Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 421816, 15 pages
http://dx.doi.org/10.1155/2015/421816

Research Article

Hindawi

Extracting UML Class Diagrams from Object-Oriented

Fortran: ForUML

Aziz Nanthaamornphong,l Jeffrey Carver,” Karla Morris,’ and Salvatore Filippone4

' Department of Information and Communication Technology, Prince of Songkla University, Phuket Campus,

Phuket 83120, Thailand

2Department of Computer Science, University of Alabama, Tuscaloosa, AL 35487, USA
3Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550-9610, USA
*Department of Civil and Computer Engineering, University of Rome “Tor Vergata, Roma 00173, Ttaly

Correspondence should be addressed to Aziz Nanthaamornphong; aziz.nantha@gmail.com

Received 10 April 2014; Accepted 20 June 2014

Academic Editor: Selim Ciraci

Copyright © 2015 Aziz Nanthaamornphong et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Many scientists who implement computational science and engineering software have adopted the object-oriented (OO) Fortran
paradigm. One of the challenges faced by OO Fortran developers is the inability to obtain high level software design descriptions
of existing applications. Knowledge of the overall software design is not only valuable in the absence of documentation, it can also
serve to assist developers with accomplishing different tasks during the software development process, especially maintenance and
refactoring. The software engineering community commonly uses reverse engineering techniques to deal with this challenge. A
number of reverse engineering-based tools have been proposed, but few of them can be applied to OO Fortran applications. In
this paper, we propose a software tool to extract unified modeling language (UML) class diagrams from Fortran code. The UML
class diagram facilitates the developers’ ability to examine the entities and their relationships in the software system. The extracted
diagrams enhance software maintenance and evolution. The experiments carried out to evaluate the proposed tool show its accuracy

and a few of the limitations.

1. Introduction

Computational research has been referred to as the third
pillar of scientific and engineering research, along with
experimental and theoretical research [1]. Computational
science and engineering (CSE) researchers develop software
to simulate natural phenomena that cannot be studied exper-
imentally or to process large amounts of data. CSE software
has a large impact on society as it is used by researchers
to study critical problems in a number of important appli-
cation domains, including weather forecasting, astrophysics,
construction of new physical materials, and cancer research
[2]. For example, US capabilities in science and engineering
are frequently called upon to address urgent challenges in
national and homeland security, economic competitiveness,
health care, and environmental protection [3]. Recently the

software engineering (SE) community has become more
interested in the development of software for CSE research.

In this critical type of software, Fortran is still a very
widely used programming language [4]. Due to the growing
complexity of the problems being addressed through CSE,
the procedural programming style available in a language
like Fortran 77 is no longer sufficient. Many developers have
applied the object-oriented programming (OOP) paradigm
to effectively implement the complex data structures required
by CSE software. In the case of Fortran developers, this
OOP paradigm was first emulated following an object-based
approach in Fortran 90/95 [5-7]. By including full support
for OOP constructs, the Fortran 2003 language standard
influenced the advent of several CSE packages [8-12].

One of the greatest challenges faced by CSE developers
is the ability to effectively maintain their software over its

generally long lifetime [13]. This challenge implies high devel-
opment and maintenance costs during a software system’s
lifetime. The difficulty of the maintenance process is affected
by at least three factors. First, most CSE developers are
not formally trained in SE. Second, some existing SE tools
are difficult to use in CSE development. In general, CSE
developers request tools to accommodate documentation,
correctness testing, and aid in design software for testability.
Unfortunately, most SE tools were not designed to be used in
the context of CSE development. Third, CSE software often
lacks the formal documentation necessary to help developers
understand its complex design. This lack of documentation
presents an even larger software maintenance challenge. The
objective of this work is to provide tool support for automat-
ically extracting UML class diagrams from OO Fortran code.
To address this objective, we developed and evaluated the
ForUML tool. ForUML uses a reverse engineering approach
to transform Fortran source code into UML models. To
ensure flexibility, our solution uses a Fortran parser that does
not depend on any specific Fortran compiler and generates
output in the XML Metadata Interchange (XMI) format. The
tool then displays the results of the analysis (the UML class
diagram) using the ArgoUML (http://argouml.tigris.org/)
modeling tool. We evaluated the accuracy of ForUML using
five CSE software packages that use object-oriented features
from the Fortran 95, 2003, and 2008 compiler standards. This
paper extends the workshop paper [14] by providing more
background information and more details on the transfor-
mation process in ForUML. Additionally, this paper includes
a discussion of the audience feedback during the Workshop
on Software Engineering for High Performance Computing in
Computational Science and Engineering (SE-HPCCSE’13).
The contributions of this paper are as follows:

(i) the ForUML tool that will help CSE developers extract
UML design diagrams from OO Fortran code to
enable them make good decisions about software
development and maintenance tasks;

(ii) description of the transformation process used to
develop ForUML, which may help other tool authors
create tools for the CSE community;

(iii) the results of the evaluation and our experiences using
ForUML on real CSE projects to highlight its benefits
and limitations;

(iv) workshop feedback that should help SE develop
practices and tools that are suitable for use in the CSE
domain.

The rest of this paper is organized as follows. Section 2
provides the background concepts related to this work.
Section 3 presents ForUML. Section 4 describes the evalua-
tion and our experiences with ForUML. Section 5 discusses
the evaluation results and limitations of ForUML. Finally,
Section 6 draws conclusions and presents future work.

2. Related Work

This section first describes important CSE characteristics that
impact the development of tool support. Next, it presents

Scientific Programming

two important concepts used in the development of ForUML,
reverse engineering and OO Fortran. Finally, because one of
the benefits of using ForUML is the ability to recognize and
maintain design patterns, the last subsection provides some
background on design patterns.

2.1. Important CSE Characteristics. This section highlights
three characteristics of CSE software development that dif-
ferentiate it from traditional software development. First,
CSE developers typically have a strong background in the
theoretical science but often do not have formal training
about SE techniques that have proved successful in other
software areas. More specifically, because the complexity of
the problems addressed by CSE generally requires a domain
expert (e.g., a Ph.D. in physics or biology) to even understand
the problem, and that domain expert generally must learn
how to develop software [15]. Wilson [16] stated that one of
the reasons why scientists tend to be less effective program-
mers is that they do not have the time to learn yet another
programming language and software tool. Furthermore, the
CSE culture, including most funding agencies, tends to view
software as the means to a new scientific discovery rather
than as a CSE instrument that must be carefully engineered,
maintained, and extended to enable novel science.

Second, some SE tools are difficult to use in a CSE devel-
opment environment [17]. CSE applications are generally
developed with software tools that are crude compared to
those used today in the commercial sector. Researchers and
scientists seek easy-to-use software that enables analysis of
complex data and visualization of complicated interactions.
Consequently, CSE developers often have trouble identifying
and using the most appropriate SE techniques for their
work, in particular as it relates to reverse engineering tasks.
Scientists interested in scientific research cannot spend most
of their time understanding and using complex software
tools. The limited interoperability of the tools and their
complexity are major obstructions to their adaptation by
the CSE community. For example, Storey noted that CSE
developers who lack formal SE training need help with
program comprehension when they are developing complex
applications [18]. To address this problem, the SE community
must develop tools that satisfy the needs of CSE developers.
These tools must allow the developers to easily perform
important reverse engineering tasks. More specifically, a
visualization-based tool is appropriate for program compre-
hension in complex object-oriented applications [19].

