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Some peer-to-peer streaming systems make use of linear codes to reduce the rate of the data uploaded by peers with limited upload
capabilities. Such “data reduction” techniques are based on a vector-space approach and produce the data to be uploaded by means
of linear combinations of the content data in a suitable finite field. In this paper, we propose a more general approach based on
group theory. The new approach, while including the vector space approach as a special case, allows to design schemes that cannot
be modeled as linear codes. We analyze the properties of the schemes based on the new approach, showing also how a group-based
scheme can be used to prevent stream poisoning and how a group-based scheme can be converted into a secret-sharing scheme.
Examples of group-based schemes that cannot be described in the vector-space framework are also shown.

1. Introduction

A problem that is currently attracting attention in the
research community is the problem of streaming live content
to a large number of nodes. The main issue to be solved
is due to the amount of upload bandwidth required to the
server that, unless multicast is used, is equal to the bandwidth
required by a single viewer multiplied by the number of
viewers. Although multicast is a possible solution, it has its
drawbacks too, especially if the audience is spread among
several different autonomous systems (AS).

An approach that recently attracted interest in the re-
search community is the use of peer-to-peer (P2P) solutions.
With the P2P approach, each viewer resends the received data
to other users, and, ideally, if each user retransmitted the
video to another user, the server would just need to “feed”
a handful of nodes, and the network would take care of
itself. Unfortunately, the application of the P2P paradigm
to multimedia streaming has some difficulties. Maybe the
most important one is due to the fact that the typical res-
idential user have enough download bandwidth to receive
the stream but not enough upload bandwidth to retransmit
it. This makes the application of the P2P paradigm to video
streaming not trivial.

Some peer-to-peer streaming systems [1–5] propose the
use of linear codes (someone interprets this approach as an

instance of network coding [6]) to overcome the asymmetric
bandwidth problem. In order to adapt the upload bandwidth
to the user capabilities, the node combines the content
data by means of some linear combinations and forwards
the result. If the node has a reduced upload bandwidth,
the forwarded linear combinations will not be sufficient to
recover the original content, but a node can contact more
than one peer to receive different sets of linear combinations
in order to be able to recover the content data.

The approaches proposed in [1–5] reduce the required
data rate by using linear codes obtained as linear transfor-
mations of vector spaces over a finite field. The goal of this
paper is to introduce a more general approach on data rate
reduction based on group theory. We will show that the
classical vector space approach is just a specialization of the
theory presented here, since vector spaces are just a special
type of groups. However, since groups are more general than
vector spaces, the theory presented in this paper allows one
to create new coding procedures that cannot be described as
linear combinations in suitable vector spaces. Note that the
only hypothesis required is that the groups involved have a
finite number of elements, and in particular, it is not required
that the groups are commutative.

Although the application that motivated this work was
rate reduction for P2P streaming, we will show that the
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theory presented here has a wider application range and it
allows, for example, the construction of systems that coun-
teract poisoning attacks [7] or allow secret sharing [8, 9].

This paper is organized as follows: in Section 2, we
introduce a formalism for group-based reduction schemes
(GBRS), in Section 3, we study the properties of GBRS; in
Section 4, we give some examples of GBRS that cannot be
described with the vector space approach; in Section 5, we
give the conclusions.

2. Group-Based Reduction Schemes

Some P2P systems for multimedia streaming solve the
problem of the limited bandwidth of residential users
by uploading, instead of the whole content, some linear
combinations (in a suitable finite field) of the data that
constitute the content [1–3, 5]. The goal of this section is
to introduce an alternative description of this type of “data
reduction” procedures not based, as usual, on vector spaces
but on group theory. In order to make the introduction
of the group theory approach easier, we first introduce (in
Section 2.1) a very general formalization of the reduction
process that will be specialized in Section 2.2 to the desired
group-based formalization.

For the sake of concreteness, we will refer to the peer-
to-peer streaming application, but this does not prevent
the application of the presented theory to other applicative
contexts of network coding.

2.1. Data Reduction Schemes. We will model the content
stream to be transmitted as a sequence of content symbols
belonging to a finite content alphabet G. Each content symbol
g ∈ G requires, clearly, log2|G| per element. The idea for
reducing the rate necessary for the uploaded stream is to map
every content symbol g to a reduced symbol u belonging to a
smaller alphabet. Since the alphabet of u is smaller than G,
the number of bits required for u will be smaller.

Definition 1. A reduction scheme is given via (i) a finite set S
and (ii) a set of reduction functions rs : G → Ks, indexed
by s ∈ S and sharing the same domain G (the content
alphabet).

Remark 1. Note that no constraint is put on Ks. In a practical
context, it is expected that each Ks has smaller cardinality than
G.

A node with limited upload bandwidth chooses at startup
a reduction parameter s ∈ S. Every time it receives a new
content symbol g, it reduces it by processing it with the
reduction function rs correspondent to the chosen s to obtain
the reduced symbol

us := rs
(
g
)
, (1)

that is encoded with log2|Ks| < log2|G| bits and sent to the
other peers.

A node that wants to recover the original content symbol
g contacts R peers, receives the corresponding reduced ver-
sions us1 , us2 ,. . . ,usR and recovers g by solving the system

us1 = rs1

(
g
)
,

us2 = rs2

(
g
)
,

...

usR = rsR
(
g
)
.

