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Abstract

Background Data mining in spontaneous reporting dat-

abases has shown that drug-induced liver injury is infre-

quently reported in children.

Objectives Our objectives were to (i) identify drugs

potentially associated with acute liver injury (ALI) in

children and adolescents using electronic healthcare record

(EHR) data; and (ii) to evaluate the significance and nov-

elty of these associations.

Methods We identified potential cases of ALI during

exposure to any prescribed/dispensed drug for individuals

\18 years old from the EU-ADR network, which includes

seven databases from three countries, covering the years

1996–2010. Several new methods for signal detection were

applied to identify all statistically significant associations

between drugs and ALI. A drug was considered statistically

significantly associated with ALI, using all other time as a

reference category, if the 95 % CI lower band of the rel-

ative risk was [1 and in the presence of at least three

exposed cases of ALI. Potentially new signals were dis-

tinguished from already known associations concerning

ALI (whether in adults and/or in the paediatric population)
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Pedianet-Società Servizi Telematici SRL, Padua, Italy

C. Giaquinto

Department of Paediatrics, University Hospital of Padua, Padua,

Italy

L. Scotti

Department of Statistics and Quantitative Methods, University of

Milano-Bicocca, Milan, Italy

P. Avillach

LESIM, ISPED, University of Bordeaux 2, Bordeaux, France

L. Pedersen

Department of Clinical Epidemiology, Aarhus University

Hospital, Aarhus, Denmark

G. Trifiró

Department of Clinical and Experimental Medicine, University

of Messina, Messina, Italy

M. C. J. M. Sturkenboom

Epidemiology, Erasmus University Medical Center, Rotterdam,

The Netherlands

Drug Saf (2014) 37:99–108

DOI 10.1007/s40264-013-0132-9

http://dx.doi.org/10.1007/s40264-013-0132-9


through manual review of published literature and drug

product labels.

Results The study population comprised 4,838,146 indi-

viduals aged \18 years, who contributed an overall

25,575,132 person-years of follow-up. Within this popu-

lation, we identified 1,015 potential cases of ALI. Overall,

20 positive drug–ALI associations were detected. The

associations between ALI and domperidone, flunisolide

and human insulin were considered as potentially new

signals. Citalopram and cetirizine have been previously

described as hepatotoxic in adults but not in children, while

all remaining associations were already known in both

adults and children.

Conclusions Data mining of multiple EHR databases for

signal detection confirmed known associations between

ALI and several drugs, and identified some potentially new

signals in children that require further investigation

through formal epidemiologic studies. This study shows

that EHRs may complement traditional spontaneous

reporting systems for signal detection and strengthening.

1 Introduction

Drug-induced acute liver injury (ALI) is more likely to

occur in the post-marketing than the pre-marketing setting,

as the incidence is low. This is particularly true in children,

since they are not frequently included in clinical trials and,

if included, follow-up is usually short. In an earlier publi-

cation, based on data from the World Health Organisation

(WHO) spontaneous reporting system (SRS) database, we

showed that liver toxicity in children is infrequently

reported as an adverse drug reaction (only 1 % of total

reports in the paediatric population), with paracetamol

(acetaminophen), anticonvulsants and anti-tuberculosis

agents being the most frequently implicated drugs [1].

However, it is well known that the reporting of ADRs is

strongly underestimated [1, 2]. In the aftermath of the ro-

fecoxib safety concerns, several initiatives in both the USA

and the EU started to explore the use of routinely collected

data from electronic healthcare records (EHRs) as a source

for signal detection/refinement [3–7]. The EU-ADR Project

(Exploring and Understanding Adverse Drug Reactions by

Integrative Mining of Clinical Records and Biomedical

Knowledge [http://www.euadr-project.org]) is a collabo-

ration of 18 public and private institutions in the EU rep-

resenting academic research, general practice, healthcare

services administration and pharmaceutical industry that

has produced an integrated system of EHR databases for

drug safety surveillance [8]. The large population coverage

of the EU-ADR network makes it particularly suitable for

drug safety signal detection in special subpopulations such

as the paediatric population, but its potential in this setting

has not yet been studied.

The aim of this study was to identify drugs associated

with ALI in children and adolescents in the EU-ADR

database network. We further investigated these potential

signals by scrutinizing whether these drug-ALI associa-

tions have been previously reported in the adult and/or

paediatric population.