Third, CSE software typically lacks adequate develop-
ment-oriented documentation [20]. In fact, documentation
for CSE software often exists only in the form of subroutine
library documentation. This documentation is usually quite
clear and sufficient for library users, who treat the library
as a black box, but not sufficient for developers who need
to understand the library in enough detail to maintain it.
The lack of design documentation in particular leads to
multiple problems. Newcomers to a project must invest a
lot of effort to understand the code. There is an increased
risk of failure when developers of related systems cannot
correctly understand how to interact with the subject system.

Scientific Programming

In addition, the lack of documentation makes refactoring and
maintenance difficult and error prone. CSE software typically
evolves over many years and involves multiple developers
[21], as functionality and capabilities are added or extended
[22]. The developers need to be able to determine whether
the evolved software deviates from the original design intent.
To ease this process, developers need tools that help them
identify changes that affect the design and determine whether
those changes have undesired effects on design integrity.
The availability of appropriate design documentation can
reduce the likelihood of poor choices during the maintenance
process.

2.2. Reverse Engineering. Reverse engineering is a method
that transforms source code into a model [23]. ForUML
builds upon and expands some existing reverse engineering
work. The Dagstuhl middle metamodel(DMM) is a schema
for describing the static structure of source code [24].
DMM supports reverse engineering by representing models
extracted from source code written in most common OOP
languages. We applied the idea of DMM to OO Fortran.

The transformation process in ForUML is based on the
XMI format, which provides a standard method of mapping
an object model into XML. XMI is an open standard that
allows developers and software vendors to create, read,
manage, and generate XMI tools. Transforming the model
(Fortran code) to XMI requires use of the model driven archi-
tecture (MDA) technology [25], a modeling standard devel-
oped by the object management group (OMG) [26]. MDA
aims to increase productivity and reuse by using separation
of concerns and abstraction. A platform independent model
(PIM) is an abstract model that contains the information to
drive one or more platform specific models (PSMs), including
source code, data definition language (DDL), XML, and
other outputs specific to the target platform. MDA defines
transformations that map from PIMs to PSMs.

The basic idea of using an XMI file to maintain the meta-
data for UML diagrams was drawn from four reverse engi-
neering tools. Alalfi et al. developed two tools that use XMI
to maintain the metadata for the UML diagrams: a tool that
generates UML sequence diagrams for web application code
[27] and a tool to create UML-entity relationship diagrams
for the structured query language (SQL) [28]. Similarly,
Korshunova et al. [29] developed CPP2XMI to extract various
UML diagrams from C++ source code. CPP2XMI generates
an XMI document that describes the UML diagram, which
is then displayed graphically by DOT (part of the Graphviz
framework) [30]. Duffy and Malloy [31] created libthorin, a
tool to convert C++ source code into UML diagrams. Prior to
converting an XMI document into a UML diagram, libthorin
requires developers to use a third party compiler to compile
code into the DWAREF (http://www.dwarfstd.org/), which is a
debugging file format used to support source level debugging.
In terms of Fortran, DWARF only supports Fortran 90, which
does not include all object-oriented features. This limitation
may cause compatibility problems with different Fortran
compilers. Conversely, ForUML is compiler independent and
able to generate UML for all types of OO Fortran code.

Doxygen is a documentation tool that can use Fortran
code to generate either a simple, textual representation with
procedural interface information or a graphical represen-
tation. The only OOP class relationship Doxygen supports
is inheritance. With respect to our goals, Doxygen has two
primary limitations. First, it does not support all OOP
features within Fortran (e.g., type-bound procedures and
components). Second, the diagrams generated by Doxygen
only include class names and class relationships but do not
contain other important information typically included in
UML class diagrams (e.g., methods, properties). Our work
expands upon Doxygen by adding support for OO Fortran
and by generating UML diagrams that include all relevant
information about the included classes (e.g., properties,
methods, and signatures).

There are a number of available tools (both open source
and commercial) that claim to transform OO code into
UML diagrams (e.g., Altova UModel, Enterprise Architect,
StarUML, and ArgoUML). However, in terms of our work,
these tools do not support OO Fortran. Although they cannot
directly create UML diagrams from OO Fortran code, most
of these tools are able to import the metadata describing UML
diagrams (i.e., the XMI file) and generate the corresponding
UML diagrams. ForUML takes advantages of this feature
to display the UML diagrams described by the XMI files it
generates from OO Fortran code.

This previous work has contributed significantly to the
reverse engineering tools of traditional software. ForUML
specifically offers a method to reverse engineering code
implemented with modern Fortran, including features in the
Fortran 2008 standard. Moreover, the tool was deliberately
designed to support important features of Fortran, such as
coarrays, procedure overloading, and operator overloading.

2.3. Object-Oriented Fortran. Fortran is an imperative pro-
gramming language. Traditionally, Fortran code has been
developed through a procedural programming approach that
emphasizes the procedures and subroutines in a program
rather than the data. A number of studies discuss approaches
for expressing OOP principles in Fortran 90/95. For example,
Decyk described how to express the concepts of data encapsu-
lation, function overloading, classes, objects, and inheritance
in Fortran 90 [6, 7, 32]. Moreover, several authors have
described the use and syntax of OO features in Fortran 2003
[33-35]. Table1 presents important Fortran-specific terms
along with their OOP equivalent and some examples of
Fortran keywords.

The Fortran 2003 compiler standard added support for
OOP, including the following OOP principles: dynamic
and static polymorphism, inheritance, data abstraction, and
encapsulation. Currently, a number of Fortran compiler ven-
dors support all (or almost all) of the OOP features included
in the Fortran 2003 standard. These compilers include [36]

(i) NAG (http://www.nag.com/);
(ii) GNU Fortran (http://gcc.gnu.org/fortran/);

(iii) IBM XL Fortran (http://www-142.ibm.com/software/
products/us/en/fortcompfami/);

4

TABLE 1: Object-oriented Fortran terms (adapted from [12]).
Fortran OOP equivalent Fortran

keywords

Module Package Module
Derived type Abstract data type (ADT) Type
Component Attribute —
Type-bound procedure Method Procedure
Parent type Parent class —
Extend type Child class Extends

For example,

Intrinsic type :
typ real, integer

Primitive type

(iv) Cray (http://www.nersc.gov/users/software/compilers/
cray-compilers/);

(v) Intel Fortran (https://software.intel.com/en-us/fortran-
compilers).

Fortran 2003 supports procedure overriding where devel-
opers can specify a type-bound procedure in a child type
that has the same binding name as a type-bound procedure
in the parent type. Fortran 2003 also supports user-defined
constructors that can be implemented by overloading the
intrinsic constructors provided by the compiler. The user-
defined constructor is created by defining a generic interface
with the same name as the derived type.

Algorithm 1 illustrates a snippet of Fortran 2003 code
in which the parent type shape_ (Line 2) is extended
by the type circle (Line 7). At runtime the compiler
invokes the type-bound procedure add (Line 18) whenever
an operator “+” (with the specified argument type) is used
in the client code. This behavior conforms to polymorphism,
which allows a type or procedure to take many object or
procedural forms.

Data abstraction is the separation between the interface
and implementation of the program. It allows developers
to provide essential information about the program to the
outside world. In Fortran, the private and public key-
words control access to members of the type. Members
defined with public are accessible to any part of the
program. Conversely, members defined with private are
not accessible to code outside the module in which the type
is defined. In the example, the component radius (Line 11)
cannot be accessed directly by other programs. Rather, the
caller must invoke the type-bound procedure set_radius
(Line 13).

