, τ) is given by an IID random process,
the realization probabilities of every dynamical mode
of (18) are taken to be p̄n =

∫∫
φn
p(h, τ)dhdτ , for all n ∈

{1, 2, . . . , s} and k ∈ N. As model (18) will only be used
to improve closed-loop performance w.r.t. the constant
state-feedback uk = Kξk, the accuracy of the (MPC)
prediction model will not affect stability. The use of a
different partition φ1, φ2, . . . , φs of the set Θ for prediction
purposes has the main goal to increase the decoupling
of performance optimization from stability properties,
which are solely based on the overapproximation computed
over the polygons θ1, θ2, . . . , θS . Further details on the
partitions tuning are given in Section 5.

4.3 Optimization tree design

The formulation of the online SMPC control problem is
based on a maximum likelihood approach, where at every
time step k an optimization tree is built using the up-
dated information on the augmented system state ξk. Each
node of the tree represents a future state which is taken
into account in the optimization problem. Starting from
the root node, which is defined by the current available

measurement ξk =
[
xTk uTk−1

]T
, a list of candidate nodes

is generated by considering all the s possible dynamics
in (18) and their probabilities p̄n, n = 1, 2, . . . , s. Then, the
node with maximum probability is added to the tree. This
procedure is repeated until a desired number of nodes nmax
is reached: at every iteration new candidates are generated
as children nodes of the last node added to the tree, and
the one with the biggest realization probability is selected
(these realization probabilities are formally defined in the
following). Hence, every node is identified by a distinct
trajectory of the network uncertain parameters (h, τ), and
by a distinct input sequence, which is a variable of the
optimization problem. This procedure leads to a “multiple-
horizon” control problem, where different tree paths have
in general different prediction horizons. Causality of the
resulting control law is enforced by allowing one, and only
one, control move for every node, except leaf nodes (i.e.,
nodes with no successor). Moreover, since the tree struc-
ture depends only on the distribution p̄n, n = 1, 2, . . . , s, it
can be computed off-line, thus keeping the computational
burden low. More details on the tree design procedure can
be found in (Bernardini and Bemporad, 2009) and are
omitted here for space reasons.

4.4 Control problem formulation

The objective function to be minimized in the proposed
SMPC problem is an approximation of the expected value
of the finite-horizon closed-loop performance
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E
[N−1∑
j=0

(
ξTk+jQξξk+j + uTk+jQuuk+j

)
+ ξTk+NQξξk+N

]
(19)

for a given horizon N > 0 and weight matrices Qξ, Qu.
In order to define the stochastic optimal control problem
associated with the SMPC policy, let us introduce the
following quantities:

- T = {T1, T2, . . . , Tn}: the set of the tree nodes. Nodes
are indexed progressively as they are added to the
tree (i.e., T1 is the root node and Tn is the last node
added).

- ξN , uN : the state and the input, respectively, associ-
ated with node N .

- pre(N ): the predecessor of node N .
- succ(N , j): the successor of node N generated with

dynamics of mode j in (18), j ∈ {1, 2, . . . , s}.
- δ(N ) ∈ {1, 2, . . . , s}: the mode leading to node N .
- πN : the realization probability of node N , i.e., the

probability of reaching node N from T1, recursively
computed as πsucc(N ,j) = p̄jπN , with πT1 = 1.

- S ⊂ T : the set of the leaf nodes, defined as S , {Ti ∈
T | succ(Ti, j) 6∈ T , j = 1, 2, . . . , s}.

With a slight abuse of notation, in the following the
abbreviate forms ξi, ui, πi, δ(i), pre(i), will be used
to denote ξTi , uTi , πTi , δ(Ti), pre(Ti), respectively. The
SMPC problem at the time step k is formulated as

min
{ui}

∑
i∈T \T1

πiξ
T
i Qξξi +

∑
j∈T \S

πju
T
jQuuj (20a)

s.t. ξ1 = ξk (20b)

ξi = Āδ(i)ξpre(i) + B̄δ(i)upre(i), ∀i ∈ T \ {T1} (20c)
S∑

m=1

p̃mG
T
m,jPGm,j ≤ ξT1 (P − L)ξ1,

∀j ∈ {1, 2, . . . , 22νS}, (20d)

where Gm,j = VF,m,jξ1 + VG,m,ju1. Note that (20a) tends
to (19) with N → ∞ if nmax → ∞. Hence, the expected
value of the closed-loop performance (19) can be approxi-
mated with arbitrary accuracy at the expense of a higher
computational load. Problem (20) is a quadratically con-
strained quadratic problem (QCQP). Provided that (14)
has solution, this problem is always feasible, as shown
below.

Theorem 2. Suppose there exist polygons θ1, θ2, . . . , θS
and φ1, φ2, . . . , φs satisfying (9), and an overapproxima-
tion of the NCS model (5) defined by the set of vertices V
as in (13) such that (11) holds. Assume that the matrices
Q, W are given from the solution of (14). Then, the closed-
loop NCS (5) where uk = uT1 and uT1 is given by the
receding horizon solution of (20), with P = Q−1 and
L = W−1, is UGMSES.