2 Materials and Methods

2.1 Setting

Healthcare data from 1 January 1996 to 31 December

2010 were retrieved from the EU-ADR database network,

which has been described in depth in previous publica-

tions [8, 9]. For this study, we used only paediatric data

from seven European EHR and claims databases origi-

nating from three countries. Health-Search/CSD LPD

(HSD) and Pedianet from Italy and Integrated Primary

Care Information (IPCI) from the Netherlands are popu-

lation-based electronic medical record databases that

include demographic and clinical information. The Aarhus

University Hospital Database (Aarhus, Denmark),

PHARMO research database (the Netherlands) and the

regional Italian databases of Lombardy and of Tuscany

(Agenzia Regionale di Sanità della Toscana, ARS) are all

comprehensive record-linkage systems in which drug

dispensing data of a well defined population are linked to

hospital discharge diagnoses and other registries collecting

clinical information (e.g. laboratory tests). Most healthcare

services, including pharmacy services and hospitalizations

are covered by the national health system in Italy and

Denmark and by obligatory health insurance in the

Netherlands. In all of these countries, general practitioners

(GPs) or family paediatricians serve as ‘gatekeepers’ of

the healthcare system.

2.2 Cohort Definition and Follow-Up Time

The study population included all children and adolescents

younger than 18 years who were registered within one of

the above databases for at least 1 year. This 1-year

requirement was waived for newborns and infants younger

than 1 year during the study period whose follow-up started

immediately at date of birth or at their respective regis-

tration. Follow-up of all other patients started from cohort

entry until the first occurrence of any of the following

events, whatever came first: first diagnosis of ALI; trans-

ferring out of the practice; 18th birthday; death; or end of

the study period (31 December 2010).
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2.3 Acute Liver Injury (ALI) Ascertainment

Both diagnostic codes and laboratory values, whenever

available, were used to ascertain potential cases of ALI in

different databases. As these databases use different ter-

minologies for coding medical diagnoses and contain dif-

ferent types of information, a process of translation of

coding algorithms in different databases was set up, which

was based on identification of ALI-related medical con-

cepts in the Unified Medical Language System (UMLS)

and projection of these codes into different terminologies:

(i) International Classification of Primary Care (ICPC) for

IPCI; (ii) International Classification of Diseases 9th revi-

sion-Clinical Modification (ICD-9 CM) for ARS, HSD,

Lombardy, Pedianet and PHARMO; and (iii) ICD-10th

revision for Aarhus. IPCI, HSD, and Pedianet also explored

free text within the clinical narratives, using specific key-

words relevant to ALI, as well as pertinent laboratory

examinations, whenever available [10, 11]. The UMLS

codes and coding algorithm for ALI are listed in the

Electronic Supplementary Material.

To prevent finding spurious associations, potential cases

of ALI due to other specified causes, such as viral infec-

tions, hepatic neoplasm, autoimmune hepatitis, genetic and

metabolic disorder-related hepatopathy (e.g. hemochro-

matosis, a1-antitrypsin deficiency, Wilson Disease, Gilbert

Syndrome) and biliary tract diseases, were not included.

2.4 Drug Exposure

Drug exposure was assessed using data from prescriptions

or pharmacy dispensing. Because of the nature of these

databases, exposure to over-the-counter medications, such

as paracetamol, is not captured. All databases code drugs

using the WHO Anatomical Therapeutic Chemical (ATC)

classification system. The number of person-years (PY) of

exposure was calculated per single compound (ATC 5th

level). The duration covered by each prescription/dis-

pensing was estimated by the legend duration (if dosing

regimen was available) or based on the defined daily dose

(DDD) [12].

2.5 Data Analysis

Data on patient demographics, clinical events (i.e. ALI), and

prescriptions were locally generated from each database and

formatted towards a simple common data model [13]. Based

on the common data model, data were aggregated by dat-

abases using a custom-built software, Jerboa� [9].

