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Abstract—The diffusion of mobile devices equipped with sens-
ing, computation, and communication capabilities is opening
unprecedented possibilities for high-resolution, spatio-temporal
mapping of several phenomena. This novel data generation,
collection and processing paradigm, termed crowdsensing, lays
upon complex, distributed cyberphysical systems. Collective data
gathering from heterogeneous, spatially distributed devices inher-
ently raises the question of how to manage different quality levels
of contributed data. In order to extract meaningful information,
it is therefore desirable the introduction of effective methods for
evaluating the quality of data.

In this work, we propose an approach aimed at systematic
accuracy estimation of quantities provided by end-user devices
of a crowd-based sensing system. This is obtained thanks to the
combination of statistical bootstrap with uncertainty propagation
techniques, leading to a consistent and technically sound method-
ology. Uncertainty propagation provides a formal framework
for combining uncertainties resulting from different quantities
influencing a given measurement activity. Statistical bootstrap
enables the characterization of the sampling distribution of a
given statistics without any prior assumption on the type of
statistical distributions behind the data generation process.

The proposed approach is evaluated on synthetic benchmarks
and on a real world case study. Cross-validation experiments
show that confidence intervals computed by means of the pre-
sented technique show a maximum 1.5% variation with respect to
interval widths computed by means of controlled standard Monte
Carlo methods, under a wide range of operating conditions. In
general, experimental results confirm the suitability and validity
of the introduced methodology.

I. INTRODUCTION

CROWDSENSING is a data acquisition paradigm that is
becoming increasingly popular thanks to the wide diffu-

sion of mobile smart devices. The pervasive nature of these
devices, combined to their sensing, computation and communi-
cation capabilities, makes them the ideal candidates as building
blocks of distributed cyberphysical systems (hereafter denoted
as CPS) to achieve high resolution spatio-temporal sensing of
various kinds of physical quantities [1]–[4].

The analysis of recent scientific literature highlights a surge
of works related to mobile crowdsensing in many applicative
fields. For instance, crowd-based sensing systems have been
developed for monitoring road infrastructures, with different
aims: evaluation of road surface conditions [5]–[9], control of
traffic congestion [10], identification and mapping of traffic
regulators [11]. Other applications concern the detection of
available parking spots by means of smartphones [12], [13] or

mobile ultrasonic sensors [14]. Several proposals have been
presented for environmental applications, with a focus on air
pollution [15]–[17] and urban noise monitoring [18], [19].

The distributed structure of crowdsensing systems, the het-
erogeneity of the devices involved and nature of collective
contribution (based on involvement of end-users) influence the
quality of data and raise the issue of how to effectively deal
with it [1]. Sensed data is collected, processed and possibly
aggregated for analysis at various levels of a distributed CPS.
To fully enhance the exploitability of this wealth of data, qual-
ity indicators should be associated to numbers representing a
given sensed quantity (enabling for example to discriminate
between reliable and unreliable data). Obtaining an estimate
of such a quality has a direct impact on inference and decision
processes carried on, in cascade, by other components of the
system.

As a matter of fact, different features of a crowdsensing
system concur, at different levels, to define data quality: i)
mapping of geolocalized phenomena/events is affected by the
spatial and temporal resolution of the monitoring activity; ii)
sensed quantities are subject to systematic and random errors
because of inherent precision and accuracies associated to
embedded sensors and because of the different computing
and communication capabilities (e.g. different energy levels
or channel characteristics); iii) users may contribute data
corresponding to different trustworthiness levels. Approaches
to deal with the problem of data quality mainly focus on outlier
identification and filtering [1], collaborative data inconsistency
resolution [20], or trust and reputation systems to promote and
ensure the identification of corrupted or malicious contribu-
tions [21], [22].

However, since data is the result of a direct or indirect
measurement activity carried on by sensing devices, handling
the uncertainty associated to each of these measurements (as
usually done in physical sciences [23]) appears a natural way
to deal with the issue of data quality. Indeed, we propose
in this paper a methodology that lays on the identification
of the given crowdsensing system as a distributed instru-
ment. Measurements provided by terminal devices represent
estimates of the value to be assigned to the quantity to be
measured (the measurand). Hence, we cast the problem of data
quality assignment as an evaluation of the uncertainty of the
underlying measurement process. In order to be meaningful,
the measurand estimate has to be associated to a measure
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of uncertainty. Typically, this is achieved by providing the
amount of dispersion of measured values (the smaller the
dispersion, the smaller the uncertainty). The interaction among
error sources determines dispersion around the true (unknown)
value of the measurand and, therefore, the measurement error.
If the quantity to be measured is the result of the composition
of different measurements (e.g. in the case of an indirect mea-
surement), the uncertainties associated to each measurement
phase have to be propagated computing their combination [23].
Uncertainty propagation has been recently applied to sensor
networks scenarios to derive (together with trust values) a
sensing uncertainty metric used for in-network processing and
fault detection [24].

