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Abstract 

Water resources management is a non-trivial process requiring a holistic understanding of 

the factors driving the dynamics of human-water systems. Policy-induced or autonomous 

behavioral changes in human systems may affect water and land management, which may 

affect water systems and feedback to human systems, further impacting water and land 

management. Currently, hydro-economic models lack the ability to describe such dynamics 

either because they do not account for the multi-factor/multi-output nature of these systems, 

and/or are not designed to operate at a river basin scale. This paper presents a flexible and 

replicable methodological framework for integrating a microeconomic multi-factor/multi-

output Positive Multi-Attribute Utility Programming (PMAUP) model with an eco-

hydrologic model, the Soil and Water Assessment Tool (SWAT). The connection between the 

models occurs in a sequential modular approach through a common spatial unit, the 

“Hydrologic-Economic Representative Units” (HERUs), derived from the boundaries of 

decision-making entities and hydrologic responsive units. The resulting SWAT-PMAUP 

model aims to provide the means for exploring the dynamics between the behavior of socio-

economic agents and their connection with the water system through water and land 

management. The integrated model is illustrated by simulating the impacts of irrigation 

restriction policies on the Río Mundo sub-basin in south-eastern Spain. The results suggest 

that agents’ adaptation strategies in response to the irrigation restrictions have broad 

economic impacts and subsequent consequences on surface and groundwater resources. We 

suggest that the integrated modeling framework can be a valuable tool to support decision-

making in water resources management across a wide range of scales.  
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1. Introduction 

Water is a fundamental resource for the functioning and sustenance of social-ecological 

systems, as it maintains ecological processes, regulates the climate system, and is a driver of 

economic growth (UN-Water, 2016). The provisioning of water resources, particularly 

freshwater, links the water-based ecosystem services with the demand from socio-economic 

systems (Millenium Ecosystem Assessment, 2005). The dynamics of water resource 

provisioning in social-ecological systems is not trivial, since societal, economic, and/or 

environmental changes can potentially alter the balance between supply and demand for 

water resources (IPCC, 2014). In the Anthropocene (Crutzen, 2002), the consideration of 

changes in water cycle dynamics and consequent management of water resources at a basin 

scale is no longer feasible without taking into consideration the interactions and feedbacks 

between natural and human systems (Sivapalan et al., 2012). River basins located in arid and 

semi-arid regions are of particular concern in managing these feedbacks (Vörösmarty et al., 

2000).  

In water-scarce regions, conventional water management approaches and water policies 

based on increasing water provisioning for socio-economic systems is becoming both 

environmentally and economically unfeasible due to incremental costs of additional water 

resources and inelastic water supplies (Randall, 1981). As a consequence, structural scarcity 

and/or temporary shortages may occur, often resulting in increasing competition for water 

resources between natural and human systems (UN, 2017). Following a precautionary 

approach inspired by the principles of integrated water resources management and, in 

particular, sustainable development (ICWE, 1992), policy makers are shifting their priorities 

to making economic uses of water compatible with the sustainability of ecological systems. 

These planned adaptation actions are also supposed to enable both economic resilience 

against future shocks and social welfare maximization (OECD, 2015).  

Effective planned adaptation actions should, however, also take into account responses at 

the individual level. For example, empirical evidence suggests that farmers’ perception of 

water scarcity, particularly in drought-prone areas, is a key factor determining autonomous 

adaptation behavior in agricultural systems (Alam, 2015; Rezaei et al., 2017; Udmale et al., 

2014). As a result, policy-induced or autonomous behavioral changes in human systems may 

affect water and land management, which may affect the dynamics of hydrologic systems 

and generate feedback responses from agricultural systems, further impacting water and 

land management practices (Anderies, 2015; Palmer and Smith, 2014; Steffen et al., 2011). As 

a consequence, interactions between agricultural and hydrologic systems should be taken 

into account when designing policies in order to ensure the sustainability of social-ecological 

systems (Ostrom, 2009).  

The realization of complex interactions within and between social-ecological systems has 

spurred an increasing number of decision support systems (DSS), notably quantitative 
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models underpinned by systems analysis research, to provide quantitative information 

regarding the implementation of water policies (Harou et al., 2009; Heinz et al., 2007; Sood 

and Smakhtin, 2015). Systems analysis provides the means to assess the costs and benefits of 

alternative management strategies following agronomic, hydrologic or economic criteria, or 

a combination thereof (i.e. hybrid approaches) (Feldman, 1992; Singh, 2012). Trends in 

systems analysis research and DSS for water management reveal a distancing from 

traditional hydrologic-centered analysis and a move towards an integrative, hybrid hydro-

economic approach (Bierkens, 2015; Esteve et al., 2015). Most hybrid hydro-economic 

models combine hydrologic and microeconomic models that represent agents’ decisions on 

water use through piecewise exogenous equations relating water use to economic benefits 

(Harou et al., 2009). Accurately measuring and representing the choices that lead to the 

provision of the attribute or attributes that maximize utility requires the consideration of 

multiple inputs, such as water availability, labor, fertilizers, and machinery. Therefore, a 

multi-factor perspective is required, enabling the measurement of marginal costs (if the 

objective is profit maximization) or marginal utilities (if the objective is utility maximization) 

of observed output levels: “an essential piece of economic information to accurately 

understand and predict agents’ behavioral responses” (Paris, 2015). Indeed, a change in the 

allotment of a specific input, say water, will affect its marginal utility or shadow price, and 

also that of the remaining inputs, which will be reallocated so that utility is maximized in 

the new input availability scenario.   

Significant efforts to expand hybrid hydro-economic frameworks have been made in the 

area of socio-hydrology. A recent study by Fraser et al. (2013) has explored the long-term 

dynamics of socio-economic and hydrologic systems by studying the changes in 

vulnerability of world’s cereal crops as affected by climate change projections by coupling a 

global hydrological and adaptive capacity models. Fabre et al. (2015) have proposed an 

integrative modeling framework for the assessment of the balance between water demand 

and availability over long time periods and at a river basin level. A list of other socio-

hydrology studies that include some aspect of modeling human-water interactions can be 

found in Blair and Buytaert (2016).  

As of yet, no study of agricultural water reallocation and productivity offers a flexible and 

replicable framework that models the relevant feedbacks among inputs happening at a 

microeconomic scale in concert with a hydrologic module. Available studies “either 

incorporate field- and basin-level aspects but focus only on a single input (water) or, when 

considering a multi-factor approach, do not tackle the basin level” (Scheierling et al., 2014). 