In the EU-ADR, several statistical methods have been

developed and tested for signal detection. Based on a refer-

ence set (i.e. surrogate gold standard) and performance

analysis, the best performing method was the Longitudinal

Gamma Poisson Shrinker (LGPS) [14], which is an adapta-

tion of a method used for signal detection in SRS, i.e. Gamma

Poisson Shrinker (GPS). LGPS estimates the age- and sex-

adjusted incidence rate ratios (RR) during the exposure of

interest against all other follow-up time (on other drugs and

off drugs) as reference while additionally applying Bayesian

shrinkage (RRLGPS) [14, 15]. All the drugs for which we

observed at least three exposed cases of ALI and with a lower

95 % CI of RRLGPS[1 were considered as potential signals

[16]. In a sensitivity analysis, we compared the risk estimates

derived from LGPS with the estimates from the self-con-

trolled case series (SCCS) method. Confounding by indica-

tion (or contraindication) may arise when a drug treatment

serves as a marker for a clinical characteristic or medical

condition that triggers the use of the treatment and that, at the

same time, increases the risk of the outcome under study. In

SCCS analysis, cases serve as their own controls, thereby

allowing time-fixed confounding factors, known and

unknown (e.g. confounding by indication), to be controlled

for implicitly [14]. As in the main analysis, a drug–ALI

association was considered as statistically significant if the

lower 95 % CI of the RR, calculated using SCCS, was [1

with at least three exposed cases.

In addition, for each potential drug–ALI signal, we

evaluated the possible role of protopathic bias by applying

LEOPARD (Longitudinal Evaluation of Observational

Profiles of Adverse events Related to Drugs) [14]. Since

protopathic bias occurs when a drug is prescribed for an

early manifestation of a disease that has not yet been

diagnosed, the number of the specific drug prescriptions

initiated increases after the event date (relative to the

period prior to the event date), indicating that the drug is

used to treat prodromal symptoms of the event, rather than

cause it. Accordingly, for every suspect drug–ALI associ-

ation, LEOPARD compared the prescription rates within a

fixed window of 25 days prior to and 25 days after the

occurrence of ALI. Thus, the method flagged the drug–ALI

associations as potentially due to protopathic bias if the

prescription rate after the event was higher than the pre-

scription rate before the event [15].

For all signals that could not be explained by proto-

pathic bias, based on current scientific evidence, we

assessed whether the association was known, unknown or

incompletely documented and we also evaluated the pos-

sible biological plausibility. For this purpose, we reviewed

primary drug-related information sources: (i) Micromedex

(http://www.thomsonhc.com/hcs/librarian) and (ii) the

summary of product characteristics (SPCs), derived from

the following two databases: (i) electronic Medicines

Compendium (eMC, http://www.medicines.org.uk/emc)

and (ii) FarmaDati (http://www.farmadati.it). With regard

to the SPCs, we specifically looked at the sections

‘Undesirable/adverse effects’ and ‘Special warnings and
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precautions’. We additionally explored whether the drug–

ALI associations were already described in the published

literature (via MEDLINE: web.ebscohost.com) in adults

and/or more specifically in children.

3 Results

The paediatric population of the EU-ADR network overall

comprised 4,838,146 children and adolescents (aged

\18 years) contributing 25,575,132 PYs of follow-up in

the period 1996–2010. Among 1,015 potential cases of ALI

identified in this database network, 251 potential cases

(24.7 %) occurred during exposure to any drug (1,032,899

PY) accounting for a crude incidence of 2.4/10,000 PY

(2.1–2.7) among exposed.

The stepwise procedure leading to identification of

potential signals is schematically shown in Fig. 1. Of 2,170

drugs prescribed/dispensed to the paediatric population

during the study period, almost 6 % (N = 125) were

Fig. 1 Schematic diagram of the identification of potentially new signals of ALI in children and adolescents. Note: statistically significant

association means drugs with at least three exposed cases of ALI and a lower band of 95 % CI of RR[1 when applying the LGPS method. ALI

acute liver injury, LGPS Longitudinal Gamma Poisson Shrinker, SPC summary of product characteristics

102 C. Ferrajolo et al.



involved in at least one potential case of ALI. However,

only for 20 drugs were at least three exposed cases

observed across all databases (Table 1). Potential ALI

cases occurred most often during use of anti-infectives for

systemic use (N = 6) and drugs for alimentary tract and

metabolism (N = 5) (Table 1).