(2)

Intuitively, if R is large enough, the peer can recover g. A
key concept that we will use in this paper is the concept
of a reduction scheme that it is R-recoverable. Informally, a
scheme is R-recoverable if every g ∈ G can be recovered by
the knowledge of any set of R different reduced versions.

Definition 2 (R-recoverable). Let {rs : G → Ks, s ∈ S} be
a reduction scheme and define, for every set of R different
reduction parameters s1,. . ., sR ∈ S, the function φs1,...,sR :
G → Ks1 × · · · × KsR as

φs1,...,sR

(
g
)

:= [rs1

(
g
)
, . . . , rsR

(
g
)]
. (3)

The reduction scheme will be said to be R-recoverable if for
every choice of R different parameters s1, . . .,sR ∈ S, function
φs1,...,sR is injective.

The reduction scheme will be said to be R-tight if it
is R-recoverable and for every choice of R − 1 reduction
parameters s1, . . .,sR−1 ∈ S, the corresponding function
φs1,...,sR−1 is not injective.

Remark 2. Note that in Definition 2, we require only φs1,...,sR
to be injective, not bijective. That is, we do not require that
system (2) have a solution for every choice of usi ∈ Ksi , i =
1, . . . ,R (it could have none), but we require that if a solution
exists, then it is unique.

The property of being R-recoverable is very interesting
for applicative purposes, since it allows each node to
choose its parameter s at random while granting (with large
probability) the possibility of recovering the content g, since
the probability of having two nodes choosing the same value
can be made as small as desired by choosing |S| large enough.
A reduction scheme that is R-recoverable has also other
interesting characteristics such as being resilient to data loss
(if the node contacts N > R peer, it can recover g as soon
as it receives R reduced versions out of N), counteracting
poisoning [7] (the node uses R reduced versions to recover
g and uses the remaining N − R to check for the correctness
of the result [1]), and reducing jitter [10].

Example 1 (Vandermonde reduction scheme). In order to
give a concrete example of the just described abstract model,
it is worthwhile to show how the reduction approach in [1]
can be adapted to the described setup. The approach in [1]
maps a block of Rd bits of the content stream in a column
vector

c = [a1, . . . , aR]t, (4)
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where each ai belongs to the Galois field with 2d elements F2d .
Each node chooses at start-up time an element s ∈ F2d and
constructs the row vector

rs :=
[

1, s, . . . , sR−1
]
. (5)

In order to produce the reduced version of vector c, the node
multiplies c by rs to obtain us = rsc. Value us is sent to the
other peers, and its transmission requires only d bits instead
of Rd bits. Therefore, the required upload bandwidth is R
times smaller.

In order to recover c, a node can ask for R different values
us1 ,. . .,usR and solve the linear system

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

us1

us2

· · ·
usR

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 s1 · · · sR−1
1

1 s2 · · · sR−1
2

...
...

...

1 sR · · · sR−1
R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
R

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1

a2

...

aR

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
c

. (6)

Note that matrix R in (6) is a Vandermonde matrix, and it is
invertible as soon as all the si values are different.

Reformulated with the language of the formalization
presented here, we can say that the content alphabet is the set
of R-dimensional vectors with entries in F2d ; that is, G = FR2d ;
the reduction functions are parametrized by s ∈ S = F2d and
are defined as

rs(c) :=
[

1, s, . . . , sR−1
]

c, (7)

and, finally, Ks = F2d for every s ∈ S.
Note that this reduction scheme is R-tight.

2.2. Group-Based Reduction Procedures. The setup described
in Section 2.1 is very general. In order to simplify the study,
it is worthwhile to restrict the model above by adding to
it some structure. A structure that is quite powerful but
still quite general to be applied in several cases of practical
interest is the structure of group. In this paper, we need only
basic notions and results of group theory. For the sake of
completeness, Appendix A summarizes the concepts used in
this paper, and a more detailed description can be found in
the literature [11, 12].

In the following we will denote the group operation as a
product and will use the symbol e for the neutral element of
a group. We will denote with E = {e} the trivial group that
contains only the neutral element. Group isomorphism will
be denoted with �. The ring of integers modulo N will be
denoted as Z/NZ.

Definition 3. A group-based reduction scheme (GBRS) is
a reduction scheme {rs : G → Ks, s ∈ S}, where the
content alphabet G and each reduced alphabet Ks, s ∈ S are
finite groups and each rs is a group epimorphism (that is,
a surjective homomorphism). Note that there is no loss of
generality in requiring that each rs is an epimorphism, since
one can always replace Ks with Im(rs).

Remark 3. Note that the reduction scheme presented in
Example 1 is a group-based reduction scheme, since FR2d and
F2d are groups (with respect to the sum) and maps rs(c) = rsc
are clearly group homomorphisms. We will see in Section 4
examples of group-based schemes that are not based on a
vector space structure.

2.2.1. Normalized Form. According to Definition 3, in order
to specify a group-based scheme, one must specify the con-
tent group G, the reduced groups Ks, and the epimorphisms
rs. These requirements can be simplified by exploiting the
fundamental homomorphism theorem [11] that implies that
rs can be written as

rs(x) = η
(
πker(rs)(x)

)
, (8)

where πker(rs) : G → G/ ker(rs) is the natural map associated
with G/ ker(rs) [11] and η : G/ ker(rs) → Im(rs) = Ks

is an isomorphism. Since isomorphic groups are basically
the same group, isomorphism η does not have any practical
consequences in our context, so we can restrict ourselves to
the case where reduced alphabets are quotient groups G/H ,
where H is a normal subgroup of G (the set of normal
subgroups coincides with the set of subgroups that are kernel
of some homomorphism [11]) and map r : G → G/H is the
natural map of G in G/H (i.e., r(x) = xH , where xH is the
coset of G/H to which x belongs) [11].