Conventional hybrid hydro-economic models typically represent the behavior of water users 

through piecewise exogenous benefit functions for relating water use to profit. However, 

this approach often neglects the intrinsic complexity in economic agents’ behavior and 

undervalues the role of human responses to policy interventions or physical shocks, 

potentially leading to inaccurate system robustness and resilience modeling, maladaptation, 
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and ineffective policy design (Blair and Buytaert, 2016). The limited studies that connect full-

fledged multi-factor microeconomic and hydrologic models often rely on ad-hoc and/or one-

way sequential coupling procedures, which are challenging to replicate and/or negate the 

possibility to assess feedback responses between human and water systems (Di Baldassarre 

et al., 2013).  

This paper presents a flexible and replicable methodological framework promoting a 

sequential, two-way modular integration of socio-economic and eco-hydrologic models for 

the study of coupled complex agricultural-hydrologic systems by: i) enabling the 

consideration of multiple factors capable of driving the preferences of socio-economic agents 

in agricultural systems; ii) allowing the exchange of information between the socio-economic 

and eco-hydrologic models, and; iii) incorporating feedback responses from one system to 

another. The main goal of the framework is to provide quantitative information for 

supporting efficient decision- and- policy-making in complex agricultural-hydrologic 

systems. The coupling between the socio-economic and the physical environment is 

provided by a common spatial element, hereinafter defined as Hydrologic-Economic 

Representative Units (HERUs). This flexible and replicable framework allows for the 

integration of full-fledged socio-economic and eco-hydrologic models.  

The methods are illustrated by combining a multi-output and multi-factor Positive Multi-

Attribute Utility Programming model (Gómez-Limón et al., 2016; Gutiérrez-Martín and 

Gómez, 2011) with the eco-hydrologic Soil and Water Assessment Tool (SWAT) model 

(Arnold et al., 1998). The PMAUP model follows a multi-attribute, deductive approach 

capable of identifying and analyzing socio-economic agents’ behavior, while SWAT is a 

comprehensive river basin scale model capable of simulating and assessing the relationships 

between the impacts from land and water management on hydrologic, biogeochemical, and 

ecological processes at the river basin scale. The connection between the two modeling 

techniques is provided by common spatial elements, the HERUs, which are entities 

endowed with decision-making capacity, resulting from the unique combination of 

hydrologic responsive units and spatially-defined socio-economic agents. The combination 

of PMAUP and SWAT models enables the development of a spatially-distributed integrative 

framework capable of linking socio-economic and eco-hydrologic systems, resulting in a 

step-forward towards the development of a socio-hydrologic instrument and, hence, 

underpinning the foundations for the study of the dynamics of complex human-water 

systems. To the best of our knowledge, this is the first time that an approach accounting 

both for multiple inputs and human-water dynamics at the basin-level is developed and 

applied in a context of water policy design and water management DSS.  

The capabilities of the coupled SWAT-PMAUP model are illustrated with an application to 

the Río Mundo River Basin (RMRB), a sub-basin of the semi-arid, water-scarce and drought-

prone Segura River Basin (SRB) in south-eastern Spain, to assess human-water dynamics 

following the implementation of an irrigation restriction policy. In order to highlight the 
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importance of considering the complexity of coupled human-water systems in hydro-

economic simulations, the hydrologic and economic results generated by the coupled 

SWAT-PMAUP model are compared with the results generated by the SWAT model alone 

without taking into account the behavior and preferences of socio-economic agents. 

 

2. Methods 

2.1. The microeconomic module 

Microeconomic modeling analyzes the pattern of yields, revenues, and costs of socio-

economic agents as an individual (e.g. farmers) or group of individuals (i.e. representative 

farmer). Agents are assumed to be rational entities, making decisions on the allocation of 

multiple inputs in accordance to the maximization of their utility with respect to single or 

multiple objectives, and within a domain defined by a number of constraints. In the case of 

agricultural systems, the agents’ decisions include crop selection and land management (e.g. 

fertilization), water application, and investments in capital stock. This complex decision-

making problem involves multiple inputs and is often simplified by assuming each possible 

combination of crops and management techniques as a unique crop xi (Graveline, 2016). 

This assumption allows the decision-making problem to be reduced to a choice on the crop 

portfolio (x) within a domain (F(x)), where the crop portfolio (x) is a vector representing the 

land share devoted to each individual crop (xi). Mathematically, this concept can be 

expressed as follows: 

 x = (x1x2, … . , xn), 0 ≤ xi ≤ 1, ∑ xi
n
i=1 = 1,     x ∈ F(x)      [1] 

The agent does not have any direct preferences over the crop portfolio itself, but the crop 

decision-making is directly influenced by the utility the agent obtains from the crop 

portfolio.  

Empirical microeconomic models often assume agents are rational profit maximizers and 

that utility equals profit. However, this approach is somewhat limiting as it often does not 

accurately reproduce the behavior of socio-economic agents due to possible significant 

divergences between observed and simulated decisions (Grames et al., 2016). Alternatively, 

approaches such as Expected Utility (von Neumann and Morgenstern, 1953) and Positive 

Mathematical Programming (Howitt, 1995) assume that utility is a function of profit. 

Expected Utility is the dominant theory to model choice under risk in applied economics 

(Just and Peterson, 2010) while Positive Mathematical Programming is the dominant 

approach to calibrate agricultural programming models (Heckelei et al., 2012). However, 

significant empirical evidence shows that the variance in farmers’ observed strategic and 

entrepreneurial behavior often cannot be explained by profit maximization alone (Basarir 

and Gillespie, 2006; Berkhout et al., 2010; Kallas et al., 2010; Solano et al., 2006).  
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Against this backdrop, the Theory of Planned Behavior (TPB) disputes the notion that 

farmers’ behavior can be modeled by maximizing profits or with a utility function where 

profits are the single relevant attribute, and argues that farmers’ observed behavior is driven 

by multiple (and often conflicting) attributes related to their socioeconomic, cultural and 

natural situation, including but not limited to profit (Ajzen, 1991; Gassman et al., 2009; 

Harman et al., 1972; Harper and Eastman, 1980; Smith and Capstick, 1976). According to the 

TPB, observed choices are explained by farmers’ attitudes towards their behavior (i.e. 

cropping decisions), where attitudes can be seen as “a summary of psychological 

evaluations based on agent’s beliefs about the ’goodness’ or ’badness’ of an object, normally 

associated with a particular attribute” (Gómez-Limón et al., 2016). The implications of the 

TPB for farmers’ behavioral modeling are that modeling farmers’ behavior requires the 

consideration of more than one attribute.  