3.1 Detection of Statistically Significant Drug–ALI

Associations

The drugs that were associated with ALI, using unexposed

period to the drug of interest as reference, are shown in

Table 2. Ranked by the strength of the RRLGPS for ALI,

the top ten drugs included metoclopramide, methotrexate,

azathioprine, prednisolone, ranitidine, diclofenac, ome-

prazole, domperidone, phenoxymethylpenicillin, i.e. peni-

cillin V, and human insulin. Applying the SCCS method,

most of these drugs remained significantly associated with

ALI, except for insulin, cefaclor and flunisolide. The

magnitude of risk decreased substantially for the anti-ulcer

drugs (ranitidine and omeprazole), the corticosteroids

(prednisolone and prednisone) and the immunosuppres-

sants (azathioprine and methotrexate), pointing towards

confounding by indication. The association became

stronger for metoclopramide, domperidone, diclofenac,

valproic acid and erythromycin (Table 2). Notably, the

associations for insulin, cefaclor and flunisolide were not

confirmed using this method only because of lack of

power, although the potential risk remained high. Based

on the results derived from LEOPARD, ten of the drugs

with statistically significant associations using LGPS and

SCCS were classified as potentially due to protopathic

bias (Table 2).

3.2 Evaluation of the Significance and Novelty

of the Signals

Table 3 describes the available knowledge on the 20 sta-

tistically significant drug–ALI associations we observed.

Three associations were identified as a potentially new

signal (i.e. they had not been previously described in the

literature, either in adults or in children): domperidone,

human insulin and flunisolide. For these drugs, there is

currently no mention of ALI as a possible adverse event,

either in the SPCs or in the published literature, irrespec-

tive of the age group. In addition, two other drugs,

citalopram and cetirizine, have not thus far been described

as associated with hepatotoxicity in the paediatric popu-

lation, although ALI has been documented in adults and is

reported in the SPCs.

4 Discussion

In this study, three previously undocumented signals of

ALI in children and adolescents were identified using ‘real-

world’ data from a combination of multiple European

healthcare databases.

Among all the drugs being prescribed/dispensed in

children and adolescents during the study period, around

1 % (20/2,170) was potentially associated with ALI. ALI

occurred most frequently during use of antibacterial agents

and drugs for peptic ulcer and gastroesophageal reflux

disease. These data are very much in line with previous

findings from an analysis of the WHO SRS [1].

According to the definition of safety signals by Hauben

and Aronson [17], not all statistically significant

Table 1 Drugs used in the

paediatric population and those

associated with acute liver

injury

a Drugs with at least three

exposed cases and a value with

lower band of 95 % CI of

RRLGPS [1

Main anatomic group

(WHO ATC Classification, I level)

Study drugs

N = 2,170

No. of drugs with statistically

significant associationsa

(% within anatomic group)

(A) Alimentary & metabolism 391 5 (1.3)

(N) Nervous system 269 2 (0.7)

(J) Anti-infectives for systemic use 232 6 (2.6)

(D) Dermatologicals 203 –

(C) Cardiovascular system 192 –

(S) Sensory organs 169 –

(R) Respiratory system 160 2 (1.3)

(G) Genito-urinary and sex hormones 153 –

(M) Musculo-skeletal system 104 1 (1.0)

(B) Blood and blood forming organs 97 –

(L) Antineoplastics and immunomodulators 76 2 (2.6)

(H) Systemic hormonal preparations 72 2 (2.8)

(P) Antiparasitic 35 –

(V) Various 17 –
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Table 2 Comparison of different methods applied for signal detection concerning acute liver injury

ATC Drugs (ATC 5th level) No. of

cases

Exposure

(PYs)

Crude IR/

10,000

PY (95 % CI)

RRLGPS (95 %

CI)

RRSCCS (95 %

CI)

LEOPARDb

A02 Ranitidine (A02BA02) 7 3,833.86 18.3

(8.14–35.8)

43.7

(17.7–87.6)

12.9

(4.9–34.0)

Yes

Omeprazole (A02BC01) 7 5,583.97 12.5

(5.6–24.6)

29

(9.5–60.9)

13.3

(4.9–35.6)

Yes

A03 Metoclopramide(A03FA01) 4 282.27 141.7

(47.4–336.9)

262.8

(85.7–636.2)

449.1

(104.0–1,938.7)

No

Domperidone (A03FA03) 3 2,903.41 10.3

(2.1–30.2)

22.9

(3.5–89.2)

35.9

(10.5–122.1)

No

A10 Insulin, humana (A10AC01) 3 3,344.73 9.0

(1.8–26.2)

9.2

(2.3–41.2)

4.1

(0.8–20.4)

No

H02 Prednisolone (H02AB06) 5 1,699.56 29.4

(11.2–64.5)

45.1

(12.3–104.2)