Definition 4 (GBRS normalized form). A group-based
reduction scheme {rs : G → Ks, s ∈ S} is said to be in
normalized form if for every s ∈ S

(1) Ks = G/Hs for some Hs � G,
(2) map rs is the natural map πHs : G → G/Hs associated

with G/Hs.
Observe that in order to specify a GBRS in normalized

form, it suffices to specify a set {H1,H2, . . . ,HL} of normal
subgroups of G. With a minor abuse of language, we will use
the term reduction scheme also for set {H1,H2, . . . ,HL}.

With the normalized form, the reduced version of a
content symbol g is always a coset gH which can be consid-
ered as “g reduced modulo H .” The group H represents the
“uncertainty” that one has about g when it knows its reduced
version gH : the smaller the cardinality of H , the smaller the
uncertainty about g. If H = E, no uncertainty is present, and
g is exactly known.

Example 2. It is worthwhile to describe the Vandermonde
reduction scheme of Example 1 as a GBRS in normalized
form. The kernel of map rs(u) = rsu is the subspace
of FR2d orthogonal to rs. The elements of the quotient
group FR2d / ker(rs) are translated versions of the subspace
orthogonal to rs. Note that every coset U of FR2d / ker(rs) is
uniquely identified by the value of the product rsu, where u
is any element of coset U (it is easy to see that the product
does not depend on the chosen u).

Summarizing, value rs(u) can be computed as follows:
first u is mapped to the coset u + ker(rs) to which it belongs,
then any representative of the coset is left multiplied by rs.
It is easy to verify that the latter step is an isomorphism from
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FR2d / ker(rs) to F2d . Therefore, in order to study the theoretical
properties of the Vandermonde reduction scheme, one can
replace each rs with the natural map πker(rs).

3. Properties of GBRS

In this section, we will study some properties of GBRS. First,
in Section 3.1, we will derive conditions for the existence of
a solution of system (2), and we will show that depending
on the choice of the subgroups, system (2) could have no
solution for some choice of the values usi . If a reduction
scheme is such that some R-ple of reduced values is not
admissible, one expects that the R-ple of reduced values that
can be obtained has some redundancy within. This idea is
further pursued in Section 3.1.2, where it is also shown that
the redundancy can be used to counteract stream poisoning
attacks [7].

The Vandermonde reduction scheme described in
Example 1 is deeply linked with the secret sharing scheme of
[13]. Actually, the secret sharing scheme of Shamir can be
derived from the Vandermonde scheme by replacing some
information data with random data. This idea is discussed
in greater detail in Section 3.2, where it is shown how
nonredundant reduction schemes (i.e., schemes such that (2)
has always a solution for every R-ple of reduced values) can
be easily converted in secret sharing schemes.

3.1. Reconstruction. As explained in Section 2.1, recovering
the original content requires to solve system (2). In this
section, we are going to study the reconstruction problem by
showing that given two reduced versions uH and vK , one
can combine them in order to get a “virtual” reduced version
w(H ∩ K), reduced with respect to the smaller uncertainty
group H ∩ K . Intuitively, by combining the virtual reduced
version with other reduced versions, one can make the
uncertainty group smaller and smaller until the original
content symbol is recovered. In some sense, this corresponds
to solving system (2) by means of an iterative approach: first,
we determine the set of values of g that satisfy the first two
equations of (2), then we use the third equation to refine
the solution, and so on until only one solution remains. The
problem to be solved at the first step of the iterative algorithm
can be formalized as follows.

Problem 1. Let H and K be normal subgroups of G, and let
uH ∈ G/H and vK ∈ G/K . Find all the a ∈ G such that
πH(a) = uH and πK (a) = vK (or, equivalently, find the
intersection uH ∩ vK).

The following property gives an answer to Problem 1.

Property 1. Let H and K be normal subgroups of G, and let
uH ∈ G/H and vK ∈ G/K . Let

S := {g ∈ G : πH
(
g
) = uH , πK

(
g
) = vK

}
(9)

be the set of content symbols g ∈ G that have uH and vK as
reduced versions.

(1) Set S is not empty if and only if

u−1v ∈ HK , (10)

or, equivalently, uHK = vHK ∈ G/HK . Note that
since H ⊂ HK , . . . chosen to represent uH .

(2) if (10) is satisfied, set S can be written as

S = a(H ∩ K) ∈ G
(H ∩ K)

, (11)

where a is any element of S. In other words, S is a
coset of G/(H ∩ K).

Proof.

Step 1 (If S /=∅, then condition (10) holds). Let g ∈ S. Since
πH(g) = uH and πK (g) = vK , there must exist h ∈ H and
k ∈ K such that

uh = g = vk, (12)

that implies u−1v = hk−1 ∈ HK , that is, (10).

Step 2 (If condition (10) holds, then S /=∅). If u−1v ∈ HK ,
one can find h ∈ H and k ∈ K such that u−1v = hk. It
follows that uh = vk−1. Since uh ∈ uH and vk−1 ∈ vK ,
it follows that uh ∈ S. Incidentally, note that if one knows
how to decompose an element of HK into a product of an
element of H and an element of K , this procedure allows to
find a solution in S.