The TPB provides the foundation for the development of a growing research body on multi-

attribute utility functions aiming to capture utility-relevant attributes, starting from the 

seminal work by Keeney and Raiffa (1993). In multi-attribute utility maximization problems, 

rational economic agents will choose the crop portfolio x that maximizes the utility derived 

from the provision of valuable attributes z(x) within a domain F(x): 

Max U(x)
x

= U(z1(x); z2(x); z3(x) … zm(x))       [2] 

s.t.:    0 ≤ xi ≤ 1          [3] 

∑ xi
n
i=1 = 1           [4] 

x ∈ F(x)           [5] 

z = z(x) ∈ Rm           [6] 

Attributes (z(x)) are quantifiable unit interval factors that serve as values in the agent’s 

decision-making process. Higher attribute values indicate more desirable situations with an 

attribute of value equal to 1 representing an optimal situation. Assuming that it is possible to 

quantify relevant crop attributes (e.g. profit), alternative crop portfolios can be ranked in 

accordance to their resulting utility. Moreover, since the outcome of the utility function is an 

ordinal value, there is no risk of correlation among attributes (Edgeworth, 1881). PMAUP 

models focus on ranking alternative decisions that are coherent with observed choices, so 

that agents cultivate a crop portfolio that maximizes their utility within a domain, x ∈ F(x), 

defined by a set of quantifiable constraints, including water availability, land availability, 

climatic and soil constraints, crop planting constraints and crop rotations. 

-Water availability constraint. Water withdrawals must not exceed the water allotment set 

by water institutions, i.e.: 

∑ wi xi
n
i=1 ≤ W           [7] 
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where wi is the water requirement of crop xi, and W represents the total availability. 

-Land availability constraint. The irrigated surface area must not exceed irrigable surface 

area. If rainfed crops are introduced (e.g. the water allocation constraint is strengthened), 

agricultural land use must not exceed available agricultural surface area (see Eq. [1]). 

-Climatic and soil constraints. Each area has specific climatic and/or soil characteristics that 

favor certain crop varieties, meaning that irrigators’ choices are typically restricted to crops 

that are observed in the area:  

∑ 𝑦𝑖𝑥𝑖 = 0 |𝑖  𝑦𝑖 ∈ {0,1}            [8] 

where a value 𝑦𝑖 = 0 means the crop has not been observed in the area during the time 

period covered by the database, and a value of 𝑦𝑖 = 1 means the crop has been observed. 

-Crop planting constraints. This restriction sets an upper and/or lower bound to the surface 

area of those crops subject to a specific policy restriction. 

Upper bound:  

𝜑𝑖𝑥𝑖 ≤ (1 − 𝑏𝑖)𝑥𝑖
0  |  𝜑𝑖 ∈ {0,1}; 0 ≤ 𝑏𝑖 ≤ 1         [9] 

Lower bound: 

𝜑𝑖𝑥𝑖 ≥ (1 + 𝑏𝑖)𝑥𝑖
0  |  𝜑𝑖 ∈ {0,1}; 0 ≤ 𝑏𝑖 ≤ 1        [10] 

where 𝜑𝑖 is a vector that activates/deactivates the restrictions for a specific crop 𝑥𝑖, and 𝑏𝑖 is 

a vector that indicates the maximum percentage the share of a crop can increase/decrease. In 

our study, we use crop surface restrictions to constrain changes in the area of permanent 

crops. Farmers can remove permanent crops, but this decision results in significant capital 

disinvestments, including through the disruption in the provision of carbon sequestration 

services. We apply a precautionary approach and set a lower and upper bound for 

permanent crops of ±10% in relative area change with respect to the baseline scenario which 

represents policies that may encourage tree conservation, such as the Common Agricultural 

Policy and the Spanish Drought Management Plans. This situation introduces significant 

uncertainty in the costs of removing trees following a hypothetical water restriction policy 

and complicates the estimation of an annuity that accurately represents the costs of 

removing a given permanent crop in the simulations. 

-Crop rotations. The surface area of a given crop or group of crops cannot exceed the surface 

area of the crop or crops they replace (Gutierrez-Martin, 2013): 

∑ 𝑔𝑖,𝑗𝑥𝑖 ≤ ∑ ℎ𝑖,𝑗𝑥𝑖
0

𝑖,𝑗  |𝑖,𝑗  𝑔𝑖,𝑗 ∈ {0,1};  ℎ𝑖,𝑗 ∈ {0,1}        [11] 

where 𝑔𝑖,𝑗 and ℎ𝑖,𝑗 are vectors whose components can adopt a value of 1 or 0 to activate or 

deactivate the restriction.  
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The calibration procedure of the PMAUP model consists of determining the parameters of 

the utility function (U) that make the solution to the optimization problem above (optimal 

crop portfolio x∗) and consistent with real-life observed decisions (xo). The PMAUP model 

thus aims to generate an objective function whose solution x∗ is consistent with x0 and the 

choice domain F(x) (Varian, 2006). Following standard microeconomic theory, the 

parameters of the utility function for a given finite set of attributes are elicited by equalizing 

the Marginal Rate of Transformation (MRTkp), which represents the opportunity cost 

between two attributes zp, zk and is obtained as the slope of the efficient frontier β𝑘𝑝; and the 

Marginal Rate of Substitution (MRSkp), which further represents the willingness to sacrifice 

one unit of attribute  zp for one unit of attribute zk: 

MRTkp = β𝑘𝑝 = MRSkp = −
∂U

∂zp
⁄

∂U
∂zk

⁄
 ;      ∀p ≠ k           [12] 

The utility function parameters are elicited in three steps, which are explained in more detail 

in the next sub-sections: 

i. Efficient frontiers are revealed for each pair of attributes (zp and zk), and the tangency 

point for the utility function’s indifference curve is obtained.  

ii. Given a tangency point, the utility function parameters are calibrated for every possible 

combination of attributes by equalizing the MRTkp and the MRSkp. 

iii. Error terms are then obtained by computing the difference between observed and 

simulated choices. The utility function with the lowest error is assumed to reveal the 

relevant attributes, which is the utility function that can most accurately simulate 

socio-economic agents’ behavior. 

 

2.1.1. Marginal rate of transformation 

The rational agents are assumed to be efficient, i.e. the agents decide what is best for them 

given a range of feasible options. Mathematically, the decisions must belong to the Pareto 

efficient set, defined as the efficient frontier. Hence, among all feasible choices, the PMAUP 

model reveals only those along the efficient frontier, where the indifference curve lands and 

where socio-economic agents maximize their utility. In a multi-attribute context, the efficient 

frontier represents the maximum value an attribute zp can attain given a certain value of an 

attribute zk within the domain.  

Constraint weighting or the multi-objective simplex method can be used to estimate points 

along the efficient frontier (André, 2009); yet, efficient frontiers usually cannot be 

analytically defined using a closed function, especially where non-linear restrictions occur. 
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A number of alternatives exist to estimate the efficient frontier and to reveal the “landing 

point” for the utility function. Amador et al. (1998), André et al. (2010) and Sumpsi et al. 

(1997) maximize each attribute separately within the domain to calculate the pay-off matrix 

(i.e. the maximum value each attribute can attain within the domain), and approximate the 

efficient frontier through a hyper-plane connecting two efficient points in the pay-off matrix. 