6.0

(1.9–19.6)

Yes

Prednisone (H02AB07) 3 5,647.87 5.3

(1.5–14.2)

8.9

(2.3–39.4)

5.6

(1.8–17.9)

Yes

J01C Amoxicillin (J01CA04) 10 59,842.54 1.7

(8.6–29.6)

3.9

(2.1–6.8)

4.2

(2.3–7.5)

No

Phenoxymethylpenicillin

(J01CE02)

14 6,623.26 21.1

(12.1–34.5)

17

(8.6–30.0)

16.7

(9.9–28.1)

No

Amoxicillin/clavulanate

(J01CR02)

9 81,268.6 1.1

(0.5–2.0)

3.5

(1.8–6.3)

2.7

(1.4–5.0)

Yes

J01D Cefaclora (J01DC04) 3 15,857.28 1.9

(0.5–5.1)

3.6

(1.2–8.8)

2.6

(0.8–9.3)

No

J01F Erythromycin (J01FA01) 4 3,722.42 10.7

(3.6–25.5)

6.9

(2.4–21.1)

12.3

(4.1–37.2)

No

Clarithromycin (J01FA09) 5 36,597.8 1.4

(0.5–3.0)

4

(1.7–8.3)

6.8

(3.3–13.9)

No

L04 Methotrexate (L04AX03) 8 840.8 35.7

(9.9–95.2)

211.3

(98.8–401.5)

180.1

(20.7–1568.3)

Yes

Azathioprine (L04AX01) 3 618.99 129.2

(61.0–243.9)

48.6

(5.8–153.3)

4.8

(1.1–21.1)

Yes

M01 Diclofenac (M01AB05) 5 2,290.91 21.8

(8.3–47.8)

31.2

(7.3–76.8)

39.8

(16.7–94.6)

Yes

N03 Valproic acid (N03AG01) 4 12,502.01 3.2

(1.1–7.6)

5.1

(1.9–12.3)

24.4

(5.4–111.0)

No

N06 Citalopram (N06AB04) 3 2,878.31 10.4

(2.9–27.8)

5.6

(1.8–17.6)

7.6

(1.2–50.5)

Yes

R03 Flunisolidea (R03BA03) 4 27,548.87 1.5

(0.5–34.5)

3.4

(1.3–7.6)

2.7

(0.9–8.1)

No

R06 Cetirizine (R06AE07) 5 43,255.13 1.2

(0.4–2.5)

2.5

(1.0–5.1)

3.0

(1.2–7.7)

Yes

ALI acute liver injury, LEOPARD Longitudinal Evaluation of Observational Profiles of Adverse events Related to Drugs, LGPS Longitudinal

Gamma Poisson Shrinker, PY person-year, SCCS self-controlled case series

Drugs with at least three exposed cases of ALI and a lower band of 95 % CI of RR [1 when applying LGPS method
a Not statistically significant association when using SCCS method
b Yes = protopathic bias is likely to be present, no = protopathic bias is unlikely to be present
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associations should be regarded as potential new signals.

To detect whether each drug–ALI association (i.e. possible

signal) was newly discovered, we performed a manual

review of the SPCs and other primary drug information

sources including Micromedex and MEDLINE and scien-

tific literature. To the best of our knowledge, three of the

drug–ALI associations were not previously described in the

literature, either in adults or in children, and were also not

labeled in the SPCs. These drugs were domperidone, flu-

nisolide and insulin (human). Two other drug–ALI asso-

ciations (citalopram, cetirizine) were not previously

described in children but have already been described in

adults.

4.1 Potentially New Signals

The association between domperidone and ALI was iden-

tified as a potential new signal. However, prodromal signs/

symptoms of liver injury such as nausea and vomiting

represent the main indication for domperidone intake.

Therefore, although LEOPARD did not automatically flag

this as protopathic bias, we cannot exclude that this is a

spurious association due to protopathic bias. If indeed the

interval between incriminated prodromal symptoms and

onset of event is larger than 25 days, protopathic bias will

not be detected by LEOPARD [14].