With the increase in parallel computing, the CSE com-
munity needs to utilize the full processing power of all
available resources. Fortran 2008 improves the performance
for a parallel processing feature by introducing the Coar-
ray model [37]. The Coarray extension allows developers
to express data distribution by specifying the relationship
between memory images/cores. The syntax of the Coarray
is very much like normal Fortran array syntax, except with
square brackets instead of parentheses. For example, the
statement integer:: m[x] (Line 4) declares m to be an
integer that is sharable across images. Fortran uses normal

Scientific Programming

(1) module example
(2) type shape_

3) real :: area

(4) integer :: m[#]

(5) end type

(6) ! Inheritance

(7) type, extends (shape.) :: circle
(8) ! Data abstraction

9) private

(10) ! Encapsulation

(11) real :: radius

(12) contains

(13) procedure :: set_radius

(14) procedure :: add

(15) procedure :: area

(16) ! Polymorphism

17) generic :: total => area

(18) generic :: operator(+) => add

(19) end type

(20) ! Overloads intrinsic constructor
(21) interface circle

(22) module procedure new_circle

(23) end interface

(24)

(25) end module

ALGoRrITHM 1: Samples code snippet of OOP constructs supported
by Fortran 2003.

rounded brackets () to point to data in local memory.
Although using Coarray requires the additional syntax, the
coarray has been designed to be easy to implement and to
provide the compiler scope both to apply its optimizations
within each image and among images.

2.4. Design Patterns. A design pattern is a generic solution
to a common software design problem that can be reused in
similar situations. Design patterns are made of the best prac-
tices drawn from various sources, such as building software
applications, developer experiences, and empirical studies.
Generally, we can classify the design patterns of the software
into classical and novel design patterns. The 23 classical
design patterns were introduced by the “Gang of Four” (GoF)
[38]. Subsequently, software developers and researchers have
proposed a number of novel design patterns targeted at
particular domains, for example, parallel programming [39,
40].

In general, a design pattern includes a section known
as intent. Intent is “a short statement that answers the
following questions: What does the design pattern do? What
is its rationale and intent? What particular design issues or
problem does it address?” [38]. For example, the intent of
the template method pattern requires that developers define
the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template method lets subclasses redefine
certain steps of an algorithm without changing the algorithm’s
structure. When using design patterns, developers have to
understand the intent of each design pattern to determine

Scientific Programming

whether the design pattern could provide a good solution to
a given problem.

Several researchers have proposed design patterns for
computational software implemented with Fortran. For
example, Weidmann [41] implemented design patterns to
enable sparse matrix computations on NVIDIA GPUs. They
then evaluated the benefits of the implementation and
reported that the design patterns provided a high level of
maintainability and performance. Rouson et al. [12] pro-
posed three new design patterns, called multiphysics design
patterns, to implement the differential equations, which are
integrated into multiphysics and numerical software. These
new design patterns include the semidiscrete, surrogate and
template class patterns. Markus demonstrated how some
well-known design patterns could be implemented in Fortran
90, 95, and 2003 [42, 43]. Similarly, Decyk et al. [4] proposed
the factory pattern in Fortran 95 based on CSE software.
These researchers presented the proposed pattern implemen-
tation in their particle-in-cell (PIC) methods [44] in plasma
simulation software. Decyk and Gardner [45] also described
a way to implement the strategy, template, abstract factory,
and facade patterns in Fortran 90/95.

3. ForUML

This section describes the rationale and benefits of developing
ForUML and details the transformation process used by
ForUML.

3.1. The Need for ForUML. The CSE characteristics described
in Section 2.1 indicate that CSE developers could benefit from
atool that creates system documentation with little effort. The
SE community typically uses reverse engineering to address
this problem.

Although there are a number of reverse engineering tools
[46] (see Section 2.2), those tools that can be applied to OO
Fortran do not provide the full set of documentation required
by developers. Therefore, we identified the need for a tool that
automatically reverses engineers OO Fortran code into the
necessary UML design documentation.

This work is primarily targeted at CSE developers who
develop OO Fortran. The ForUML tool will provide the
following benefits to the CSE community.

(1) The extracted UML class diagrams should support
software maintenance and evolution and help main-
tainers ensure that the original design intentions are
satisfied.

(2) The developers can use the UML diagrams to illus-
trate software design concepts to their team members.
In addition, UML diagrams can help developers visu-
ally examine relationships among objects to identify
code smells [47] in software being developed.

(3) Because SE tools generally improve productivity,
ForUML can reduce the training time and learning
curve required for applying SE practices in CSE soft-
ware development. For instance, ForUML will help
developers perform refactoring activities by allowing

/\

*

0..

0. Type-bound procedure |

I
0. | 0.. |0.." N 0. |
1
Procedure | Component| |Statement Argument

I =~ "

l 0.. | 0..

1

1

1

FIGURE 1: The Fortran model.

them to evaluate the results of refactoring using
the UML diagrams rather than inspecting the code
manually.

Since Fortran 2003 provides all of the concepts of OOP,
tools like ForUML can help to place Fortran and other OOP
program languages on equal levels.

3.2. Transformation Process. The primary goal of ForUML
is to reverse engineering UML class diagrams from Fortran
code. By extracting a set of source files, it builds a collection
of objects associated with syntactic entities and relations.
Object-based features were first introduced in the Fortran
90 language standard. Accordingly, ForUML supports all
versions of Fortran 90 and later, which encompasses most
platforms and compiler vendors. We implemented ForUML
using Java Platform SE6 so that it could run on any client
computing systems.

The UML object diagram in Figure 1 expresses the model
of the Fortran language. The module object corresponds
to Fortran modules, that is, containers holding type and
procedure objects. The type-bound procedure and compo-
nent objects are modeled with a composition association
to instances of type. Both the procedure and type-bound
procedure objects are composed of argument and statement
objects. The generalization relation with base type object
leads to the parents in the inheritance hierarchy. When
generating the class diagram in ForUML, we consider only
the objects inside the dashed-line box that separates object-
oriented entities from the module-related entities.

Figure 2 provides an overview of the transformation
process embodied in ForUML, comprising the following
steps: parsing, extraction, generating, and importing. The
following subsections discuss each step in more detail.

3.2.1. Parsing. 'The Fortran code is parsed by the Open For-
tran Parser (OFP) (http://fortran-parser.sourceforge.net/).
OFP provides ANTLR-based parsing tools [48], including
Fortran grammars and libraries for performing translation
actions. ANTLR is a parser generator that can parse language
specifications in an EBNF-like syntax, a notation for formally
describing programming language syntax, and generate the
library to parse the specified language. ANTLR distinguishes
three compilation phases: lexical analysis, parsing, and tree
walking.

Fortran code
——

-

-

e (1) Parsing

Export

-

UML class diagram

ArgoUML

-

(4) Import

Scientific Programming

(2) Extraction

&

‘
g2

XMI

(3) Generating

FIGURE 2: The transformation process.

We have customized the ANTLR libraries to translate
particular AST nodes (i.e., type, component, and type-bound
procedure) into objects. These AST nodes are only the basic
elements of UML class diagrams. In fact,a UML class diagram
includes classes, attributes, methods, and relations. The pars-
ing actions include two steps. The first step verifies the syntax
in the source file and eliminates source files that have syntax
problems. It also eliminates source files that do not contain
any instances of type and module. For example, ForUML
will eliminate modules that contain only subroutines or
functions. After this step, ForUML reports the results to the
user via a GUL In the second step, the parser manipulates
all AST nodes, relying on the model described earlier.
Note that ForUML only manipulates the selected input
source files. Any associated type objects that exist in files
not selected by the user are not included in the class diagram.