Step 3 (If S /=∅, then (11) holds). Define homomorphism
φ : G → G/H × G/K as φ(g) = (πH(g),πK (g)) and observe
that S = φ−1(uH , vK), that is, S is the inverse image of
(uH , vK). Since φ is an homomorphism, it is known that (if
S /=∅) φ−1(uH , vK) is a coset of G/ ker(φ). The thesis will
follow if one can prove that

ker
(
φ
) = H ∩ K. (13)

Equation (13) can be proved by observing that a ∈ ker(φ)
if and only if πH(a) = H (i.e., equivalent to a ∈ H) and
πK (a) = K (i.e., equivalent to a ∈ K).

Several remarks about Property 1 are in order.

Remarks. (1) Suppose system (2) has solution ĝ. Clearly, ĝ
must necessarily belong to set (11) so that set (11) can be
written as ĝ(H∩K). It follows that (11) is the reduced version
of the solution ĝ with respect to group H ∩ K . This implies
that Property 1 can be applied to every step of the iterative
algorithm outlined at the beginning of this section.

Note that the availability of an iterative algorithm that
solves system (2) one equation at time can be interesting
from an implementation point of view, since it allows to
spread the computational burden over the time, updating the
solution as soon as new data are received. Depending on the
applicative context, this can be more convenient than waiting
for all data to arrive before starting the reconstruction.

(2) Note that condition (10) poses a compatibility
condition on the pair (uH , vK). Such a condition can,
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Figure 1: Lattice of the subspaces of F3
4.

however, be trivially true if HK is equal to the whole group
G. If HK is a proper subset of G, not every pair (uH , vK)
is admissible, and this, intuitively, implies that there is
some redundancy in the pair (uH , vK). This aspect will be
discussed more in detail in Section 3.1.2.

3.1.1. The Reconstruction Problem and the Lattice of Nor-
mal Subgroups. Property 1 has a nice interpretation in the
context of the lattice of the normal subgroups of G (see
Appendix B for a brief summary about lattices and [11] for
a more detailed exposition). According to Property 1, the
uncertainty group H ∩ K of the combined version is the
greatest lower bound H ∧ K of H and K (i.e., their first
common descendant on the lattice graph), while the group
associated with constraint (10) is the smallest upper bound
H∨K (i.e., their first common ancestor on the lattice graph).

Example 3. Figure 1 shows the lattice graph of the subspaces
of F3

4, together with the subspaces involved in the Vander-
monde reduction scheme. In the case of Figurge 1, F4 is
implemented as the polynomials with coefficients in Z/2Z
modulo z2 + z + 1.

Each node in Figure 1 is labeled with a basis of the space,
and the elements of F4 are represented as integer numbers
in {0, 1, 2, 3} whose digits in the binary representation are
the coefficients of the corresponding element of F4 (e.g., 3
corresponds to z+1). The top node, labeled with I , represents
the whole space F3

4, while the bottom node, labeled with {0},
represents the trivial space.

As explained in Example 2, the groups associated with
the Vandermonde scheme are the R − 1-dimensional sub-
spaces orthogonal to vectors of type (5). In Figure 1, these
vector spaces are 2-dimensional and correspond to the

four nodes marked with a bold circle. In order to obtain
the intersection of two of the spaces associated with the
Vandermonde scheme, one needs to find the first common
descendant of the two spaces. By considering all the six
different unordered pairs of spaces, one obtains the six one-
dimensional spaces marked with bold hexagons in Figure 1.

Note that any triple of spaces has as common descendant
the trivial space {0}, coherently with the fact that the scheme
is 3-recoverable. Moreover, any pair of spaces has as common
ancestor, the whole space F3

4, coherently with the fact that
system (6) is solvable for any vector [ub1 , . . . ,ubR] of reduced
values.

3.1.2. Redundancy in a GBRS. It is worthwhile commenting
about the meaning of constraint (10) in the context of
network coding for peer-to-peer streaming. Remember that
uH and vK represent two reduced versions received from
two peers. According to Property 1, if uH and vK have
been obtained by reducing the same content symbol g, then
uH and vK are “compatible” according to (10). If HK /=G,
constraint (10) is not trivial, and not all the pairs (uH , vK)
are valid.

Intuitively, this is very similar to the case when redundant
bits are added to protect communications from errors. Actu-
ally, adding redundant bits to the information to be transmit-
ted constrains the set of admissible sequences of bits, and if
the received sequence does not satisfy the constraints induced
by the redundant bits, the receiver can deduce that an error
occurred. Here, similarly, if uH and vK do not satisfy (10),
we can deduce that at least one reduced value must be incor-
rect. In Section 3.1.3, it is shown how it is possible to exploit
this possibility to counteract poisoning attacks when network
coding is used for streaming over peer-to-peer networks.
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The idea that if HK /=G, then some redundancy is
present, is confirmed by the following result.

Property 2. Let the notation be as in Property 1. The
following equality holds:

∣
∣∣
∣

G

H ∩ K

∣
∣∣
∣ =

∣
∣∣
∣
G

H

∣
∣∣
∣

∣
∣∣
∣
G

K

∣
∣∣
∣

∣
∣∣
∣

G

HK

∣
∣∣
∣

−1

. (14)

Proof. Since HK/K is isomorphic to H/(H ∩ K) [11], it
follows that

|HK|
|K| = |H|

|H ∩ K| . (15)

By exploiting (15), one can write
∣
∣
∣∣

G

H ∩ K

∣
∣
∣∣ =

|G|
|H ∩ K| =

|HK||G|
|H||K|

= |G|
|H|

|G|
|K|

|HK|
|G|

=
∣
∣∣
∣
G

H

∣
∣∣
∣

∣
∣∣
∣
G

K

∣
∣∣
∣

∣
∣∣
∣

G

HK

∣
∣∣
∣

−1

.