This methodology is illustrated by the segment formed by points A and B in in Figure 1-case 

1. André and Riesgo (2007) project the observed choice to the closest efficient point x𝑘
∗∗  along 

the actual frontier, which is then used as a reference point to obtain a “compromise set” 

consisting of a set of efficient points in the vicinity. The “compromise set” is interpreted as 

the fraction of the efficient frontier where the utility function is maximized. Then the 

“landing area” or tangency point for the indifference curve is obtained by regressing a 

hyper-plane from the “compromise set” (segment formed by points A and B in Figure 1-case 

2). Finally, Gutiérrez-Martín and Gómez (2011) obtain the maximum feasible value of 

attribute zp for the observed value of zk (zk
o), and vice-versa, again using a hyper-plane 

connecting the two points to approximate the efficient frontier (segment formed by points 

A and B in Figure 1-case 3).  

 

*** FIGURE 01 *** 
Figure 1. Procedures for projecting observed points onto linear approximations of the efficient set. 

Since efficient frontiers are convex (otherwise there is no trade-off and the choice between 

the two attributes becomes irrelevant), the hyper-planes connecting efficient points will not 

belong to the actual efficient set X∗∗ and will lead to approximation errors (distance between 

segment AB and X∗∗ in Figure 1). This paper follows the method proposed by Gutiérrez-

Martín and Gómez (2011) (case 3), which minimizes the approximation error for the 

database of the case study area (Pérez-Blanco and Gutiérrez-Martín, 2017). In case 3, the 

tangency point or “landing area” for the indifference curve is obtained solving the following 

optimization problems for each pair of attributes zp and zk within the attribute set: 

Max zp(x)
x

           [13] 

s.t.: zk(x) = zk
o(x)     ∀k ≠ p         [14] 

0 ≤ xi ≤ 1           [15] 

∑ xi
n
i=1 = 1           [16] 

x ∈ F(x)           [17] 

And: 

Max zk(x)
x

           [18] 
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s.t.: z𝑝(x) = zp
o(x)     ∀k ≠ p         [19] 

0 ≤ xi ≤ 1           [20] 

∑ xi
n
i=1 = 1           [21] 

x ∈ F(x)           [22] 

This procedure projects the observed crop portfolio τzp,zk
(xo) to the efficient frontier and 

yields two points, namely τzp,zk
o and τzp

o ,zk
 (points A and B in in Figure 1-case 3). The slope 

between the two projected efficient points in any intermediate point τ is obtained as: 

MRT𝑘𝑝
τ = β𝑘𝑝

τ =
zp−zp

o

zk−zk
o          [23] 

The slope between the two projected points β𝑘𝑝
τ  approximates the marginal opportunity cost 

of trading attribute zk off for attribute zp, or MRT, and is used as the tangency point for the 

calibration of the utility function. 

 

2.1.2. Marginal rate of substitution 

The Marginal Rate of Substitution MRSkp measures the willingness to give up one unit of 

attribute zk in exchange for a unit of attribute zp, which graphically corresponds to the slope 

of the indifference curve (MRSkp in Eq. 12). Rational economic agents will choose the crop 

portfolio where the MRSkp over the indifference curve equals the MRTkp over the efficient 

frontier for any pair of attributes. Equating the MRTzp,zk
 and MRSzp,zk

 at an efficient point τ 

yields a system of equations from which the parameters of the objective function for every 

possible combination of one or more attributes are obtained:  

MRT𝑘𝑝
τ = β𝑘𝑝

τ = MRS𝑘𝑝
τ ;      ∀p ≠ k        [24] 

Normalizing Eq. 24 yields 

∑ αp
m
p=1 = 1           [25] 

Typically, several valid utility functions can be obtained. For the case of single-attribute 

utility functions, Varian (1982) presented a way to describe the entire set of utility functions 

consistent with observed preferences, while Varian (1983) obtained bounds on specific 

functional forms. The information provided by the MRTkp and MRSkp allows the elicitation 

of the parameters of a multi-attribute utility function consistent with observed choices 

within the domain F(x), for a given functional form. For the PMAUP model utilized in this 

work, it is assumed that the multi-attribute utility function adopts a Cobb-Douglas 

specification, which offers a sensible approximation to actual farmers’ behavior (Sampson, 

1999). As compared to alternative additive or multiplicative-additive specifications, a Cobb-



 

 
© 2018 American Geophysical Union. All rights reserved. 

Douglas function offers the advantages of convex indifference curves and decreasing 

marginal utility for each attribute, thus avoiding simplistic simulations of irrigators’ 

behavior resulting from additive utility functions with linear indifference curves and 

constant marginal rate of substitution (Montilla-López et al., 2018). Cobb-Douglas functions 

also avoid total compensability among attributes, where lower values for a given attribute 

can be compensated by higher values for any other attribute, irrespective of whether the 

former reaches unacceptable levels for the irrigator (Gómez-Limón et al., 2016). Finally, a 

Cobb-Douglas specification complies with the Inada conditions and guarantees the existence 

of a global optimum (Inada, 1963). By equalizing the MRSkp of a Cobb-Douglas utility 

function and the MRTkp obtained in the previous section, the objective function parameters 

can be estimated after solving the following system of equations:  

MRSkp = −
αp

αk

zk

zp
= β𝑘𝑝

τ = MRT𝑘𝑝
τ ;     ∀p ≠ k       [26] 

∑ αp
m
p=1 = 1           [27] 

Finally, the values of the parameters obtained by resolving the system of equations above for 

alternative attribute combinations within the set z(x) are used in Eq. [2]-[6] to simulate the 

optimal crop portfolio choice (x∗) and obtain the corresponding attribute values (zp
∗ ; p =

1, … , m) and utility (U∗).  

 

2.1.3. Relevant attributes and utility function parameters 

Since rational agents choose the crop portfolio that maximizes utility, the relevant attribute 

set and its corresponding parameter values should minimize the distance between observed 

and calibrated behavior. Thus, the objective function that better represents the behavior of 

agents is the one minimizing the error between observed and calibrated decisions, which is 

obtained as:  

min (e) = min (
ex +eτ

2
)         [28] 

where ex is the distance between the calibrated and observed crop portfolio:  

ex = √1

n
∑ (

xi
o −xi

∗

xi
o )

2

n
i=1                     [29] 

and eτ measures the distance between the calibrated and observed attributes value:  

eτ = √ 1

m
∑ (

z𝑝
o −z𝑝

∗

zp
0 )

2

m
p=1                     [30] 

The error remaining after calibration is also used a measure of the calibration performance. 
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2.2. The eco-hydrologic module 

Hydrologic modeling is a useful instrument to support the development of water 

management plans by providing quantitative information regarding the water dynamics 

and water-related processes in a river basin (Brutsaert, 2013). Hydrologic models that are 

capable of simulating the interactions between water and ecosystems, such as nutrient 

cycling throughout a river basin, vegetation and crop growth, and the provision of 

ecosystem services, are referred to as eco-hydrologic models.  