3.2.2. Extraction. During the extraction process,
ForUML excerpts the objects and identifies their
relationships. ForUML determines the type of each
extracted relationship and maps each relationship
to a specific relationships type object. Based on
the example code in Algorithm1, the type circle
inherits the type shape. As a consequence, the
extraction process will create a generalization object.
ForUML supports two relationship types: composition and
generalization.

(i) Composition represents the whole-part relationship.
The lifetime of the part classifier depends on the
lifetime of the whole classifier. In other words, a

composition describes a relationship in which one
class is composed of many other classes. In our
case, the composition association will be produced
when a type object refers to another type object in
the component. The association refers to a type not
provided by the user and as a result it does not appear
in the class diagram. In the UML class diagram, a
composition relationship appears as a solid line with a
filled diamond at the association end that is connected
to the whole class.

(ii) Generalization represents an is-a relationship be-
tween a general object and its derived specific objects,
commonly known as an inheritance relation. Similar
to the composition association, the generalization
association is not shown in the class diagram if the
source file of the base type is not provided by the user.
This relationship is represented by a solid line with a
hollow unfilled arrowhead that points from the child
class to the parent class.

3.2.3. Generating. We developed the XMI generator module
to convert the extracted objects into XMI notation based on
our defined rules for mapping the extracted objects to the
proper XMI notation. The rules for mapping the extracted
objects and XMI document are specified in Table 2.
In addition to these rules, we developed new stereotype
notations for the constructor, coarray constructs, type-bound
procedure overloading, and operator overloading, such
as <«Constructor>», <«Coarray>», <0verloading>,
and «Overloading of +>.

Scientific Programming

module example
type shape_
real :: area
integer :: m[x]
end type
type, extends (shape.) :: circle
private
real :: radius
contains
procedure :: set_radius
procedure :: add
procedure :: area
generic :: total => area
generic :: operator (+) => add
end type
interface circle
module procedure new_circle
end interface
end module

shape_

area : real

<«Coarray> m : integer

p—

circle

radius : real

set_radius()

<Opverloading of +> add()

«Overloading of total> area()

<Constructor>> circle()

FIGURE 3: Sample code snippet of Fortran supported by ForUML.

TABLE 2: Fortran to XMI conversion rules.

Fortran XMI elements
UML: class

UML: operation

Derived type

Type-bound Procedure

Dummy argument UML: parameter
UML: attribute

UML: DataType

Component

Intrinsic type

Parent type UML: Generalization.parent

Extended type UML: Generalization.child

C . UML: association
omposite

(the aggregation property as “composite”)

Figure 3 provides the sample Fortran code without proce-
dure implementation and its generated class diagram includ-
ing stereotypes.

3.2.4. Importing. To visually represent the extracted informa-
tion as a UML class diagram, we import the XMI document
into a UML modeling tool. We decided to include a UML
modeling tool directly in ForUML to prevent the user from
having to install or use a second application for visualization.
We chose to include ArgoUML as the UML visualization tool
in the current version of ForUML. We had to modify the
ArgoUML code to allow it to automatically import the XMI
document. Of course, if a user would prefer to use a different

modeling tool, he or she can manually import the generated
XMI file into any tool that supports the XMI format.

After importing the XMI file, ArgoUMLs default view of
the class diagram does not show any entities in the editing
pane. Like the WYSIWYG (“what you see is what you get”)
concept, the user needs to drag the target entity from a
hierarchical view to the editing pane. To help with this
problem, we added features so that ArgoUML will show all
entities in the editing pane immediately after successfully
importing the XMI document. Note that the XMI document
does not specify how to present the elements graphically, so
ArgoUML automatically adjusts the diagram when rendering
the graphics. Each graphical tool may have its own method
for generating the graphical layout of diagrams. The key
reasons why we chose to integrate ArgoUML into ForUML
are that (1) it has seamless integration properties as an
open source and Java implementation; (2) it has sufficient
documentation; and (3) it provides sufficient basic functions
required by the users (e.g., export graphics, import/export
XMI, zooming).

ForUML provides a Java-based user interface for execut-
ing the command. To create a UML class diagram, the user
performs these steps.

(1) Select the Fortran source code
(2) Select the location to save the output.
(3) Open the UML diagram.

Figures 4-7 show screenshots from the ForUML tool.
Figure 4 presents the graphical user interface (GUI) of

806

0 File(s):

© Add

€3 Remove
 Reset
2] Generate
(&) view

Output File (xmi): I saveas

Status/Log:

FIGURE 4: A graphical user interface of ForUML.

Ehrirecr
© Add

€ Remove

' Reset

806 Open

8 model

S e voded
(7] Generate
Output File (xmi):

Jsaveas () view

Status/Log:

File Format: | All Fles

Cancel Open |

FIGURE 5: Selection of the Fortran code.

ForUML. Figure 5 illustrates how a user can select multiple
Fortran source files for input to ForUML. The Add button
opens a new window to select target file(s). Users can remove
the selected file(s) by selecting the Remove button. The Reset
button clears all selected files. After selecting the source
files, the user chooses the location to save the generated
XMI document (.xmi file). The Generate button activates
the transformation process. During the process, the user
can see whether each given source file is successfully parsed
or not (Figure 6). Once the XMI document is successfully
generated, the user can view the class diagram by selecting
the View button. Figure 7 illustrates the UML class diagram
that is automatically represented in the editing pane with
the ArgoUML. ArgoUML allows users to refine the diagram
and then decide to either save the project or export the XMI
document, which contains all the modified information.

4. Evaluation

To assess the effectiveness of ForUML, we conducted some
small experiments to gather data about its accuracy in
extracting UML constructs from code. This section also

Scientific Programming

e File(s):

/LI MODEL st] Fo0
LI MODEL o " 5 O ad
/L1 MODEL ¥ Fo0

W/L1/L1-MODEL , F90 €3 Remove

J1/LI/LII-MODEL /s flags_i F90

I1/LILI-MODEL /st y F30 ' Reset ‘

1/L1/L1-MODEL F90

/L1/L11-MODEL ¥ F90

JI/LI/LII-MODEL/sre _interface.F90

/L1701 MoDEL L inerface F90

Ll/LI-MODEL ters.F90

/Users/aziz/Document @) O ForUML
IUsers aziz/Document
/Users/aziz/Document
/Users/aziz/Document
[Users aziz/Document

A The XMI document is generated with the warning. Do you want to view the UML?
Ll

Output File (.

Status/Log:
foxidationEnergy implemes was s
lparticle_implementation.F90... was successfully parsed!
[physical_properties_implementation.F90... was successfully parsed!
[The i it/LIL/LIL/LIl-MODEL,

ics_constants.F90 is not parsed : No Module or Type

/i was parsed!
unge_kutta_2nd_implementation.F90... was successfully parsed!
unge_kutta_4th_implementation.F90... was successfully parsed!

i i i parsed!

was
Istrategy_interface.F90... was successfully parsed!
X s

parsed!
was parsed!
lsurrogate_interface.F90... was successfully parsed!
i was parsed!

FIGURE 6: Generating the XMI.

eno Dlagram - ArgoUttL *
RRoED0BL |[HAE |8 BEEBEE
e

= [Package-cenuic

X4 @82y~

v b B v NS ey Fa N
([rder by Type, Name

» B Pofie Coniuratin energyEa
> 53 Umamed odel)

SoRtngEnergy

Eean EE g (. Eragi
) [Emez) o) o) o)

FIGURE 7: Viewing the UML class diagram.

provides some lessons learned from the studies and feedback
from the SEC-HPC’13 workshop audience.