Standard approaches to the propagation of uncertainties
usually entail making some modeling assumptions on the
measurement process, in particular regarding the probability
density functions of quantities involved in measurement [23],
[25], [26]. These probability functions (and the distribution
they describe) are used in two possible ways: i) to analytically
derive the distribution of the measured variable given its
functional dependence from the input quantities; ii) to perform
Monte Carlo simulations in order to obtain numerical estimate
of the measurand’s output distribution, given the functional
relationships among input probability functions [25]–[27].

Monte Carlo numerical simulations are a viable solution
when reasonable assumptions about input distributions hold.
However, this is often not the case: for instance, regarding
mobile distributed CPS, it is not easy to derive a mathematical
model that describes the statistical features of measurements
performed by a variety of devices in different places. More-
over, even if adequate statistical models of input variables
can be obtained, their complex composition makes it hard to
obtain an analytical expression of the output. For instance, the
output variable could be the result of a recursive function that
provides indirect computation of the measurand (as for the
case study that will be detailed in the following). Other prob-
lems raise when the temporal dimension is taken into account.
As a matter of fact, composition of different measurements
during the whole lifetime of a crowdsensing system can be
considered a common practice to smooth and update collected
information. This poses the challenge of how to manage such
an update of measurements at given checkpoints.

To overcome the above mentioned issues, we propose in
this work to make use of statistical non-parametric boot-
strap. Statistical bootstrap is a widely diffused data driven
framework for empirically establishing the uncertainty of
unknown quantities when modeling techniques and analytical
solutions cannot be easily applied [28], [29]. Basically, the
bootstrap is a type of Monte Carlo method that approximates
the sampling distribution by sampling with replacement the
original observations (i.e. the data on which inference has
to be performed). For each resample, the statistic of interest
(e.g. the sample mean) is computed and stored. The resulting
distribution, called bootstrap distribution, can be used as a
proxy to make inference on the shape and spread of the
sampling distribution of the statistic [28]–[31]. The use of
bootstrap to explore uncertainty propagation has been recently
proposed by Kass et al. in the context of analysis of neural

data [32] and applied to improve estimation of a blood pressure
measurement system [33].

The main contributions of this work are:
1) A method that frames the problem of assessing data

quality in crowdsensing platforms into a formal, tech-
nically sound approach, by casting it as an uncertainty
evaluation problem.

2) The design, by means of the non-parametric bootstrap,
of a data-driven strategy which could be used to get
rid of complex interplay among the (potentially many)
variables affecting the measure estimate and the related
uncertainty propagation.

3) The evaluation of the applicability on a distributed CPS,
characterized by periodic update of data and related
quality.

The proposed method is validated by means of numerical
simulations on synthetic benchmarks, and exemplified on a
real-world case study, namely a crowdsensing platform for
road surface roughness monitoring. The experimental results
highlight the suitability of the presented approach to gauge
the uncertainty associated to complex sensing tasks and,
consequently, to provide an evaluation of data quality in
crowdsensing systems.

The rest of the paper is organized as follows: in Section
II we describe the crowdsensing system architecture taken as
reference; in Section III we describe the proposed approach,
namely the propagation of uncertainties by means of statistical
bootstrap; in Section IV we introduce the experimental set up
and present performance results; finally, in Section V, we draw
concluding remarks.

II. REFERENCE SYSTEM ARCHITECURE

We will often refer, along this article, to a crowdsensing
platform called SmartRoadSense (hereafter also denoted as
SRS), developed to provide quantitative evaluation of roads
surface roughness [5]–[8], whose basic structure and features
will be described in this section.

The proposed approach is general enough to be exploited
also in other analogous contexts, wherever sensing tasks are
performed by multiple sensing devices which contribute to
estimate the quantity of interest in a specific geo-localized
position.