(16)

By taking the logarithms of (14) and reorganizing, one
obtains

log2

∣
∣
∣∣

G

HK

∣
∣
∣∣ =

(
log2

∣
∣
∣∣
G

H

∣
∣
∣∣ + log2

∣
∣
∣∣
G

K

∣
∣
∣∣

)
− log2

∣
∣
∣∣

G

H ∩ K

∣
∣
∣∣.

(17)

Observe that the sum in parenthesis represents the number
of bits that we used to receive the two reduced versions, while
the last term on the right-hand side of (17) can be interpreted
as the number of bits necessary to describe the result of
the combination of the two reduced versions. It follows that
their difference can be interpreted as the “redundancy” of
the system in the sense that it is the difference between the
number of bits spent and the number of bits that we got
after the combination. Note that if HK = G (the case when
condition (10) is always verified), then the last term of (17)
is zero; that is, no redundancy is added.

Definition 5. Scheme {H1,H2, . . . HK} will be said to be
nonredundant if for every choice of different Hjn , n =
0, . . . ,L such that Hj1 ∩ · · · ∩HjL /=E, then Hj0 (Hj1 ∩ · · · ∩
HjL) = G.

Example 4. Consider the case of the Vandermonde reduction
scheme. In this case, H and K are two spaces, of dimension
R − 1, orthogonal, respectively, to vectors r1 and r2. The
intersection H ∩ K is the space of the vectors that are
orthogonal to both r1 and r2, and, as known, it has dimension
R−2. In the Vandermonde scheme, product HK is the vector
space sum r⊥1 + r⊥2 . Since spaces r⊥1 and r⊥2 have dimension
R−1, their sum has dimension R (that corresponds to the no
redundancy case HK = G) unless the two spaces coincide.
Therefore, the Vandermonde scheme has no redundancy.

We will introduce in the following a reduction scheme
based on the Chinese remainder theorem (CRT) that allows
for the introduction of redundancy.

3.1.3. Counteracting Stream Poisoning. One important secu-
rity threat in P2P streaming is the stream poisoning attack
where a node sends wrong packets on the P2P network
with the objective of disrupting the communication [7].
A reduction-based approach can help counteracting this
attack. The idea is very simple: if the reduction scheme is R-
recoverable, a node asks data to N > R peers, uses R reduced
versions to recover the content, and then uses the remaining
N −R reduced versions to check the correctness of the result;
by the knowledge of which tests fail, it is possible to spot
who tried the attack [1] (if all the tests fail, it means that a
corrupted value was used in the reconstruction process; the
node can retry the tests using a different subset of R in the
reconstruction step). It is possible to show that this test is
robust against a coordinated attack of at most N − R peers
[1].

A drawback of the test above is that one needs to recover
first the content symbol and then do the test. If, by chance,
a corrupted value is used in the reconstruction process, the
node needs to try the reconstruction again. It would be more
efficient if the node was able to spot the corrupted data before
doing the reconstruction process.

This can be done by using a redundant scheme and
exploiting Property 1 by checking (10) before attempting the
reconstruction.

3.2. Generalized Secret Sharing. Secret-sharing techniques
allow one to share a secret among N people with the
constraint that (i) R people, putting their information to-
gether, can recover the secret and (ii) R − 1 people that put
their information together cannot deduce anything about the
secret [8, 13]. We will say that the scheme achieves perfect
secrecy. Note that secret sharing is a problem very similar to
the reduction problem described in this paper but with the
additional constraint of (ii).

Actually, the Vandermonde reduction scheme described
in Example 1 can be easily converted into the secret-sharing
scheme described in [8, 13]. More precisely, suppose that
the secret to be shared is represented by a value x ∈ F2d .
The scheme of [13] builds vector c in (4) by setting a1 = x
and choosing a2, . . . , aR at random. Successively, N reduced
values are created and distributed among the participants. In
order to recover the secret, one collects R reduced versions,
gets c by solving (6), and takes the first component of the
result. Note that taking the first component of c is equivalent
to right-multiplying c by et1 = [1, 0, . . . , 0].

As said above, secret sharing has the additional constraint
of perfect secrecy; that is, any set of R−1 participants cannot
deduce anything about the secret. This can be easily verified
by observing that e1 does not belong to the space generated
by any set of R−1 vectors of type rs, s /= 0 (note that e1 = r0),
and this implies that from the knowledge of R − 1 reduced
values, nothing can be inferred about the value of x = a1 =
e1c.

In this section we will show how the procedure used
to convert the Vandermonde scheme into a secret sharing
scheme can be generalized to any GBRS. Observe that the
above described secret sharing procedure can be reformu-
lated as follows: map the information to be shared x into
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a vector v = xe1 belonging to the one-dimensional space
V1 := span{e1} generated by e1, successively add to v a
random vector q belonging to the R − 1-dimensional space
e⊥1 orthogonal to e1, and finally vector v + q is processed with
the reduction scheme. The fact that the intersection between
V1 and e⊥1 is trivial allows one to recover uniquely v (and x)
from v + q.