4.1. Controlled Experiment. The following subsections pro-
vide the details of a controlled experiment to evaluate
ForUML. The accompanying website (http://aziz.students.cs
.ua.edu/foruml-eval.htm) contains all of the class diagrams.
The website also provides the ForUML executable (source
code is not available yet) for download.

4.1.1. Experimental Design. We evaluated the accuracy of
ForUML on five OO Fortran software packages by adopting
the definitions of recall and precision defined by Tonella and
Potrich [49].

(i) Recall measures the percentage of the various objects,
that is, type, components, type-bound procedure, and
associations, in the source code correctly identified by
ForUML.

(ii) Precision measures the percentage of the objects iden-
tified by ForUML that are correct when compared
with the source code.

Scientific Programming

We performed the evaluations as follows.

(1) We manually inspected the source code to document
the number of relevant objects in each package. Note
that we performed this step multiple times to ensure
that the numbers were not biased by human error.

(2) We ran ForUML on each software package and
documented the number of relevant objects included
in the generated class diagram.

(3) To compute recall, we compared the number of
objects manually identified in the source code (Step
1) with the number identified by ForUML (Step 2).

(4) To compute precision, we determined whether there
were any objects produced by ForUML (Step 2) that
we did manually observe in the code (Step 1).

(5) We investigated whether the generated class diagrams
could present the design pattern classes existing in the
subject systems.

4.1.2. Subject Systems. The five software packages we
used in the experiments were (1) ForTrilinos (http://trilinos
.sandia.gov/packages/fortrilinos/); (2) CLiiME; (3) PSBLAS
(http://www.ce.uniroma2.it/psblas/); (4) MLD2P4 (http://
www.mld2p4.it/); and (5) MPFlows. We selected these soft-
ware packages because they were intentionally developed for
use in the CSE environment. Two of the software packages
(CLiiME and MPFlows) are not yet publicly available. A
description of each software package follows.

(1) ForTrilinos: ForTrilinos consists of an OO
Fortran interface to expand the use of Trilinos
(http://trilinos.sandia.gov/) into communities that
predominantly write Fortran. Trilinos is a collection
of parallel numerical solver libraries for the solution
of CSE applications in the HPC environment. To
provide portability, ForTrilinos extensively exploits
the Fortran 2003 standards support for interop-
erability with C. ForTrilinos includes 4 subpackages
(epetra, aztecoo, amesos, and fortrilinos), 36 files,
and 36 modules.

(2) CLiiME: community laser induced incandescence
modeling environment (CLiiME) is a dynamic sim-
ulation model that predicts the temporal response of
laser-induced incandescence from carbonaceous par-
ticles. CLiiME is implemented with Fortran 2003. It
contains 2 subpackages (model and utilities), 30 files,
and 29 modules. Additionally, this application con-
tains three design patterns, including factory method,
strategy, and surrogate.

(3) PSBLAS: PSBLAS 3.0 is a library for parallel sparse
matrix computations, mostly dealing with the itera-
tive solution of sparse linear system via a distributed
memory paradigm. The library assumes a data dis-
tribution consistent with a domain decomposition
approach, where all variables and equations related to
a given portion of the computation domain are
assigned to a process; the data distribution can be

specified in multiple ways allowing easy interfac-
ing with many graph partitioning procedures. The
library design also provides data management tools
allowing easy interfacing with data assembly proce-
dures typical of finite elements and finite volumes
discretization. Researchers have used versions of the
library in various application domains, mostly in fluid
dynamics and structural analysis, where it has been
successfully used to solve linear system with mil-
lions of unknowns arising in complex simulations.
The PSBLAS library version 3.0 is implemented
with Fortran 2003. PSBLAS contains 10 subpackages
(prec, psblas, util, impl, krylov, tools, serial, internals,
comm, and modules), 476 files, and 135 modules.

(4) MLD2P4: multi-level domain decomposition parallel
preconditioners package based on PSBLAS (MLD2P4
version 1.2) is a package of parallel algebraic multilevel
preconditioners. This package provides a variety of
high-performance preconditioners for the Krylov
methods of PSBLAS. A preconditioner is an operator
capable of reducing the number of iterations needed
to achieve convergence to the solution of a linear
system; multilevel preconditioners are very powerful
tools especially suited for problems derived from
elliptic PDEs. This package is implemented with
object-based Fortran 95. The MLD2P4 contains only
one package (miprec), 117 files and 9 modules.

(5) MPFlows: multiphase flows (MPFlows) is a pack-
age developed for computational modeling of spray
applications. MPFlows is implemented with Fortran
2003/2008. The use of coarrays within this application
enables scalable CSE software package that works
without requiring the use of external parallel libraries.
MPFlows contains 2 subpackages (spray and utilities),
12 files, and 12 modules. Note that this package
contains two design patterns, including strategy and
surrogate.

4.1.3. Analysis. Table 3 shows the results of experiments. Each
cell represents the recall as a ratio between extracted data
and actual data. The results show that the recall reaches 100%
for all subpackages. Overall, there was only one error in
precision in the ForTrilinos subpackage of ForTrilinos. Our
analysis of the code identified a conditional preprocessor
statement (specified by the #if statement) as the source
of the problem. ForUML currently does not handle prepro-
cessor directives. During the experiments, only 6 files were
not parsed (0.89% of all files). The notification messages
informed the users which files were not processed and
specifically why each file could not be processed. Based on
code inspection, we found four files that do not conform to
the Fortran model described earlier (Figure 1). Those files do
not have the module keyword that is the starting point for
the transformation process. Other files exceptions were due
to ambiguous syntax; for example, Fortran keywords were
used as part of a procedure name (e.g., print, allocate).
Table 3 only shows the results for packages that have the

10 Scientific Programming
TABLE 3: Evaluation of ForUML: recall (extracted data/actual data).
Packages Subpackages Type Procedure Component Inheritance Composition
Epetra 16/16 304/304 17/17 12/12 2/2
e Aztecoo 11 12/12 111 0/0 0/0
ForTrilinos
Amesos 111 717 11 0/0 0/0
ForTrilinos 48/48 11/11 139/139 4/4 4/4
CLiiME Model 23/23 167/167 61/61 32/32 32/32
PSBLAS Modules 50/50 1309/1309 160/160 34/34 28/28
prec 20/20 208/208 28/28 24/24 12/12
MLDP4 miprec 11/1 0/0 67/66 0/0 10/10
MPFlows Spray 10/10 55/55 29/29 2/2 3/3
180/180 2073/2073 503/503 108/108 91/91
Overall
(100%) (100%) (100%) (100%) (100%)
integrand

quadrature : strategy

time_advance(dt : real)

set_quadrature(inout this : integrand,s : strategy)
get_quadrature(model : integrand)

t(inout dState_dt : integrand)
add(operator_result : integrand)

multiply(lhs : integrand,operator_result : real)
assign(rhs : integrand,inout lhs : integrand)

strategy

time_advance(inout this : surrogate,dt : real)

-

surrogate

runge_kutta_4th

time_advance(inout this : surrogate,this_temp : real)

particles

<«Coarray>» p:reall
«Coarray>» index_cell : integerl]
«Coarray» p-last: integerl]
time : real

<Overloading of new_particles>> allocate_particles(inout this
locate_particles(inout this : particles)
all_images_relocate_particles(inout this : particles)
interpolate(inout this : particles)

assign(inout lhs : particles,rhs : local_particles)

add(this : particles,add_particles : local_particles)
multiple(this : particles,multiple_particles : real)

: particles)

FIGURE 8: The class diagram (partial): MPFlows.

type construct. We only evaluated the correctness of ForUML
current capabilities.