Figure 1 shows the architecture of the SRS platform, which
is characterized by the following three layers:

• An app running on users’ smartphones during a given
car trip. The application makes use of accelerometers
to collect and process acceleration values to which the
device is subject. The result, representing the estimated
roughness of the travelled road in a given point at a given
time, is geo-referenced, time-stamped and transmitted to
a server by means of radio connectivity.

• A cloud-based back-end service in charge of collecting,
aggregating and storing data from multiple users. Accord-
ing to Figure 1, this layer is in charge of two tasks:

– Map matching: georeferenced roughness indexes
stored in the database of raw-data (SRS RAW) are
projected on digital cartography maps, specifically
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Fig. 1. SmartRoadSense architecture.

OpenStreetMap1. Map matching entails the align-
ment of GPS points to digital cartography maps;

– Sampling and aggregation: data is subsequently ag-
gregated to provide a single evaluation (for a given
spatial coordinate) of the roughness index, given
the data made available for that point by multiple
users. Aggregated data is used to populate the related
database (called SRS AGGREGATE).

• A front-end service providing visualization capabilities
of the geo-referenced information produced by the SRS
processing pipeline.

In SRS (and possibly in other crowdsensing systems), the
activity can be divided into time epochs, during which data
is continuously gathered, processed and aggregated. Segmen-
tation of both space and time dimensions (e.g. through the
definition of a bi-dimensional grid and the discretization of
the time axis) can be in fact considered a common approach
to the design of CPS at different spatio-temporal resolutions
[21], [22], [34].

At the end of a given time epoch the system updates current
information on the status of measured variables and, in case,
it performs some type of composition with data collected in
previous epochs. For instance, in SRS an epoch represents
a week of monitoring activity. The platform continuously
receives values of road roughness from end users. Roads
are spatially segmented into landmark points, then all values
associated to positions falling within a given range (typically
30m) of a landmark point p are aggregated and concur to the
overall roughness index of p (the mean value of contributed
points is taken by default). At the end of each week current
epoch terminates, and the roughness value of each point
p is updated by taking the average between the value of
current epoch and the value of previous epoch. This processing
inherently implements a form of infinite impulse response
filter, the aim of which is to progressively downweigh (through

1http://www.openstreetmap.org

an exponential decay of weights) the contribution of older
samples to the value assigned to p. Needless to say, different
update rules can be conceived, according to different specific
needs.

The above description exemplifies the difficulties that could
arise when dealing with uncertainty propagation in these
settings, since the measurand (the roughness index of p in
SRS) needs to be tracked along its evolution and the corre-
sponding unknown uncertainty subject to possibly complicated
transformations.

III. BOOTSTRAP BASED UNCERTAINTY PROPAGATION

To circumvent all the issues related to the propagation
of uncertainty in crowdsensing platforms that prevent the
adoption of analytical and Monte Carlo methods, we propose
in this paper to take advantage of the statistical bootstrap.

Figure 2 provides an overview of the toolflow of the
proposed approach when applied to the SRS crowdsensing
system, while Table I summarizes the symbols used along the
article.

TABLE I
DESCRIPTION OF NOTATIONS AND SYMBOLS.

Symbol Description
p Generic geo-referenced landmark (aggregated) point
nw Number of epochs
t0, t1, ...ti, ...tnw Time epochs
n0, n1, · · · , nnw Size of samples and of resamples at epoch ti
Nb Number of bootstrap resampling iterations
x Mean value of a generic resample
xi Mean value of resample at epoch ti
yi Measurand variable computed at epoch ti
Y Generic function relating xi to yi

As illustrated by Figure 2, data produced by terminal
devices at a given time epoch ti (with i = 0, 2..., nnw) are
collected into a sample of size ni. Nonparametric bootstrap is
applied to this sample (for each time epoch). Data is sampled
with replacement, obtaining Nb resamples, each of size ni. The
statistic of interest (i.e. the mean value x) is computed from
every resample and plugged into the processing block labeled
as Y , which represents the functional relationship between all
variables that influence the measurand. Concerning SRS, this
phase encompasses the propagation of uncertainty along the
different time epochs according to the update filter: each mean
value xi at time epoch ti is averaged with the corresponding
value yi computed at time epoch ti−1. The result yi =

xi+yi−1

2
is then stored as current value to be composed with a new
measurement at next time epoch.