Eco-hydrologic models are suitable for the study of the interactions between ecological, 

human, and water systems, including human influences in land use (e.g. crop selection, 

irrigation, tillage, etc.), the latter of particular interest in this study. Moreover, these 

interactions should ideally be simulated as spatially-distributed processes to allow for the 

representation of local human influences on eco-hydrologic systems. A well-documented 

and extensively used eco-hydrologic model that fit those requirements is the SWAT model 

(Arnold et al., 1998). 

SWAT is a semi-distributed model operating at a river basin scale, meaning that climatic 

forcings (e.g. precipitation and temperature), physical variables (e.g. ground surface 

elevations and soil infiltration properties), and ecological variables (e.g. vegetation types, 

evapotranspiration and growth rates) are distributed across the basin. River basins are 

divided into sub-basins and stream flows are estimated at the outlet of each sub-basin. Sub-

basins are further subdivided into smaller units known as hydrological response units 

(HRUs) (Neitsch et al., 2011; Winchell et al., 2007). An HRU can be understood as discrete 

areas within a sub-basin that are comprised of a unique combination of land cover 

(including crops and other vegetation), soil, slope and land management. The subdivision 

into sub-basins and HRUs enables the SWAT model to not only reflect variable impacts on 

the hydrologic cycle for different crops and soils, both temporally and spatially, but also 

impacts resulting from the implementation of specific land management practices and 

water-related policies (Krysanova and Arnold, 2008). While the ability to define a variety of 

land management practices at the HRU scale is an advantage, the SWAT model lacks a 

socio-economic component capable of accounting for both the reasoning describing how 

people manage their lands and the feedbacks between human and water systems. As a 

consequence, human actions are generally assumed to be an exogenous forcing to the 

natural system, which has limited relevance to the study of socio-hydrologic systems 

(Sivapalan et al., 2014).  

 

2.3. Integrating socio-economic and eco-hydrologic processes into a common modeling 

framework 
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Acknowledging that the integration of socio-economic and eco-hydrologic systems is 

fundamental for a comprehensive representation of coupled human-water systems, this 

study proposes a methodological framework that couples a PMAUP model with the SWAT 

model in a modular and sequential fashion, through cropping choices, land use 

management, and water withdrawals. The proposed methodological framework is 

graphically depicted in Figure 2 and is designed to be flexible (i.e. substitution of other 

socio-economic and/or eco-hydrologic models is straightforward) and replicable (i.e. 

application to other case study areas is straightforward), provided that both models 

incorporate a land module with spatially distributed elements, a fundamental requirement 

for the definition of hydrologic-economic representative units, or HERUs. HERUs are 

defined as the lowest level spatially-disaggregated entities endowed with decision-making 

capacity, resulting from the combination of hydrologic units and socio-economic agents. 

Each HERU is a spatially-homogeneous hydrologic-economic entity, while the term 

spatially-homogenous refers to either the level of detail required (e.g. the necessity to 

describe behavioral preferences at an individual or at a group of individuals level) or to the 

quality of data that is available (e.g. spatial resolution of physical/hydrological data) for the 

hydrological-economic simulations. The explanation that follows focuses on the 

implementation of the proposed methodological framework for the socio-economic and eco-

hydrologic models used throughout this study, i.e. the PMAUP and SWAT models, while 

the constraints for the definition of HERUs are further described in sections 3.1 and 3.2. 

*** FIGURE 02 *** 

Figure 2. Modeling framework resulting from the connection between the PMAUP and the SWAT models. 

In SWAT, HRUs represent the model’s most basic computational unit, being defined as land 

areas comprised of homogeneous land-use, management, topographical, and soil 

characteristics (Neitsch et al., 2011). Similarly, in traditional PMAUP applications, the most 

basic computational units are identified as socio-economic agents (i.e. individuals or 

representative group of individuals, or, in agricultural systems, farmers or agricultural 

districts). Both HRUs and socio-economic agents can be spatially identified; however, HRUs 

and socio-economic agents usually define different spatial units, as the spatial borders that 

define a socio-economic agent are often the result of political and/or socio-economic 

processes, while HRUs are the result of physical and land management characteristics. By 

overlaying these two spatially identified units, it is possible to identify a new spatial element 

for capturing both eco-hydrologic and socio-economic processes. Hence, to apply the 

methodological framework depicted in Figure 2, this paper reimagines the idea of HRUs as 

purely physical units by proposing the incorporation of the socio-economic dimension as a 

determinant factor for the spatial definition of representative units in social-ecological 

systems (i.e. HERUs), as depicted in Figure 3.  
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*** FIGURE 03 *** 

Figure 3. Schematic representation of the definition of a HERU. 

In order to incorporate the spatially-defined socio-economic agents into SWAT, a raster 

overlay of the socio-economic agent and land use raster maps is performed prior to the HRU 

analysis phase in SWAT (Winchell et al., 2013). This raster overlay operation results in 

unique combinations of land-use/socio-economic agent codes, which are then added to the 

SWAT project database as unique plant codes (i.e. CPNM, in table “crops”) (Arnold et al., 

2012). Other plant specific parameters (e.g. BIO_E, or radiation-use efficiency) are imported 

from their respective land use (e.g. corn, wheat, etc.) for the generation of the unique land-

use/socio-economic plant codes in the SWAT project database. Land management 

operations are imported from their respective socio-economic agent’s crop portfolio (e.g. 

crops to be planted in each HERU, amount of water applied for irrigation, etc.). The 

utilization of specific plant codes for each unique combination of spatially identified socio-

economic agent and land use type enable the identification of each HERU with its respective 

socio-economic agent counterpart in the PMAUP model, thus enabling the exchange of 

information between the two models. As a final step, both the final raster map (i.e. resulting 

from the overlay of socio-economic agents and land use maps) and the updated unique 

plant codes are imported to the HRU Analysis phase in SWAT as a new “Land Use map”, and 

the definition of “HRUs” (now HERUs due to the incorporation of spatially identified socio-

economic information) proceeds as in traditional SWAT applications. In areas where socio-

economic agents are not present (i.e. grey areas of the Economic Agents raster layer in 

Figure 3), HERUs simply revert to HRUs. 

Each HERU is an independent entity endowed with the capacity for decision-making. The 

preferences and choices identified and simulated by the PMAUP component are passed to 

the SWAT model as land and water management actions (Figure 2), which in this study are 

the crop portfolios defined in the PMAUP model (e.g. alternative crops or irrigation 

practices, see section 2.1). Similarly, eco-hydrologic information regarded as critical for the 

decision-making of economic agents is transferred from the SWAT model to the PMAUP 

model, which in this study is water availability for irrigation (see Eq. 7). By combining 

physical and economic spatial information, HERUs enable not only the identification of a 

common spatial unit among human and water systems, but also provides the means for the 

exchange of information between them. 