Figure 8 provides an example of an excerpt from a
class diagram derived from MPFlows. This diagram consists
of the implementation of two design patterns, including
strategy (inside the red box) and surrogate (inside the
blue box) patterns. In the strategy pattern, an interface
class strategy defines only the time integration method,
deferring to subclasses the implementation of the actual
quadrature schemes. The concrete strategy class (derived

class) runge kutta 4th provides the algorithm that
presents a part of the time_advance method declared by
the strategy interface. Next, the surrogate pattern is very
similar in concept to an ATM. An ATM holds a surrogate
database for bank information that exists in another place.
The bank’s customer can perform transactions through the
ATM and circumvent a visit to the bank. The implementation
of the surrogate pattern introduces the surrogate
abstract class (virtual class in C++). The class integrand
has a component of class strategy meaning that

Scientific Programming

1

atteringEnergy properties

Jaser 1

physical properties aser : laser_properties)

physical X ties)

maltiply(lhs : it

annealingEnergy

assign(ths int

runge kuttaith
runge utta 2nd

time_advancef(inout his : surrogatehis half: real)

coatingEnergy

tieslaser :laser_propertis)

radiationEnergy

oxidationEnergy

laser properties)

propertcs)

physical

<Constructor extinctionEnergy(flename charactr)

or> oxidationEnergy(filename : character)

thermionicEnergy

rtes : physical_properties aser

_properties)

laser_properties)

FIGURE 9: The class diagram (partial): CLiiME.

the surrogate allows us to pass an integrand child
class dummy argument to the type-bound procedures
implemented in runge kutta 4th. The class particle
contains components and type-bound procedures computing
the energy of the particle. In Fortran, each dummy argument
has three possible intent attributes including IN, OUT,
and INOUT. Therefore, each parameter, which is passed to
the operation in the diagram, needs to be specified with
a specific intent. In the class diagram, the keyword IN is
omitted because ArgoUML assumes that a parameter has the
IN by default.

4.2. Experience. The following subsections describe our
experiences using ForUML on a real CSE project and discuss
feedback on ForUML we received during the SE-HPCCSE’13
workshop.

4.2.1. CLiiME Project. ForUML played a significant role in
the development of the CLiiME package [50]. The developers
used ForUML to validate the design after each code refac-
toring process. The developers compared the class diagram

produced by ForUML with the originally agreed upon design.
After comparison, they determined instances in which the
code implementation deviated from the design. Instead of
inspecting the source code manually, the developers were
able to make the comparison/decision with less effort. Also,
the developers were able to use the extracted UML diagrams
to identify code smells, places where the code might induce
some defects in the future. For instance, we inspected the
UML class diagrams and identified places where classes
had too many type-bound procedure or procedures with
too many arguments, all of which we corrected during the
refactoring process.

This project also deployed three design patterns. Figure 9
presents the UML class diagram of the CLiiME project,
including the strategy (inside the red box), surrogate (inside
the blue box), and factory method (inside the green box)
patterns. The factory method pattern indicates encapsulating
the subclass selection (#Energy class) and object construction
processes into one class (ienergy). We used ForUML to
confirm the correct implementation of those three design
patterns rather than reviewing the source code. In addition
to helping CLiiME developers, ForUML also influenced the

12

BREBEBRR
-t8t t- @88 >~ B- 0

FIGURE 10: Example of larger classes.

development of PSBLAS version 3.1, by allowing a compre-
hensive and unitary view of the project.

The UML diagram must be properly arranged to foment
design comprehension. A large class diagram that contains
several classes and relationships requires additional effort
from users’ as they try to assimilate all the information.
Unfortunately, the built-in function layout in ArgoUML does
not refine the layout in diagrams that contain numerous
elements. Although ArgoUML provides the ability to zoom
in or zoom out, large diagrams can still be difficult to
view. Figure 10 shows an example of a UML class diagram
generated by ForUML that includes large classes. These
problems can be addressed by dividing the collection of
classes into smaller packages, which should improve the
diagram’s understandability. Another option is to provide
different settings for the information included in the class
diagrams, allowing a user to create diagrams with the level
of detail required for a particular task. This option can ease
the development and/or maintenance process by eliminating
irrelevant information.

4.2.2. SEC-HPC’13 Workshop. In addition to our own expe-
riences, we can make some observations based on the
discussions during the SE-HPCCSE’13 workshop regarding
the use of UML in CSE applications. UML helps partition
the coding workloads in large projects. For larger projects,
especially libraries, it is a matter of dwelling on the “use
cases” and designing an interface perhaps with UML. Then
feature coding tasks can be distributed to other developers.
In contrast, CSE has been reluctant to adopt object-oriented
design, whereas in other standard mathematics, linear algebra
design bears some similarly to OOP considering larger
mathematical structures as objects. Many audiences believed
that better SE practices, including adoption ForUML could
lead to a better adaptation of codes to multiple architectures.
However, one reason for the lack of advance SE in CSE is that
CSE developers try to use UML for everything. The audience
suggested that other domain specific languages (DSLs) could
be useful targets for generating information from legacy code.
Further, during the workshop’s discussion, there were some
questions that inspired us to study the impact of ForUML
on the CSE community. We believe that we can find answers
to these questions by conducting human-based studies of

Scientific Programming

ForUML. Below is a list of questions that arose during the
workshop.

(i) Is UML really useful for CSE developers?

(ii) Can ForUML and UML support larger application
sizes and multiple developers?

(iii) Many graphical design models serve multiple pur-
poses. Some users can convey a high-level design for
discussion, and others want to display the low-level of
design. In the context of CSE software development,
does UML serve all these needs well?

(iv) Which aspects of the CSE application should be
documented in the UML?

5. Discussion

Based on the experimental results, ForUML provided quite
precise outputs. ForUML was able to automatically transform
the source code into correct UML diagrams. To illustrate
the contributions of ForUML, Table 4 compares ForUML
with other visualization-based tools [18] that have features to
support program comprehension tasks. Based on this table,
one of the unique contributions of ForUML is its ability to
reverse engineered OO Fortran code. ForUML integrates the
capabilities of ArgoUML to visually display the class diagram.

We believe that ForUML can be used by three types of
people during the software development process, especially
for CSE software.

(1) Stakeholders or customers: ForUML generates docu-
mentation that describes the high-level structure of
the software. This documentation should make com-
munication between developers and the stakeholders
or customers more efficient.

(2) Developers: ForUML helps developers extract design
diagrams from their code. Developers might need
to validate whether the code under development
conforms to the original design. Similarly, when
developers refactor the code, they need to ensure that
the refactoring does not break exiting functionality or
decompose the architecture.

(3) Maintainers: they need a document that provides
adequate design information to enable them to make
good decisions. In particular, maintainers who are
familiar with other OOP languages can understand a
system implemented with OO Fortran.

However, ForUML has a few limitations that must be
addressed in the future as follows.

(1) Provide more relationships: two other relationships
that we frequently found in the Fortran applications
are as follows.

(i) Dependency: in practice, dependency is
most commonly used between elements (e.g.,
packages, folders) that contain other elements
located in different packages. The relationship

Scientific Programming 13
TABLE 4: A brief comparison between UML tools.