In order to extend the secrete sharing scheme in the
GBRS context, we need an obfuscating subgroup M � G that
will play the role of e⊥1 .

The generalized secret sharing scheme is the following:
let I be any set of representatives of G/M; we encode the
information to be shared as an element v ∈ I , we draw
at random q ∈ M and compute h = vq ∈ vM, then we
apply the reduction scheme to h. After recovering h, one can
obtain v by applying πM , the natural map associated with M,
to h. The only thing that remains to be checked is to verify
when this scheme achieves perfect secrecy. Remember that a
reduced value is a coset of a quotient group G/H , where H
is a normal subgroup of G. Let uH be the reduced version
of h = vq, with q a random element of M. Our objective
is to deduce some information about v from the knowledge
of uH . We will say that a value � ∈ G is compatible with
uH if there are m ∈ M and k ∈ H such that �m = uk, or,
alternatively,

� ∈ uHM. (18)

Note that if � is not compatible with uH , then we obtain some
information about the secret value, since we know that the
secret cannot be �. Therefore, the scheme will achieve perfect
secrecy with reduction group H if every � ∈ I is compatible
with uH for every u ∈ G.

Remark 4. From (18), it follows at once that � is compatible
with uH if and only if any other element of �M is compatible
with uH . This implies that one can change the set of rep-
resentatives I without changing the secrecy characteristics of
the scheme.

Definition 6. Let H and M be normal subgroups of G. We say
that perfect secrecy is achieved if for every u ∈ G, every � ∈ I
is compatible with uH .

Property 3. Let H and M be normal subgroups of G. Perfect
secrecy is achieved if and only if HM = G.

Proof. If HM = G, then perfect secrecy is achieved. If HM =
G, it is obvious that � ∈ uHM = uG = G for every � ∈ I .

If HM /=G, then perfect secrecy is not achieved. Suppose
now that HM /=G; that is, there is o ∈ G that does not belong
to HM. Observe that according to Remark 4, we can suppose
without loss of generality, e ∈ I ; we will prove that e is not
compatible with o−1. Indeed, if e was compatible with o, (18)
would imply o ∈ HM. Therefore, e is not compatible with
o−1, and perfect secrecy is not achieved.

If condition HM = G is fulfilled, it is possible to
prove that perfect secrecy is achieved even in a stronger,
information theoretical sense. Indeed, although Property 3

1

2357

35 21 15 14 10 6

105 70 42 30

210

Figure 2: Lattice of the subgroups of Z/210Z. A node labeled with
M represents group MZ/210Z.

claims that if HM = G, then any uH can be obtained from
any information symbol � ∈ I , it could happen that the
probability of obtaining uH from � could depend on �. In
this case, an attacker could deduce from uH something about
�. The following result shows that this is not the case.

Property 4. Let L be a random variable assuming values in I ,
and let Q be a random variables assuming values in M and
uniformly distributed. If HM = G, then for every α ∈ G,

P[πH(LQ) = αH | L = �] = |H ∩M|
|M| . (19)

According to Property 4, πH(LQ), the reduced version of LQ,
is statistically independent on L, and this implies that mutual
information I(πH(LQ);L) [14] is zero, so that an attacker
cannot deduce anything about L from πH(LQ).

The proof of Property 4 is simplified by using the
following lemma.

Lemma 1. Let β ∈ G. If HM = G, cardinality Cβ := |(βH)∩
M| does not depend on β.

Proof.

Step 1 (If h ∈ H , then Cβ = Cβh). This follows at once by
observing that βH = βhH .

Step 2 (If m ∈M , then Cmβ = Cβ). This follows at once by
observing that m[(βH)∩M] = (mβH)∩mM = (mβH)∩M.

Step 3 (Cβ = Ce for every β ∈ G). Since both M and 0 are
normal subgroups of G, MH = HM = G. It follows that
every β ∈ G can be written as β = mh with m ∈ M and
h ∈ H . By exploiting Steps 1 and 2 above, one deduces that

Cβ = Cmh = Ch = Ce. (20)
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Proof of Property 4. It is a simple verification

P[πH(LQ) = αH | L = �]

= P[LQ ∈ αH | L = �] By definition of πH

= P[�Q ∈ αH | L = �]

= P
[
Q ∈ �−1αH | L = �

]

= P
[
Q ∈ �−1αH

]
Independence of L and Q

= P
[
Q ∈ (�−1αH

)∩M
]

Since Q ∈M

=
∣
∣(�−1αH

)∩M
∣
∣

|M| Q uniformly distributed

= |H ∩M|
|M| Lemma 1.

(21)

One can interpret Property 3 by saying that in order to
have perfect secrecy, one must choose M large enough so
that, when combined with any H that can result from the
combining process, it generates the whole group G. This
is what is done in the secret sharing scheme based on the
Vandermonde scheme. In this case,M is a space of dimension
R−1 that when combined with any nontrivial space resulting
from the Vandermonde scheme, it generates the whole space
FR2d .

Property 5. Let {H0,H1,H2, . . . HK} be a nonredundant R-
recoverable reduction scheme with R ≤ K . Obfuscat-
ing group M = H0 together with reduction scheme
{H1,H2, . . . HK} is a secret-sharing scheme that achieves
perfect secrecy.