Temporally, microeconomic models such as the PMAUP model run on a yearly basis 

(Graveline, 2016) while the SWAT model runs on a daily basis. To circumvent this temporal 

divergence, some considerations are made: i) the microeconomics model simulates the 

preferences of farmers (i.e. crop portfolio) at the beginning of the crop season; ii) decisions 

made by farmers at the beginning of a crop season are non-variable throughout that year 

(Gómez-Limón et al., 2016; Gutiérrez-Martín et al., 2014); iii) the decisions taken by farmers 
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are passed to the hydrologic model at the beginning of the year, and parameters are updated 

accordingly (e.g. switch to a new crop type, or reduction in the amount of water withdrawn 

for irrigation, etc.); and iv) the feedbacks from the hydrologic to the microeconomic model 

are passed as an average yearly value. The yearly value is obtained by averaging the water 

availability from the irrigation source during the crop season at the end of every year 

(provided by the eco-hydrologic model), while being consistent with the way economic 

attributes are defined in the microeconomic model (i.e. first and second moments of a 

multiannual time series, see section 3.2.1). 

Feedbacks between water and human systems are represented by the dashed line in Figure 

2. The consideration of feedbacks between human and water systems means that changes in 

one system can alter the dynamics of the whole integrated modular modeling framework, a 

fundamental requirement for the proper representation of coupled human-water systems 

(Sivapalan et al., 2014). For instance, a decreased availability of water for irrigation can affect 

the choices of socio-economic agents in defining their crop portfolio, which, in turn, affects 

the crops they choose to grow, how they manage their land, and how much water they 

withdraw. This information is then fed back into the eco-hydrologic system by affecting 

fluxes, such as the evapotranspiration from the land surface and runoff to the river system 

and storages, including surface and groundwater storage. In the case study that follows, 

these connections are explored by stressing the sociological system with an irrigation 

restriction policy. 

Similar to the way in which traditional SWAT applications simulate the eco-hydrologic 

processes in a river basin, the water balance is the driving force behind the hydrologic 

processes simulated by the eco-hydrologic component of the coupled model. The main 

integrating factor in the methodological framework depicted in Figure 2 is that the water 

balance not only drives eco-hydrological processes, such as plant growth and the movement 

of sediments, but also affects decisions of socio-economic agents by acting as a constraint 

element in the utility optimization problem, ultimately defining the farmers’ crop portfolios 

(see section 2.1). Hence, the proposed methodological framework provides the means for 

revealing the preferences of people in managing the landscape, also with respect to water 

availability, thus contributing to the science of socio-hydrology (Sivapalan et al., 2012). 

 

3. Implications of Water Policy in a Rational Human-Water System 

3.1. Case study area: The Río Mundo River Basin 

The Río Mundo River Basin (RMRB) is a sub-basin of the Segura River Basin (SRB) in south-

eastern Spain. The SRB benefits from abundant and inexpensive land and labor, adequate 

solar radiation and proximity to high demand markets, resulting in one of the most 

productive agricultural sectors in Spain and Europe (Gómez and Pérez-Blanco, 2012). Yet, 

water is a major limiting factor. The ratio of water withdrawals to available water resources 
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ranges between 1.1 and 1.15 (EEA, 2016; SRBA, 2015a). Approximately 86% of the 1,829 

million cubic meters annually withdrawn in the SRB goes to the agricultural sector. 

Attempts to restore the balance in the basin have largely focused on engineering-based 

solutions to expand the supply base, including the construction of a diversion channel in the 

1970s, the Tagus-Segura Water Transfer (TSWT), with a maximum capacity of 1,000 million 

cubic meters per year that imports water from the Tagus River Basin to the SRB (Figure 4.a). 

The TWST and other water infrastructures contributed to an increased supply base, but also 

have created unrealistic expectations of the ability of the water system to accommodate 

further demand. As a result, increasing pressures on water bodies have lead the SRB into 

absolute scarcity. The effects of over-allocation of water resources are particularly severe in 

downstream areas, where agriculture is more profitable, water is scarcer, and competition 

between economic and environmental uses has led to a widespread aquifer depletion 

(Avellá and García-Mollá, 2009). Reallocation from upstream agricultural uses to the 

environment has been suggested as a means to enhance environmental flows at the least 

economic cost (Martínez-Granados and Calatrava, 2014; Pérez-Blanco and Gutiérrez-Martín, 

2017). Yet, the economic and environmental repercussions of such intervention have yet to be 

assessed in an integrated socio-hydrologic framework.  

The RMRB is located upstream in the SRB and covers an area of 2,500 km², accounting for 

15% of the SRB’s total surface. The fractions of the RMRB dedicated to irrigation are 

categorized as Agricultural Water Demand Units (AWDUs). AWDUs are spatially defined 

groups of local irrigation communities sharing a common territory, water source, and 

hydrological and administrative characteristics (SRBA, 2014). In the RMRB, AWDUs offer 

the lowest spatial disaggregation level with comprehensive and readily available socio-

economic data, hence being considered as the decision-making socio-economic agents in this 

case study. The process of aggregating individual farmers into groups to represent economic 

agents is well documented in the literature (Gómez-Limón et al., 2016; Gutiérrez-Martín et 

al., 2014), also through the use of AWDUs (Martínez-Granados and Calatrava, 2014; Pérez-

Blanco and Gutiérrez-Martín, 2017). AWDUs may be composed of one or more HERUs, 

depending on soil, land use, and topographic characteristics of the spatial area the AWDU 

covers. The decision-making process of AWDUs does not directly take into account soil or 

topographic characteristics; however, since these spatial characteristics influence the amount 

of water available for irrigation, they implicitly provide information that is directly taken 

into consideration by the PMAUP model in determining the choices of socio-economic 

agents. In total, 9 AWDUs are located within the RMRB area, covering a total surface land 

area of 425 km² and corresponding to 17% of the RMRB total area. Approximately 70% of the 

water withdrawals from AWDUs in the RMRB are from groundwater sources; particularly 

in the northern upper section of the RMRB (e.g. AWDU 7). Figure 4.a depicts the spatial 

location of the AWDUs in the RMRB, while Figure 4.b presents the spatial distribution of the 

main water sources for irrigation systems in the AWDUs. 
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a. b. 

*** FIGURE 04.a *** *** FIGURE 04.b *** 
Figure 4. The case study area. Figure a. displays the Rio Mundo river basin (RMRB) and its AWDUs. Figure b. 

displays the spatial distribution of the main water sources for irrigation in the RMRB. 