The attained distribution of values assigned to y is the output
bootstrap distribution which can be studied to obtain informa-
tion about its center, shape and spread. While the center of
the output bootstrap distribution represents the estimate of the
statistic under study (the mean value in this specific case),
the shape provides effective information about the type of
distribution and, finally, the spread conveys information about
the output uncertainty (which is what we are searching for).
Needless to say, bootstrap resampling does not lead to any
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Fig. 2. Toolflow of the proposed approach.

improvement in the accuracy of the estimate of the statistic,
since this clearly depends on the accuracy of the initial sample
from which all resamples are derived. Nevertheless, important
information regarding the sampling distribution is encoded in
the bootstrap distribution and this is exactly what we are inter-
ested to exploit to infer the uncertainty of measurement. The
histogram placed in right-bottom corner of Figure 2 illustrates
this concept. Indeed, bootstrap distribution values are finally
sorted and samples representative of a given percentile are
extracted to provide a confidence interval CI to be used as
uncertainty estimate.

It is worth noticing that other statistics might be evaluated
according to the presented method. In fact, one of the major
points of strength of the bootstrap is its flexibility in handling
different types of statistics, which has to be contrasted with the
difficulties faced to derive analytical results (for example using
asymptotic arguments). If we were interested, for instance, at
investigating the uncertainty associated to the median value
(instead of the mean) the same approach would remain valid
and we would only need to change the computation of the
mean value x from each resample with the respective median
value.

The main algorithmic steps of the proposed approach can
be summarized as follows:

1) for k = 1 to Nb

• for i = 2 to nw
– Sample with replacement the observation vector

collected during time epoch ti
– Compute mean value xi (or any statistics of

interest) of the bootstrap resample at time ti

– Update measurand yi according to Y . In SRS,
yi = (xi + yi−1)/2

2) Extract 95% confidence interval from bootstrap distri-
bution

The whole process represented by the pipeline reported in
Figure 2 and by the above described pseudo-code is repeated
for each crowd-based measurement (i.e. for each aggregated
point in the SRS example setting). This raises the question
of the scalability of the system, which should be taken into
consideration when a huge number of uncertainty evaluations
have to be carried on. While a detailed discussion of this topic
is out of the scope of the present article, it should be remarked
the inherent parallelism of the proposed approach. In fact, un-
certainty intervals associated to different geo-localized points
can be computed independently from each other. Therefore, in
principle, they can be split in many processing tasks that can
be autonomously executed in parallel, potentially mitigating
the impact of computational burden.

IV. EXPERIMENTAL RESULTS

To validate the introduced technique, several experiments
have been conducted:

• First, a set of synthetic benchmarks has been devised
to compare the bootstrap based uncertainty evaluation
against a standard Monte Carlo method, under the as-
sumption of knowing the input probability distributions,
needed to to run the Monte Carlo experiments.

• Second, a sensitivity analysis has been performed to
evaluate the dependence of the results from the number
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of bootstrap resamplings (Nb), allowing to explore the
tradeoff between accuracy and computational complexity.

• Third, an experiment has been conducted to simulate the
case of a system measuring a time-varying quantity.

• Last, the uncertainty of a measurement within the SRS
crowdsensing platform has been computed to show the
applicability to a real world use-case.

A. Synthetic benchmarks

The rationale of these experiments was to assess the suit-
ability of the proposed approach in terms of accuracy of the
confidence interval. The proposed bootstrap-based uncertainty
propagation has been validated by comparing it with standard
Monte Carlo uncertainty propagation (SMC, for short), as-
suming the knowledge of input probability density functions.
We recall that, while this is an assumption that has to be
made if one wants to apply standard Monte Carlo propagation,
it cannot be taken for granted. The bootstrap propagation
technique, conversely, doesn’t rely on any type of knowledge
of input data, rather it performs a data-driven Monte Carlo sim-
ulation by drawing the so called pseudo-observations from the
vector of initial observations and generating from it (through
resampling) all the information needed for inference tasks.

Three types of distributions have been considered, covering
a wide spectrum of possible statistical configurations, namely:
a Gaussian distribution of mean µ = 5 and standard deviation
σ = 1, a uniform distribution taking values in the [4, 6]
interval, and a Rayleigh distribution with scale parameter
b = 5.