Proof. Since scheme {H0,H1, . . . HK} is not redundant, then
we have, by definition, H0(Hj1 ∩ · · · ∩ HjL) = G as soon as
Hj1 ∩ · · · ∩HjL /=E.

According to Property 5, constructing secret-sharing
schemes that achieve perfect secrecy is simple as soon as one
has a nonredundant scheme with enough subgroups: just use
one of the subgroups as the obfuscating group.

4. Examples of Alternative Reduction Schemes

In order to show the flexibility and the generality of the
presented theory, in this section, we present some schemes
that are not expressible as schemes based on vector spaces
over finite fields. With respect to the Vandermonde scheme,
the schemes presented here have the characteristic that they
do not require arithmetic in finite fields but only ordinary
integer arithmetic, and this, depending on the applicative
context, could be interesting from a complexity point of view.
Moreover, the redundancy of the schemes presented here can
be easily adapted to the specific application requirements:
low redundancy (or none at all) if efficiency is required and
more redundancy if error protection is needed.

4.1. CRT-Based Reduction Scheme. Let p1, p2, . . . , pL be
mutually prime numbers (i.e., the greatest common divisor
of pi and pj /= pi is 1), and let N = p1 · · · pL. We will
consider the group Z/NZ of the integers modulo N . Every
subgroup of Z/NZ has the form MZ/NZ, where M divides N .
The reduction of x = u+NZ ∈ Z/NZwith subgroup MZ/NZ
is (u mod M) + MZ/NZ. Note that since M divides N , coset
(u mod M) +MZ/NZ does not depend on the representative
chosen for u + NZ.

Let us consider, as an example, the case N = 210. In this
case, the content symbols are integers in the range 0 · · · 209,
the reduction with subgroup MZ/210Z is the usual reduction
modulo M, and Property 1 reduces itself to the Chinese
remainder theorem. A reduction scheme based on the group
Z/210Z is uniquely specified by giving a set of subgroups of
Z/210Z.

Figure 2 shows the lattice of the subgroups of Z/210Z.
Subgroup MZ/210Z is labeled with M in Figure 2; therefore,
the bottom node of Figure 2 represents the trivial group
E � 210Z/210Z, while the top node represents the content
alphabet G = Z/210Z. By choosing the nodes marked with
a star, one obtains a reduction scheme with no redundancy
that enjoys the 4-reconstruction (tight) property, while
choosing the node marked with a circle, one obtains a scheme
that enjoys a 3-reconstruction property but not tight, since
in some cases, only two reduced versions suffice. Moreover,
the scheme associated with the circles is redundant, since the
least upper bound of two nodes marked with circles is not
the top node.

4.2. Point Lattice Reduction Schemes. Let M ∈ ZD×D be a
square matrix with integer entries with det M /= 0. The point
lattice of base M is the set MZD ⊂ RD obtained by taking
integer linear combinations of the columns of M; that is,

MZD :=
{

Mn, n ∈ ZD
}
. (22)

(Typically, MZD is called simply lattice; here we use the
term point lattice in order to avoid confusion with the
lattices introduced in Appendix B.) A point lattice is clearly a
subgroup of ZD. It is known [11, 15] that |ZD/MZD| = det M.
Since ZD/MZD is finite, it is a suitable group for building
reduction schemes.

Consider, for example, the case where M = diag(4, 4).
It is easy to see that each class of Z2/MZ2 can be uniquely
identified by its representative belonging to the set {0, . . . 3}×
{0, . . . , 3}. Such a representative can be encoded by using
four bits: two bits per component. Note that each subgroup
of Z2/MZ2 has the form NZ2/MZ2, where N is an integer
matrix such that N−1M has integer entries [15]. By exploiting
the Hermite normal form theorem, it is possible to show
that N can be supposed without loss of generality in lower
triangular form. If n1 and n2 are the diagonal elements of N,
it is easy to check that every class of [Z2/MZ2]/[NZ2/MZ2]
can be uniquely identified by its representative belonging to
the set {0, . . . ,n1 − 1} × {0, . . . ,n2 − 1}. Since det N = n1n2

must divide det M = 16, we are granted that both n1 and n2

must be powers of two, making the binary representation of
the representative trivial.
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Figure 3: Lattice of the subgroups of Z2/4Z2. A node labeled with
M represents group MZ2/4Z2.

Figure 3 shows the lattice graph of the subgroups of
Z2/MZ2. (The lattice graph of Figure 3 can be obtained by
using the algorithm in [16].) As for the case of Figure 2, each
node in Figure 3 is labeled with the corresponding N matrix;
therefore, the top node corresponds to the content alphabet
Z2/MZ2, while the bottom node corresponds to the trivial
group E � MZ2/MZ2.

Several choices for reduction schemes are possible.
(1) Use the two subgroups marked with full circles and

the one marked with an empty circle. This gives a 2-tight
scheme (the first common descendant of each pair of nodes
is the node corresponding to E � MZ2/MZ2) without
redundancy (the first common ancestor of each pair of nodes
is the node corresponding to G = Z2/MZ2).

If [x, y]t, x, y ∈ {0, . . . , 3} represents the symbol to be
reduced, it is easy to show that the reduction with respect to
the subgroups shown in Figure 3 can be done as follows:

⎡

⎣
x

y

⎤

⎦ mod

⎡

⎣
1

4

⎤

⎦ =
⎡

⎣
0

y

⎤

⎦,

⎡

⎣
x

y

⎤

⎦ mod

⎡

⎣
1

1 4

⎤

⎦ =
⎡

⎣
0

(
y − x

)
mod 4

⎤

⎦,

⎡

⎣
x

y

⎤

⎦ mod

⎡

⎣
4

1

⎤

⎦ =
⎡

⎣
x

0

⎤

⎦.