 

3.2. Model calibration  

3.2.1. The microeconomic module 

This study relies on the most comprehensive set of attributes based on previous versions of 

the PMAUP model, which includes: i) profit (z1), obtained as the expected gross margin; ii) 

risk avoidance, obtained as the difference between the standard deviation of the profit 

maximizing crop portfolio (σ̅) and that of an alternative crop portfolio x (σ(π(x))); and iii) 

management complexity (z3). Of the three variables considered to measure management 

complexity avoidance (total labor avoidance, hired labor avoidance and direct costs 

avoidance), hired labor avoidance was found the best proxy (the other two were found non-

relevant). These attributes are described below: 

z1(x) = ∑ xiπii                        [31] 

where πi is the expected gross margin per hectare of crop i.   

z2(x) = σ̅ − σ(π(x))                      [32] 

where σ(π(x)) = xτ · VCV(π(x)) · x, and VCV(π(x)) are the variance and covariance matrix of 

the per hectare crop profits (π(x)) of the crop decision x, respectively 

z3(x) = H̅ − H(x)                      [33] 

where H(x) = ∑ xiHii  is the hired labor requirements per hectare to produce the crop 

portfolio x (Hi is the hired labor requirement per hectare of crop i) and H̅ is the hired labor 

requirement per hectare to produce the profit maximizing crop portfolio.  

Table 1 summarizes the data source and reference year of the input data used to quantify 

attributes in the AWDUs. 

Table 1. PMAUP model inputs and related data providers. 

ID Data Provider Description 

Ref. 

Year/ 

Period 

Disaggregatio

n 

Relevant 

model 

input 

Water 

Withdrawals 

& Allotment 

Segura River 

Basin Authority 

- SRBA (2014) 

Water withdrawals and 

allotment for every source, 

including surface, 

groundwater, desalination, 

treated wastewater and 

2013 AWDU W 
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water transfer for each 

AWDU 

Water 

Application 

and Irrigation 

Technology 

SRBA (2014) 

Water application per crop 

and irrigation technology 

for each AWDU 

2013 AWDU wi 

Crop 

Portfolio 

Región de 

Murcia (2015), 

SRBA (2015b, 

2014) 

Crop information at 

municipality (hectares per 

crop) and AWDU levels 

(hectares per crop category) 

2013 
Municipality, 

AWDU 

xi
0, yi, gi,j, 

hi,j, φi 

Crop yields 

and prices 

Ministry of 

Agriculture and 

Environment - 

MAGRAMA 

(2015a) 

Crop yields and prices 
2003-

2013 

Province 

(NUTS3)  
πi 

Other 

revenues 

MAGRAMA 

(2015b) 

Subsidies, insurance 

payments, other revenues 

2003-

2013 

Province 

(NUTS3) 
πi 

Costs 
MAGRAMA 

(2015b) 

Working days, variable 

costs and other costs 

2003-

2013 

Province 

(NUTS3) 
πi, Hi 

 

Even after minimizing the distance between observed and calibrated decisions, errors will 

still exist. The dataset available is incomplete and limits the capacity of the PMAUP model to 

accurately represent crops, management techniques, relevant attributes and binding 

constraints in the framework (Gutiérrez-Martín and Gómez, 2011). For example, due to 

insufficient observations (e.g. to obtain the expected income of olive groves under deficit 

irrigation), some feasible crops and/or management techniques will not be considered in the 

model. Some attributes may not be measurable either. For example, the TPB highlights the 

relevance of ‘subjective norms’, defined as “aggregates of the beliefs of 

approval/disapproval of the behavior by important individuals or groups”, in explaining 

agents’ behavior  (Schlüter et al., 2017); yet, there is no data available to measure such 

variable, or a reliable proxy variable, in the case study area. According to Gómez-Limón et al. 

(2016) and Gutiérrez-Martín and Gómez (2011), reducing the calibration error necessitates a 

more precise delineation of the model constraints and the inclusion of additional relevant 

attributes. Note again that the outcome of the utility function is an ordinal value 

(Edgeworth, 1881), i.e. the model is not concerned about total utility or levels of utility 

(which would cause correlation problems), but rather about ranking alternative decisions 

coherent with observed choices (i.e. error minimization).  

The available dataset covers 37 irrigated crops and 13 rainfed crops (reserve option) over the 

2003-2013 period, representing 89% of the total surface area covered by the AWDUs in the 

case study area. All monetary values are adjusted to constant values of the calibration year, 

2013. All attributes are quantities of dimension one, i.e. normalized dividing by the 

maximum feasible value. As compared to previous versions of the model (Pérez-Blanco and 
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Gutiérrez-Martín, 2017), the coding has been updated to normalize attributes using the 

maximum feasible values from the payoff matrix instead of the observed value, which could 

potentially lead to values higher than one. The new coding has further reduced the 

computational requirements in the calibration procedure by optimizing the code and 

removing 2000+ code lines to reduce the computational cost of the coupled model. The 

objective function of each AWDU is calibrated using the optimization algorithm Conopt 3 

(ARKI Consulting and Development) in the General Algebraic Modeling System software 

(GAMS v21.4). The calibration results are shown in Table 2. 

Table 2. PMAUP model – calibration results. 

AWDU 𝛂𝟏 𝛂𝟐 𝛂𝟑 𝐞𝐱 𝐞𝛕 𝐞 

2 0.88 0.12 0.00 2.26% 8.35% 5.30% 

7 0.78 0.22 0.00 5.27% 5.91% 5.59% 

8 0.50 0.48 0.02 7.78% 5.62% 6.70% 

9 0.85 0.04 0.11 1.38% 6.22% 3.80% 

10 0.92 0.08 0.00 3.69% 3.49% 3.59% 

12 0.80 0.20 0.00 4.07% 9.07% 6.57% 

15 0.72 0.28 0.00 1.53% 3.81% 2.67% 

22 0.83 0.17 0.00 2.26% 2.12% 2.19% 

 

The parameters α1, α2 and α3 are the value of the objective function parameters for the 

attributes profit (z1), risk avoidance (z2) and management complexity avoidance measured 

through hired labor avoidance (z3). The parameters ex and eτ are the errors measuring the 

distance between observed and optimum crop portfolios and the distance between observed 

and optimum attributes, respectively, and e is the average calibration residual. The 

calibrated objective functions describe the agents’ preferences and can serve to project 

behavior, provided calibration errors are low. The results in Table 2 for the performance 

metrics display overall a satisfactory performance with low calibration errors (average 

calibration residual, e, below 10%) (Gómez-Limón et al., 2016). 

The calibration results show that agents’ decisions are largely driven by profit, while risk 

aversion also has a relevant role in explaining the behavior of agents. The avoidance of 

management complexities is considered in the decision-making process by only two 

AWDUs. When interpreting the results, it is important to acknowledge that the utility 

function parameters are not absolute values, since choices are constrained by the domain. 