We included the Gaussian distribution because of its role
in statistics and error distributions [28]. As well, we chose
the uniform distribution since it is often studied in uncertainty
evaluations of measurements [25]. Finally, we also took into
consideration the Rayleigh distribution because it is an exam-
ple of asymmetric distribution, which adds to the significance
and coverage of our experiments.

For what concerns the bootstrap based uncertainty propaga-
tion, we generated 100 points (drawn from each of the input
distributions) representing the observations. Sampling with
replacement has been performed with Nb = 105 replications,
mean values have been computed and given as input to the
propagation pipeline representing the update process described
in Section III: the mean of observed values at each epoch has
been averaged with the mean of observed values at previous
epoch. Three sets of experiments were performed, simulating a
time horizon of, respectively 2, 10 and 25 epochs (on a system
like SmartRoadSense, characterized by weekly updates, this
means simulation on an interval spanning from half a month to
around half a year). The approximate 95% confidence interval
has been computed by taking the 0.025 and 0.975 quantiles
of the resulting bootstrap distribution.

Regarding Monte Carlo simulations, for each type of dis-
tribution we generated 100 points, took the mean value and
propagated it according to the same rule (i.e. mean of current
epoch averaged with the updated value y computed at previous
epoch) on the same time horizons (i.e. 2, 10, and 25 epochs).
The whole process has been repeated for 105 trials, leading to

a distribution of values from which the average value and an
estimated 95% confidence interval have been computed.

All the experiments have been repeated for 10 runs. Results
are represented by the average of the following values: i) the
mean value at the end of the propagation process (representing
the estimate of the measurand); ii) the lower bound of the 95%
confidence interval; iii) the upper bound of the 95% confidence
interval. In Figures 3, 4, and 5 we reported histograms
providing a comparison of the performance of both methods
according to the above mentioned metrics for, respectively,
Gaussian, uniform and Rayleigh input distributions. For each
figure, histograms denote the mean value estimate, together
with error bars encoding the confidence intervals for each
simulated epochs horizon (2, 10, 25). As a reference term,
we also computed the values (represented as star markers in
Figures 3, 4, and 5) that would be obtained for the measurand
if no bootstrap were applied, but only a simple composition
of the observations were made epoch by epoch.
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Fig. 3. Synthetic benchmarks: mean values and confidence intervals. Normal
distribution (µ = 5, σ = 1).
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Fig. 4. Synthetic benchmarks: mean values and confidence intervals. Uniform
distribution (a = 4, b = 6).

Results provide evidence of a very good agreement between
the standard Monte Carlo approach and the proposed bootstrap
uncertainty propagation method.

In particular, the width of confidence intervals obtained with
our method are within a 1.5% deviation from the intervals
estimated by means of SMC, with a maximum 0.15% relative
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Fig. 5. Synthetic benchmarks: mean values and confidence intervals. Rayleigh
distribution (b = 5).

error on the value of the lower bound and a 0.13% relative
error on the upper bound for the Gaussian input.

In case of uniform input distribution, we obtained confi-
dence intervals whose width differs at most for a 1.7% from
that of SMC, while lower bounds of the intervals are within
0.32% from their SMC counterparts, and upper bounds fall
within a 0.35% range.

Finally, the analysis of experimental results with input fol-
lowing a Rayleigh distribution showed a 0.81% maximum dif-
ference between the confidence interval widths of the proposed
approach and those of SMC. The maximum relative error
obtained by the proposed approach w.r.t. the SMC method,
amounts to 1.38%, for lower limits and 1.31% for upper limits.

As expected, our technique doesn’t lead to any improvement
in the accuracy of estimates, which clearly depends on the
accuracy of the initial observation vector (an inherent feature
of resampling techniques). This justifies the differences seen
with uniform distribution and, in particular, with the Rayleigh
distribution.

Once the accuracy of the bootstrap based uncertainty prop-
agation has been assessed and demonstrated to be consistent
with that of Monte Carlo approaches (that assume prior
knowledge of statistical distribution of input), we turned our
attention to other types of experiments. We indeed analyzed
the effect of the number of resampling iterations (Nb) on the
system performance, by computing 95% confidence intervals
with the proposed algorithm for different values of Nb (namely
Nb = 102, 103, 104, 105) along a time horizon of 10 epochs.
Input observations were randomly drawn from a normal dis-
tribution (µ = 5, σ = 1).The results obtained over 100 runs
are plotted in Figures 6a, 6b, and 6c for, respectively, the left
bound of the 95% confidence interval, the mean estimate, and
the right bound of the 95% confidence interval.