(23)

Note that the result of each reduction in (23) requires two
bits to be encoded, and this is coherent with the fact that this
scheme is 2-tight and non redundant.

Note that reductions (23) do not require arithmetic in a
Galois field but only normal integer arithmetic. This can be
interesting from an implementation point of view.

(2) If the two subgroups marked with full circles and the
one marked with the star are chosen, one obtains a scheme

that is not 2-tight anymore, since, for example, node 2 and
node 6 have as common descendant node 13. The scheme,
however, is not redundant, since every pair of nodes has as
common ancestor node 1.

(3) If the two subgroups marked with full circles and the
ones marked with a triangle are chosen (nodes 6, 11, and 12)
one obtains a redundant scheme, since nodes 6 and 12 have
as common ancestor node 9.

Remark 5. It is worth observing that the scheme proposed
here is not to be confused with lattice-based error correction
codes proposed in the literature (see [17] for an introduc-
tion). Generally speaking, lattice-based error correction
schemes exploits the “metric” properties of lattices that
derive from the fact that a lattice is subset of RN . In our
case, we use the lattice only as an abstract group and not
as the subset of a metric space. This distinction can be
made clearer by observing that if one in an error correction
scheme replaces the lattice with another one, almost surely
the properties of the error correction scheme will change;
in our scheme, one can replace the lattice with any other
isomorphic group, and the overall properties of the scheme
will not change.

5. Conclusions

This paper proposed a general framework for reduction
schemes based on group theory. The new framework,
while containing the vector space approach as a special
case, allows to design schemes that cannot be modeled
as linear codes. The properties of the GBRS have been
analyzed, and it has also been shown how a GBRS can be
used to prevent stream poisoning and how GBRS can be
converted into a secret-sharing scheme achieving perfect
secrecy. Examples of group-based schemes that cannot be
described in the vector space framework have also been
shown.

Appendices

A. Basic Concepts of Group Theory

In this paper, we are going to use some basic results and
concepts from group theory. In order to make this paper as
self-contained as possible, we recall here the main concepts
used in this paper and refer the reader to the literature for
more details [11].

If G is a group and H is a subgroup of G, H is said
to be a normal subgroup of G (and will write H � G) if
for every c ∈ G and h ∈ H , it holds c−1hc ∈ H . If H
is a subgroup of G, one can define their quotient G/H as
the set of the classes associated with the equivalence relation
a ≡ b(mod H) ⇔ b−1a ∈ H . If H � G, one can give to G/H
the structure of a group by defining the group operation, as
usual, by (uH)(vH) := (uv)H [11]. If H is a subgroup of
G we will denote with πH : G → G/H the natural map
associated with G/H , that is, the map that associates with
each x ∈ G the coset πH(x) := xH of G/H to which x
belongs.
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Figure 4: (a) The graph of the lattice of integers {1, . . . , 12} by
divisibility. (b) The of the lattice of the subsets of {a, b, c} ordered
by inclusion.

If H and K are subgroups of G, we define

HK := {hk, h ∈ H , k ∈ H}. (A.1)

It is known that if H and K are normal subgroups of G, then
HK is a normal subgroup of G, and it is equal to KH [11].

B. Ordered Lattices

A structure that we will need in this paper is the lattice
structure, a special type of partially ordered set.

Definition 7. A lattice L is a partially ordered set in which any
two elements a, b ∈ L have a least upper bound a ∨ b and a
greatest lower bound a∧ b [11].

Many algebraic structures are lattices. The simplest
example is maybe the set of subsets of a given set ordered
by inclusion. In this case, the least upper bound corresponds
to set union, while the least lower bound corresponds to set
intersection. Another example of lattice is given by natural
numbers ordered by divisibility (i.e., a ≥ b if a divides b).
In this case, the least upper bound is the greatest common
divisor, while the least lower bound corresponds is the least
common multiple [11]. Here, we are interested in the lattice
of normal subgroups of a given group. It is possible to show
that the set of normal subgroups of G is a lattice, with
set inclusion as the relation order, and that the least upper
bound of H and K is HK , while the greatest lower bound is
H ∩ K .

B.1. Lattice Graph. Finite lattices have a useful graphic
representation exploiting the idea of covering. We say that a
covers b if “a is immediately above b;” that is, if a > b and
there exists no u such that a > u > b. We can represent the
order relation by creating an oriented graph whose nodes are
the lattice points, and there is an edge going from a to b if
a covers b. Since it is possible to show that in a finite lattice
a > b if and only if there exist a sequence of ci, i = 1, . . . ,n
such that (i) ci covers ci+1 for every i = 1, . . . ,n − 1 and (ii)

a = c1, b = cn, it is easy to see that a > b if and only if there
is a path that goes from a to b. It is easy to verify that the
least upper bound of a and b is the first common ancestor of
a and b, while the greatest lower bound is the first common
descendant.

Figure 4 shows two examples of lattice graphs. In
Figure 4(a), one can see the graph of {1, . . . , 12} ordered
by divisibility, while in Figure 4(b), one can see the graph
of the subsets of {a, b, c}. It is common to draw the graph
representing a lattice in order to have the edges always going
from top to bottom.
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