Flunisolide is a synthetic inhaled corticosteroid with

potent topical anti-inflammatory activity, with an oral bio-

availability ranging from 7 to 20 % [18, 19]. After gastro-

intestinal and lung absorption, the drug undergoes rapid and

extensive first-pass metabolism by the liver to an inactive

6-beta-hydroxylated metabolite. Systemic effects have not

been reported for the commonly used doses. Higher doses of

flunisolide, as well as the other inhaled corticosteroids, may

result in adverse events similar to those occurring during the

corticosteroid systemic use due to an increased oral

adsorption of the medicine. Although signs/symptoms of

liver injury are reported as undesirable side effects with the

Table 3 Novelty of statistically significant drug–acute liver injury associations

Drugs SPCsa Literature (MEDLINE)b

Adults Childrenc

Ranitidine Yes Yes Yes

Omeprazole Yes Yes Yes

Metoclopramidea No Yes Yes

Domperidone No No No

Insulin (human) No No No

Prednisolone Yes Yes Yes

Prednisone Yes Yes Yes

Amoxicillin Yes Yes Yes

Phenoxymethylpenicillin Yes Yes Yes (in co-therapy with erythromycin)

Amoxicillin/clavulanate Yes Yes Yes

Cefaclor Yes No Yes

Erythromycin Yes Yes Yes

Clarithromycin Yes Yes Yes

Azathioprine Yes Yes Yes

Methotrexate Yes Yes Yes

Diclofenac Yes Yes Yes

Valproic acid Yes Yes Yes

Citaloprame Yes Yes No

Flunisolide No No No

Cetirizine Yes Yes No

ALI acute liver injury, SPC summary of product characteristics
a SPCs reviewed: (i) Micromedex (http://www.thomsonhc.com/hcs/librarian); (ii) electronic Medicines Compendium (eMC, http://www.

medicines.org.uk/emc); and (iii) FarmaDati (http://www.farmadati.it)
b Literature (via MEDLINE: web.ebscohost.com)
c Yes = drug–ALI association was reported also or only in children
d Use not approved for children \16 years
e Use not approved for children and adolescents \18 years
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use of all systemic corticosteroids, liver injury is not spe-

cifically mentioned for inhaled corticosteroids, including

flunisolide. Differences in pharmacokinetic characteristics

across inhaled corticosteroids might suggest differences in

the occurrence of adverse drug reactions [20]. Further

investigations comparing inhaled corticosteroids, specifi-

cally concerning hepatotoxicity, are required.

Insulin therapy is indicated in children and adolescents

with type 1 diabetes and in children with ketosis or diabetic

ketoacidosis when the distinction between type of diabetes

is unclear. There are no reports in the literature associating

human insulin with (acute) liver injury. However, it is

possible that insulin induces undesired weight gain from

hunger triggered by insulin-induced hypoglycemia. Com-

parative trials of patients with type 2 diabetes found that

weight gain and risk of hypoglycemia might occur during

the use of human insulin more than with the analogues [21,

22]. Moreover, weight gain could lead to hepatic steatosis,

an aetiopathologic sign of non-alcoholic fatty liver disease

(NAFLD), explaining the potential role of human insulin in

this type of liver injury [23]. On the other hand, since

NAFLD has been reported to increase the risk of type 2

diabetes [24], and potentially the use of insulin, the role of

insulin is unclear in this association.

The associations identified for flunisolide and human

insulin deserve a separate discussion because these associ-

ations were not confirmed by SCCS analysis, suggesting the

influence of potential confounder factors on the estimations.

This seems particularly true for insulin, for which the nature

(causal inference) of the connection to NAFLD remains a

matter of speculation [25]. However, although not signifi-

cant (meaning that we had insufficient power for this sta-

tistical test only because of the low prevalence of exposure),

the associations were high for flunisolide (RRSCCS = 2.7)

and human insulin (RRSCCS = 4.1). Accordingly, we still

cannot rule out that these drugs are truly associated with an

increased risk of ALI and the associations of ALI, but these

drugs should be investigated in a formal pharmacoepide-

miological study in a wider paediatric setting in order to

confirm or confute these potential signals.

4.2 Potentially New Signals in Paediatrics

Citalopram is a widely used selective serotonin reuptake

inhibitor (SSRI). Rare instances of acute, clinically

apparent episodes of liver injury with moderate or marked

liver enzyme elevations with or without jaundice have been

described in less than 1 % of adults within 6–10 weeks, or

earlier, of citalopram therapy. One prospective study

investigated the use of central nervous system (CNS)

agents and risk of idiosyncratic drug-induced liver injury in

children but did not identify citalopram as a suspect drug

[26].