Experiments highlight the variation of the mean estimate
and of the confidence intervals as the number of resamplings
changes. In particular, albeit not markedly significant (maxi-
mum variations are within a 1.7% range), the effect of Monte
Carlo random fluctuations across the different runs is clear:
higher values of Nb correspond to lower variations across the
runs, in accordance to known results in the bootstrap theory
[35]. It took on average 36.5s to compute the confidence
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Fig. 6. Sensitivity analysis: left bound of 95% confidence interval (a),
estimated mean values (b), right bound of 95% confidence interval (c), for
different number of bootstrap resamples across 100 runs. Normal distribution
(µ = 5, σ = 1).

intervals for a single run when Nb = 105, and 0.0365s
when Nb = 102. Experiments have been performed on an
Intelr i7 CPU, with a 2.80GHz frequency clock and 8GB
RAM, running a Matlabr implementation of the bootstrap-
based approach.

This empirical evidence confirms the potential for alleviat-
ing the computational workload by lowering the number of
resampling iterations without severely affecting the accuracy.
Conversely, when mitigation of stochastic fluctuations is an
issue, Nb should be increased.
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The final experiments on synthetic data have been designed
to test the proposed approach on a wide time interval during
which the value of the measurand is subject to dynamic
change. This experimental set up has been conceived to model
situations when a potential drift of the physical quantities has
to be monitored and tracked by the crowdsensing system. In
SRS, for instance, the road surface could progressively dete-
riorate and, at a given point, could be subject to maintenance.
The effect of this possible evolution has been evaluated by
simulating a piecewise linear dynamics of the measurand along
different time epochs. In particular, input data was generated
according to three types of statistical distributions as follows:

• Gaussian distribution: observations were randomly gen-
erated with a mean value linearly increased at each epoch
(from µ = 5, at epoch 0 to µ = 7, at epoch 50) and then
set back to µ = 5 for the remaining 50 epochs. Standard
deviation was kept constant for the whole simulation
(σ = 1).

• Uniform distribution: data was generated by taking values
uniformly at random in an interval that was progressively
shifted from [4, 6], at epoch 0 to [6, 8], at epoch 50.
From epoch 51 to epoch 100 values were drawn again
uniformly in the [4, 6] interval.

• Rayleigh distribution: input values were taken from a
Rayleigh distribution whose scale parameter b was lin-
early changed from b = 5 (at epoch 0) to b = 7 (at
epoch 50) and then set again to b = 5 (from epoch 51 to
epoch 100).

These observations have been then used as input for the
uncertainty propagation processing pipeline based on the non-
parametric bootstrap. Following the previously described ex-
periments, the update at each epoch was performed by taking
the average between the measurand estimate at current epoch
and the one at the previous epoch.

Plots of the mean value and error bars representing the
associated confidence intervals are reported in Figures 7, 8,
and 9 to illustrate the results for, respectively, the normal,
uniform, and Rayleigh distribution. As expected, the system
can effectively cope with a changing input, by dynamically
tracking its evolution. Thanks to the proposed approach, the
estimates of the measured variables and the corresponding
confidence intervals can be also effectively updated.

B. Case study: SmartRoadSense

In order to exemplify the practical applicability of our
proposal, we applied the bootstrap-based method to a dataset
extracted from the SmartRoadSense project [36]. Data refer
to a road segment in Italy composed of 10 monitored points,
each one aggregating from 12 to 30 measurements across two
adjacent weeks (week 18 and 19, corresponding to the period
from May 2, 2016 to May 15, 2016) of the SRS monitoring
activity. The main features of the dataset are reported in Table
II: with respect to the aggregated point indicated in column 1,
we reported in column 2 the week (epoch) the values refer to,
in column 3 the number of points aggregated, and in columns
4 and 5 their mean value and standard deviation.
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Fig. 7. Dynamic input analysis: mean values and confidence intervals as
function of number of simulated updates. Normal distribution. Nr. of bootstrap
resamples = 103.
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Fig. 8. Dynamic input analysis: mean values and confidence intervals
as function of number of simulated updates. Uniform distribution. Nr. of
bootstrap resamples = 103.
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Fig. 9. Dynamic input analysis: mean values and confidence intervals
as function of number of simulated updates. Rayleigh distribution. Nr. of
bootstrap resamples = 103.