Features Rose enterprise [53] Doxygen Libthorin ForUML + ArgoUML Rigi [54]
Visualization UML Graph UML UML Graph
Reverse eng. (Fortran) No No Ver.90 Yes No
Hide/show detail Yes No Yes No No
Inheritance Yes No Yes Yes No
Layout A/M A A A/M A

Note: automatically adjusted (A) and manually adjusted (M).

is represented by a dashed line with an arrow
pointing toward a class that is an argument in a
procedure that is bound to another class.

(ii) Realization: it refers to the links between either
the interface or abstract and its implementing
classes. A dashed line is connected to an open
triangle for a type that extends an abstract type.

Note that although the current version of ForUML
does not support these relation types, the users can
edit the relationships in the ArgroUML after import-
ing the XMI document.

(2) Incorporation of other UML visualization tools: cur-
rently, ForUML integrates ArgoUML as the CASE
tool. We plan to build different interfaces to inte-
grate with other UML tools, so users can select
their tool of preference. Although many UML CASE
tools support the use of XMI documents, there are
several XMI versions defined by object management
group (OMG) and different tools support different
versions. We also plan to develop a plugin for Photran
(http://www.eclipse.org/photran/), to allow users to
automatically generate UML diagrams within the
IDE.

(3) Generate UML sequence diagram: a single diagram
does not sufficiently describe the entire software
system. Sequence diagrams are widely used to rep-
resent the interactive behavior of the subject system
[51]. To create UML sequence diagrams, we would
have to augment the ForUML extractor to build the
necessary relationships among objects necessary for
the generator to create the corresponding XMI code.

6. Conclusion and Future Work

This paper presents and evaluates the ForUML tool that can
be used for extracting UML class diagram from Fortran code.
Fortran is one of the predominant programming languages
used in the CSE software domain. ForUML generates a visual
representation of software implemented in OO Fortran in the
same way as is done in other, more traditional OO languages.
Software developers and practitioners can use ForUML to
improve the program comprehension process. ForUML will
help CSE developers adopt better SE approaches for the
development of their software. Similarly, software engineers
who are not familiar with scientific principles may be able to
understand a CSE software system just based on information

in the generated UML class diagrams. Currently, ForUML
can produce an XMI document that describes the UML class
diagrams. The tool supports the inheritance and composition
relationships that are the most common relationships found
in software systems. The tool integrates ArgoUML, an open
source. UML modeling tool to allow users to view and
modify the UML diagrams without installing a separate UML
modeling tool.

We have run ForUML on five CSE software packages
to generate class diagrams. The experimental results showed
that ForUML generates highly accurate UML class diagrams
from Fortran code. Based on the UML class diagrams
generated by ForUML, we identified a few limitations of its
capabilities. To augment the results of experiments, we have
created a website that contains all of the diagrams generated
by ForUML along with a video demonstrating the use of
ForUML. We plan to add more diagrams to the website
as we run ForUML on additional software packages. We
believe that ForUML conforms to Chikofsky and Cross II
[52] objectives of reverse engineering, which are identified
as follows: (1) to identify the system’s component and their
relationships and (2) to represent the system in another form
or at a higher level of abstraction.

In the future, we plan to address the limitations we have
identified. We also plan to conduct human-based studies
to evaluate the effectiveness and usability of ForUML by
other members of the CSE software developer community.
To encourage wider adoption and use of ForUML, we are
investigating the possibility of releasing it as open source
software. This direction can help us to get more feedback
about the usability and correctness of the tool. Demonstrating
that ForUML is a realistic tool for large-scale computational
software will make it an even more valuable contribution to
both the SE and CSE communities.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors gratefully thank Dr. Damian W. I. Rouson, at
Stanford University, and Dr. Hope A. Michelsen, member of
the Combustion Chemistry Department at Sandia National
Laboratories, for their useful comments and helpful discus-
sions which were extremely valuable.

14

References

[1] National Science Foundation, Cyberinfrastructure for 2Ist
Century Science and Engineering Advanced Computing Infra-
structure (Vision and Strategies Plan), 2012, http://www.nsf.gov/
pubs/2012/nsf12051/nsf12051.pdf.

[2] J. C. Carver, “Software engineering for computational science
and engineering,” Computing in Science and Engineering, vol. 14,
no. 2, Article ID 6159198, pp. 8-11, 2011.

[3] J. H. Marburget, “Report of the high-end computing revital-
ization task force (hecrtf),” Tech. Rep., National Coordination
Office for Information Technology Research and Development,
2004.

[4] V. K. Decyk, C. D. Norton, and H. J. Gardner, “Why fortran?”
Computing in Science and Engineering, vol. 9, no. 4, Article ID
4263269, pp. 68-71, 2007.

[5] E. Akin, Object-Oriented Programming via Fortran 90/95, Cam-
bridge University Press, Cambridge, UK, 2003.

[6] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “Expressing
object-oriented concepts in Fortran 90,” ACM SIGPLAN For-
tran Forum, vol. 16, no. 1, pp. 13-18, 1997.

[7] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “How to
support inheritance and run-time polymorphism in Fortran
90,” Computer Physics Communications, vol. 115, no. 1, pp. 9-17,
1998.

D. Barbieri, V. Cardellini, S. Filippone, and D. Rouson, “Design
patterns for scientific computations on sparse matrices,” in
Proceedings of the International Conference on Parallel Processing
(Euro-Par ’11),vol. 7155 of Lecture Notes in Computer Science, pp.
367-376, Springer, Berlin, Germany, 2012.

[9] S. Filippone and A. Buttari, “Object-oriented techniques for
sparse matrix computations in Fortran 2003, ACM Transac-
tions on Mathematical Software, vol. 38, no. 4, article 23, 2012.

K. Morris, D. W. I. Rouson, M. N. Lemaster, and S. Filippone,
“Exploring capabilities within ForTrilinos by solving the 3D
Burgers equation,” Scientific Programming, vol. 20, no. 3, pp.
275-292, 2012.

[11] D. W. Rouson, J. Xia, and X. Xu, “Object construction and
destruction design patterns in fortran 2003,” Procedia Computer
Science, vol. 1, no. 1, pp. 1495-1504, 2003.

D. W. L. Rouson, H. Adalsteinsson, and J. Xia, “Design patterns
for multiphysics modeling in Fortran 2003 and C++,” ACM
Transactions on Mathematical Software, vol. 37, no. 1, article 3,
2010.

Z. Merali, “Computational science: ...Error,” Nature, vol. 467, no.
7317, pp. 775-777, 2010.

A. Nanthaamornphong, K. Morris, and S. Filippone, “Extract-
ing uml class diagrams from object-oriented fortran: Foruml;
in Proceedings of the Ist International Workshop on Software
Engineering for High Performance Computing in Computational
Science and Engineering (SE-HPCCSE ’13), pp. 9-16, Denver,
Colo, USA, November 2013.
J. C. Carver, “Report: the second international workshop on
software engineering for CSE) Computing in Science and
Engineering, vol. 11, no. 6, Article ID 5337640, pp. 14-19, 2009.
[16] G. V. Wilson, “What should computer scientists teach to
physical scientists and engineers?” IEEE Computational Science
& Engineering, vol. 3, no. 2, pp. 46-55, 1996.
[17] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, “Soft-
ware development environments for scientific and engineering
software: a series of case studies,” in Proceedings of the 29th

[8

(10]

(15]

(18]

(19]

(20]

(21]

(22]

N
&

(30

(31]

Scientific Programming

International Conference on Software Engineering (ICSE °07), pp.
550-559, Minneapolis, Minn, USA, May 2007.