Cetirizine is a second-generation antihistamine used for

the treatment of allergic rhinitis, angioedema and chronic

urticaria. Cetirizine and analogues have been related to

rare, isolated cases of clinically apparent ALI, with a pat-

tern ranging from cholestatic hepatitis to hepatocellular

jaundice in adults [27–30]. Nevertheless, as urticaria may

represent a prodromic sign of underlying liver disease,

potential protopathic bias as an alternative explanation for

the association cannot be excluded and is supported by the

results from LEOPARD.

Although the association between ALI and metoclo-

pramide has already been described in two epidemiologic

studies, including within the paediatric population, show-

ing a risk of liver injury for metoclopramide ranging from

moderate to low [31, 32], we also believe that here, the

potential of protopathic bias holds similar to that described

for domperidone.

Finally, data mining on EHR databases detected asso-

ciations for several drugs already widely known as hepa-

totoxic in both adults and children [33]. The application of

the LGPS as main analysis and the SCCS as sensitivity

analysis suggested that the system can produce reliable

results.

In fact, when applying the SCCS method, the associa-

tions from LGPS were amplified or reduced, but still

remained for all drugs already known to be hepatotoxic,

except for cefaclor. Similarly, using LEOPARD to filter

signals due to protopathic bias improved the overall per-

formance of signal detection. LEOPARD flagged associa-

tions with anti-acid drugs, such as ranitidine or

omeprazole, as spurious. Indeed, these drugs might have

been prescribed for gastric discomfort, which is one of the

prodromal signs of hepatic injury. On the other hand, it was

rather unexpected that LEOPARD was not able to detect

this bias for metoclopramide or domperidone. This might

be explained by the ±25-day window that LEOPARD (by

default) applies as described above. Protopathic bias was

correctly captured for azathioprine, methotrexate, diclofe-

nac and systemic corticosteroids. Indeed, these drugs are

prescribed for conditions (such as rheumatic disease)

associated with ALI.

4.3 Strengths and Limitations

The main strength of this study is its capability to (retro-

spectively) observe a large number of children and ado-

lescents in a ‘real-world’ setting by combining data from

multiple longitudinal healthcare databases. While we were

able to investigate the associations between ALI and the

most frequently used drugs in children in Europe [34], the

system did not allow the exploration of over-the-counter

medications (such as paracetamol), in-hospital used drugs

or less frequently prescribed drugs (such as anti-
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tuberculosis agents and other anti-convulsants) that are

well known to be hepatotoxic in children. For instance, we

found a non-statistically significant increase in risk of ALI

related to the use of paracetamol, or anti-convulsants (i.e.

carbamazepine, phenobarbital, vigabatrin or gabapentin) or

other CNS agents (i.e. atomoxetine, risperidone, sertraline,

tramadol or methadone). This result does not imply the

absence of association, but rather the low prevalence of

exposure of these drugs in such prescribing/dispensing

registries.

We used harmonised database-specific disease codes

and free text search to automatically identify liver injury

from the database network. Individual causality assessment

of the identified associations was not conducted. However,

a previous study using a USA database network demon-

strated that outcome misclassification does not influence

the results concerning signal detection [35]. Usually,

exclusion of alternative causes for the potential signal is

part of an aetiology-based approach for the evaluation of a

physician-reported ADR. To reproduce this process using

EHR databases, we used the SCCS method to control for

time-fixed confounders such as genetic factors, socio-eco-

nomic status, individual frailty and severity of underlying

disease [14].

To investigate the potential of protopathic bias, we used

the LEOPARD method. Despite using filtering criteria for

significance and sensitivity analyses, the likelihood of

obtaining false-positive results cannot be excluded and

further validation of the newly identified associations needs

to be carried out [36].

5 Conclusions

We found potentially new signals concerning ALI for flu-

nisolide, domperidone and insulin. There was also a signal

for ALI in children for citalopram and cetirizine, but this

association has already been described in adults. All

potentially new signals require further evaluation in

hypothesis-testing studies (e.g. formal pharmacoepidemi-

ologic studies) to better account for bias and confounding.

Our findings highlight the potential of electronic healthcare

databases to complement traditional SRS for drug safety

signal detection and strengthening in a paediatric setting.

However, combining data from other longitudinal health-

care and paediatric-specific databases would be meaningful

to gain sufficient statistical power to investigate a large

range of drugs specifically used in children and

adolescents.
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