Proof. By similar reasonings as in Theorem 1, we have that
mean-square stability is provided by the receding-horizon
satisfaction of condition (20d), which now depends explic-
itly on the measured state ξk and on the decision variable
uk. We only need to show that the control problem (20) is
recursively feasible at every time step. This follows by not-
ing that (14d) implies (20d) if a state-feedback structure
is imposed on the input uk. Hence, ui = Kξi, ∀i ∈ T \ S,

Table 1. Simulation results

Controller µ(Ji) σ(Ji)

Robust state-feedback 884.34 382.19

Stochastic MPC 678.01 134.74

is always a feasible solution for (20), where K = Y Q−1 is
obtained by solving (14). 2

5. ILLUSTRATIVE EXAMPLE

In this section we test the performance of the proposed
approach using a numerical example, where the controlled
plant is modeled by the second-order continuous-time
linear system (1), with A =

[
1 15
−15 1

]
and B = [ 0.2

0.8 ].
This system is open-loop unstable and has two complex
eigenvalues. In order to define the network model, we
assume that the sampling interval hk is constant and equal
to hnom = 0.1, i.e., p(h, τ) = 0 for all h 6= hnom. We define
the set Θ in (4) as

Θ =
{

(h, τ) ∈ R2 | h = hnom ∧ τ ∈ [0.02, 0.1]
}
. (21)

Moreover, we assume that the PDF modeling the real-
izations of the delay τk is given by a truncated (and
normalized) normal distribution with mean µ = 0.04 and
standard deviation σ = 0.012.

In order to satisfy the conditions of Theorem 1, we first
compute an overapproximation of the NCS as described
in Section 3. Then, according to Remark 1, we construct
S = 4 line segments to partition the set of possible val-
ues of τk, defined as θ1 = {hnom} × [0.02, 0.033], θ2 =
{hnom} × [0.033, 0.046], θ3 = {hnom} × [0.046, 0.06], and
θ4 = {hnom} × [0.06, 0.1]. This allows us to find a feasible
solution of problem (14), and to obtain a stabilizing con-
troller of the form uk = Kξk for the closed-loop system (5).
With the aim at improving the performance of the SMPC
controller, we perform a finer partition for prediction pur-
poses, using s=8 line segments defined as φn = {hnom} ×
[0.02 + 0.008(n − 1), 0.02 + 0.008n], n = 1, 2, . . . , 7, and
φ8 = {hnom} × [0.076, 0.1]. The weight matrices in prob-
lem (20) are set as Qξ = diag{1, 10, 10−3}, Qu = 10−3,
and a number of nodes nmax = 15 is used to design the
optimization tree.

A set of Ns = 100 simulations was run of Ts = 15
time steps each, with random initial state, comparing the
proposed SMPC control scheme with a constant state-
feedback controller which provides robust convergence
to the origin. Such a deterministic controller can be
obtained as a special case of the stochastic one, by solving
problem (14) with S = 1 and θ1 = Θ. Since a feasible
solution could not be found with (hk, τk) ∈ Θ as in (21),
we restricted to consider τk ∈ [0.02, 0.09] when solving the
robust control synthesis problem.

To evaluate the performance achieved by the considered
controllers, we define the experimental cost function

Ji =

Ts∑
k=1

(
ξTk,iQξξk,i + uTk,iQuuk,i

)
,

where i ∈ {1, 2, . . . , Ns} indexes the values related to
the ith simulation. Table 1 shows numerical results in
terms of mean µ(Ji) and standard deviation σ(Ji) of the
experimental cost function Ji over all the simulations. A
comparison between the different closed-loop trajectories
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Fig. 2. Example of trajectories obtained with SMPC (solid
line) and robust state-feedback (dashed line)

is shown in Fig. 2. As we can see from the results,
the proposed SMPC policy provides an improved control
action with respect to the robust controller. From a
computational point of view, the CPU time needed to
solve an instance of the SMPC online control problem on
a 2.4GHz MacBook running Matlab 7.8 and Cplex 11 was
29 ms on average, with a maximum value of 41 ms.

In real applications several parameters can be tuned to
make the trade-off between the desired closed-loop perfor-
mance and the complexity of the resulting on-line control
problem. As long as problem (14) remains feasible, the
partition {θm}Sm=1 can be made coarser to decrease the
number of quadratic constraints to be imposed online.
Independently, the partition {φn}sn=1 can be refined to
improve the approximation of the continuous distribu-
tion p(h, τ) by the discretization Pr[(h, τ) ∈ φn] = p̄n,
n = 1, 2, . . . , s, and the number of tree nodes nmax can be
increased to have a more accurate prediction model, and
thus better performances.

6. CONCLUSIONS

In this paper we presented a stochastic model predic-
tive control approach for networked control systems that
are subject to time-varying sampling intervals and time-
varying delays. These uncertain parameters are assumed
to be bounded, but modeled by a continuous PDF. The
proposed control policy relies on a stochastic control Lya-
punov function approach and consists of two steps. Offline,
a Lyapunov function which provides mean-square stability
is obtained by computing a discrete approximation of the
continuous PDF, constructing a convex overapproximation
of the NCS model, and solving an SDP problem. Online,
a SMPC formulation based on scenario enumeration opti-
mizes a quadratic performance by exploiting the current
measurements and the stochastic information on the un-
certain parameters, while retaining stability. The complex-
ity of the proposed receding horizon control problem may
grow with the number of partitions in which the set Θ is di-
vided. However, an opportune design of the partitions can

minimize the number of constraints to be imposed online.
Moreover, the computational load could be substantially
reduced by solving the SMPC control problem explicitly
using multiparametric programming techniques, which is
a current topic of research investigations. Future work will
also include the integration of state and input constraints
in the control problem formulation, which was not pursued
in this paper for space limitations.
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