M.-A. Storey, “Theories, tools and research methods in program
comprehension: past, present and future;” Software Quality
Journal, vol. 14, no. 3, pp. 187-208, 2006.

M. J. Pacione, “Software visualisation for object-oriented pro-
gram comprehension,” in Proceedings of the 26th International
Conference on Software Engineering (ICSE "04), pp. 63-65, May
2004.

J. Segal, “Professional end user developers and software devel-
opment knowledge,” Tech. Rep., Open University, England, UK,
2004.

M. T. Sletholt, J. E. Hannay, D. Pfahl, and H. P. Langtangen,
“What do we know about scientific software development’s agile
practices?” Computing in Science and Engineering, vol. 14, no. 2,
Article ID 6081842, pp. 24-36, 2012.

R. N. Britcher, “Re-engineering software: a case study, IBM
Systems Journal, vol. 29, no. 4, pp. 551-567, 1990.

L. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process, Addison Wesley Longman, Boston, Mass,
USA, 1999.

T. C. Lethbridge, S. Tichelaar, and E. Ploedereder, “The dagstuhl
middle metamodel: a schema for reverse engineering,” Elec-
tronic Notes in Theoretical Computer Science, vol. 94, pp. 7-18,
2004.

OMG, OMG Model Driven Architecture (MDA), 1997,
http://www.omg.org/mda/.

Object Management Group (OMG), 1997, http://www.omg.org.
M. H. Alalfy, . R. Cordy, and T. R. Dean, “Automated reverse
engineering of UML sequence diagrams for dynamic web appli-
cations,” in Proceedings of the IEEE International Conference
on Software Testing, Verification, and Validation Workshops
(ICSTW °09), pp. 287-294, Denver, Colo, USA, April 2009.

M. H. Alalfi, J. R. Cordy, and T. R. Dean, “SQL2XMI: reverse
engineering of UML-ER diagrams from relational database
schemas,” in Proceedings of the 15th Working Conference on
Reverse Engineering (WCRE ’08), pp. 187-191, Antwerp, Bel-
gium, October 2008.

E. Korshunova, M. Petkovic, M. van den Brand, and M.
Mousavi, “CPP2XMI: reverse engineering of UML class,
sequence, and activity diagrams from C++ source code,” in Pro-
ceedings of the 13th Working Conference on Reverse Engineering
(WCRE °06), pp. 297-298, Benevento, Italy, October 2006.

E. Gansner, E. Koutsofios, S. North, and K.-P. Vo, “A technique
for drawing directed graphs,” IEEE Transactions on Software
Engineering, vol. 19, no. 3, pp- 214-230, 1993.

E. B. Duffy and B. A. Malloy, “A language and platform-
independent approach for reverse engineering,” in Proceedings
of the 3rd ACIS International Conference on Software Engineer-
ing Research, Management and Applications (SERA '05), pp. 415-
422, Pleasant, Mich, USA, August 2005.

V. K. Decyk, C. D. Norton, and B. K. Szymanski, “How to
express C++ concepts in Fortran 90, Scientific Programming,
vol. 6, no. 4, pp. 363-390, 1997.

W. S. Brainerd, Guide to Fortran 2003 Programming, Springer,
1st edition, 2009.

M. Metcalf, J. Reid, and M. Cohen, Modern Fortran Explained,
Oxford University Press, New York, NY, USA, 4th edition, 2011.
D. Rouson, J. Xia, and X. Xu, Scientific Software Design: The
Object-Oriented Way, Cambridge University Press, New York,
NY, USA, 1st edition, 2011.

Scientific Programming

[36] 1. D. Chivers and J. Sleightholme, “Compiler support for the
Fortran 2003 and 2008 Standards Revision 11,” ACM SIGPLAN
Fortran Forum, vol. 31, no. 3, pp. 17-28, 2012.

[37] J. Reid, “Coarrays in the next fortran standard,” SIGPLAN
Fortran Forum, vol. 29, no. 2, pp. 10-27, 2010.

[38] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Longman Publishing, Boston, Mass, USA, 1995.

[39] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming, Addison-Wesley Professional, Ist edition, 2004.

[40] J. L. Ortega-Arjona, Patterns for Parallel Software Design, John
Wiley & Sons, 1st edition, 2010.

[41] M. Weidmann, “Design and performance improvement of a
real-world, object-oriented C++ solver with STL,” in Scien-
tific Computing in Object-Oriented Parallel Environments, Y.
Ishikawa, R. Oldehoeft, J. Reynders, and M. Tholburn, Eds., vol.
1343 of Lecture Notes in Computer Science, pp. 25-32, Springer,
Berlin, Germany, 1997.

[42] A. Markus, “Design patterns and Fortran 90/95,” ACM SIG-
PLAN Fortran Forum, vol. 25, no. 1, pp. 13-29, 2006.

[43] A.Markus, “Design patterns and Fortran 2003,” ACM SIGPLAN
Fortran Forum, vol. 27, no. 3, pp- 2-15, 2008.

[44] H. Neunzert, A. Klar, and J. Struckmeier, “Particle methods:
theory and applications,” Tech. Rep. 95-113, Fachbereich Math-
ematik, Universitat Kaiserslautern, Kaiserslautern, Germany,
1995.

[45] V.K.Decykand H.J. Gardner, “Object-oriented design patterns
in Fortran 90/95: mazevl, mazev2 and mazev3,” Computer
Physics Communications, vol. 178, no. 8, pp. 611-620, 2008.

H. A. Muller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley,

and K. Wong, “Reverse engineering: a roadmap,” in Proceedings

of the Conference on The Future of Software Engineering, pp. 47—

60, Limerick, Ireland, June 2000.

[47] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Longman, Boston, Mass, USA, 1999.

[48] T.J. Parr and R. W. Quong, “ANTLR: a predicated-LL(k) parser
generator,” Software: Practice and Experience, vol. 25, no. 7, pp.
789-810, 1995.

[49] P. Tonella and A. Potrich, “Reverse engineering of the UML
class diagram from C++ code in presence of weakly typed
containers,” in Proceedings of the IEEE International Conference
on Software Maintenance (ICSM 01), pp. 376-385, Florence,
Italy, November 2001.

[50] A. Nanthaamornphong, K. Morris, D. W. 1. Rouson, and H.
A. Michelsen, “A case study: agile development in the com-
munity laser-induced incandescence modeling environment
(CLiiME),” in Proceedings of the 5th International Workshop on
Software Engineering for Computational Science and Engineer-
ing, pp. 9-18, San Francisco, Calif, USA, May 2013.

[51] L. C. Briand, Y. Labiche, and Y. Miao, “Towards the reverse
engineering of UML sequence diagrams,” in Proceedings of the
10th Working Conference on Reverse Engineering, pp. 57-66,
Victoria, Canada, November 2003.

[52] E. J. Chikofsky and J. H. Cross II, “Reverse engineering and

design recovery: a taxonomy,” IEEE Software, vol. 7, no. 1, pp.

13-17,1990.

[53] IBM, Rational Rose Enterprise, 2013, http://www-03.ibm.com/
software/products/en/enterprise/.

[54] Department of Computer Science University of Victoria, Rigi,
2001, http://www.rigi.cs.uvic.ca/rigi/blurb/rigi-blurb.html.

(46

15

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