For each point of the dataset we applied the bootstrap-
based uncertainty propagation method to compute the 95%
confidence interval at the end of the period spanning the two
weeks of observations. The number of bootstrap resampling
iterations was set to Nb = 104.

Results are reported in Figure 10, plotted as a histogram
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TABLE II
SRS DATASET: NUMBER OF RAW POINTS, MEAN VALUE AND STANDARD

DEVIATION FOR EACH AGGREGATED VALUE AND MONITORED WEEK.

Aggregated point Week Count Avg Stdev

P1
18 12 0.1587 0.0217
19 13 0.1318 0.0314

P2
18 30 0.2278 0.1764
19 23 0.2017 0.1702

P3
18 30 0.2023 0.1093
19 23 0.2421 0.1680

P4
18 23 0.5260 0.5422
19 30 0.5055 0.5580

P5
18 18 0.4093 0.4577
19 28 0.5954 0.6407

P6
18 18 0.2312 0.2084
19 25 0.3863 0.4178

P7
18 23 1.1319 1.0053
19 32 0.9361 0.7257

P8
18 23 1.6216 0.8599
19 24 1.0610 0.6417

P9
18 13 1.9805 0.8552
19 9 1.2424 0.5309

P10
18 10 1.9473 0.8892
19 10 1.6059 0.5432

with error bars, overlying the piece of map that includes
the road under investigation. Each bar is associated to an
aggregated point whose roughness index is expressed through
a color map (green for low roughness values, red for high
roughness levels).

Fig. 10. Case study: mean values and confidence intervals at [2.5% 97.5%]
for 10 points taken from a monitored road in SRS. Nr. of bootstrap resamples
= 104.

To provide some further detail about the sensitivity of the
method with respect to the number of resampling iterations,
we computed 95% confidence intervals for point P10 of
the SRS dataset with different values of Nb (i.e. Nb =
102, 103, 104, 105) across a set of 100 runs. Interestingly, the
analyzed point clearly represents an example of a small sample
size being composed of 10 measurements (in each of the two
weeks). Results of this experiment are illustrated in Figures
11a, 11b, and 11c for, respectively, the left bound of the
intervals, the mean estimate, and the right bound. Stochastic
Monte Carlo variations are, as for the synthetic benchmarks,
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Fig. 11. Sensitivity analysis: left bound of 95% confidence interval (a),
estimated mean values (b), right bound of 95% confidence interval (c), for
different number of bootstrap resamples across 100 runs. SRS dataset, point
P10.

significantly compressed in a small range when Nb ≥ 104. It
is worth noticing a higher variability of the results from run
to run for low values of Nb (up to 17.4% for the left bound,
Nb = 102), with respect to the experiments performed on
synthetic benchmarks experiments, plausibly because of the
effect of the small sample size.

On average, the confidence intervals for a single run were
computed in 6.8s, when Nb = 105. The same task, when
Nb = 102, was completed approximately three orders of
magnitude faster, i.e. around 7ms (timing results refer to the
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same hardware configuration and implementation used for
synthetic benchmarks).

V. CONCLUSIONS

Given the growing diffusion of pervasive crowdsensing sys-
tems, the possibility of assigning quality indicators to sensed
quantities is getting increasing importance. In this paper, we
proposed to frame the crowdsensing activity as a distributed
measurement process, where multiple end-user devices con-
tribute to the estimate of the quantity to be measured.

The problem of associating a quality value to monitored
quantities is therefore cast to evaluating the uncertainty of
the estimate within a propagation framework. The complex
relationships among involved variables and the difficulty to
ascertain their statistical features hinders the possibility of
applying either analytic techniques or standard Monte Carlo
simulations. We therefore introduced the use of non-parametric
bootstrap (a statistical tool that exploits resampling to generate
pseudo-observations from input data) to drive the uncertainty
propagation process on a purely data-driven basis, without the
need to resort to any modeling assumption on the measurement
process.

Extensive experimental results demonstrate the effectiveness
of the method, in terms of its mathematical consistency,
accuracy, and flexibility. Likewise, as a case study, we per-
formed experiments with data from a road surface monitoring
crowdsensing platform, the results of which provide a simple,
yet significant, demonstration of the potential of the proposed
method in terms of its applicability to real-world crowdsensing
systems.
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