For example, agents with a high  α1 value where the domain restricts profitable crop 

portfolios may display lower expected income than others with a lower α1 value and less 

constraining domain. 

 

3.2.2. The eco-hydrologic module 
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The basic information required to set up the SWAT model includes: i) Climatic data; ii) 

Topographic data (i.e. digital elevation model (DEM)); iii) Soil spatial distribution and 

properties; and iv) Land use spatial distribution and land management practices. Besides 

this basic information, specific information can be added in order to describe specific 

processes (e.g. point-source nutrient discharges) or for calibration purposes (e.g. measured 

streamflow data). Table 3 summarizes the data source and reference year of all the available 

input data used for the set-up and calibration of the SWAT model. 

Table 3. SWAT model inputs and related data providers. 

ID Data Provider Description Ref. Year 

Digital 

Elevation 

Model (DEM) 

Instituto Geográfico Nacional 

de España (IGN, 2017) 

Digital elevation model for the Segura 

River Basin (25x25m resolution) 
2012 

Soil Map 
European Soil Database (The 

European Soil Bureau, 2004) 

Soil geographical database for Europe 

(SGDBE) v2.0 (scale 1:1,000,000) 
2004 

Land Cover 
Instituto Geográfico Nacional 

de España (IGN, 2017) 

SIOSE CLC Corine Land Cover for 

Spain (scale 1:100.000) 
2012 

Climatic Data 
SWAT Global Weather Data 

(Fuka et al., 2014) 

Daily meteorological data for the 

Segura River Basin area. 
1979-2014 

Hydrologic 

Units 

Confederación Hidrográfica 

del Segura (SRBA-IDE, 2016) 

Segura River Basin hydrologic units 

(e.g. river basin and sub-basins 

delineation)  

2016 

Hydrologic 

Network 

Confederación Hidrográfica 

del Segura (SRBA-IDE, 2016) 

Segura River Basin hydrologic 

network (e.g. stream network) in .shp. 
2016 

Streamflow, 

Reservoir & 

Channel Data 

Centro de Estudios Y 

Experimentación de Obras 

Públicas (CEDEX, 2016) 

Daily measured streamflow, reservoir 

outflow, and stream flow data 
1968-2014 

 

Spatial information pertaining to the identification of the AWDUs is also utilized during the 

set-up of the SWAT model, as shown in Figure 3 (SRBA, 2015b, 2014). In order to spatially 

connect the socio-economic information (i.e. crop portfolio in Table 1) with the eco-

hydrologic information (i.e. land cover in Table 3), two considerations are made: i) the 

PMAUP model treats crops that have more than one management scheme (e.g. rainfed and 

irrigated) as essentially different crop varieties (i.e. different options in the crop portfolio of 

socio-economic agents; see section 2.1); in SWAT, however, crops are assumed to be of the 

same land cover type but with different land management schemes (i.e. same crop variety, 

but managed under a different scheme), and; ii) unique crop varieties that share similar 
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characteristics are aggregated into general crop classes (e.g. vineyards for grape, dry-grape, 

and wine production are considered simply as vineyards). Hence, the eco-hydrologic model 

considers a total of 21 land-use classes, 14 out of which are specific, non-aggregated crop 

types; 11 soil classes; and 9 spatially-defined socio-economic agents (i.e. AWDUs), 

producing a final number of 806 HERUs for 31 sub-basins. In order to maintain the spatial 

integrity with the digital elevation model, the land-cover, soil, and spatially-defined socio-

economic agents’ maps are converted to raster format at a resolution of 25x25m. HERUs 

were created following the methodology described in section 2.3 and depicted in Figure 2. 

The creation of the HERUs for this case study was supported by the ArcSWAT ArcGIS 

plugin (Winchell et al., 2007), where a land use map is created by crossing land use and 

socio-economic information, followed by crossing the topographical, soil, and land use input 

raster maps (the usual HRU definition steps). 

Streamflow data covering the period from 1994 to 2010 was used for calibration of the 

SWAT model, while validation was performed using streamflow data ranging from 2011 to 

2013. Four distinct streamflow measurement stations (i.e. 7003, 7004, 7124, and 7850, see 

Figure 4.a) were used to calibrate the SWAT model. The SWAT-CUP software and the 

Sequential Uncertainty Fitting procedure (SUFI2) (Abbaspour et al., 2007) were used for the 

calibration, resulting in a Nash-Sutcliffe (NSE) ranging from 0.60 to 0.87 and Percent Bias 

(PBIAS) ranging from 5.19 to 22.44, while validation resulted in a NSE ranging from 0.21 to 

0.67 and PBIAS ranging from 7.66 to 27.74, all under a monthly scale.  Calibration and 

validation results for the SWAT model are summarized in Table 4. 

Table 4. Calibration and Validation results for the SWAT model. 

Station 
Calibration Validation 

NSE PBIAS NSE PBIAS 

7850 0.67 13.10 0.21 27.74 

7003* 0.87 5.19 n.a. n.a. 

7004 0.80 18.44 0.67 8.21 

7124 0.60 22.44 0.53 7.66 

* Data for station 7003 was not available for the validation period. 

 

Both the NSE and PBIAS results are acceptable at a basin scale (i.e. station 7124) (Moriasi et 

al., 2007). The poorer performance at the upstream stations is likely due to the use of  the 

SWAT Global Weather Data (Climate Forecast System Reanalysis dataset) (Fuka et al., 2014), 

due to insufficient meteorological data from local stations at the sub-basin scale. 

 

3.3. Responses of human-water systems 
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The case study explored as an example in this paper consists of evaluating the social-

ecological consequences in the RMRB following the implementation of an irrigation 

restriction policy. The policy enforces the reduction of water used for irrigation with respect 

to an initial baseline scenario in 2013. Ten different policy scenarios are evaluated, each 

consisting of unique irrigation restriction values ranging from 5% (scenario p5) to 50% 

(scenario p50) restriction at 5% intervals. These irrigation reduction policies have been 

designed following similar reallocation policies that have been explored by the Segura River 

Basin Authority in the past, and are meant to correspond to the conservation of water to 

generate environmental benefits downstream. Some considerations must be highlighted: 

i. Only annual crops are affected by the irrigation reduction policy; permanent crops 

are assumed to be not affected by the policy, thus receiving a guaranteed water 

supply. This is done to prevent disinvestments potentially leading to significant 

disruptions in ecosystem services not accounted for in the model (e.g. carbon 

sequestration), and is in compliance with the SRB’s Drought Management Plan 

(SRBA, 2008). Consequently, HERUs covered with permanent crops are constrained 

to adapt their crop portfolio in the range of ±10% in relative area change with respect 

to the baseline scenario, as discussed in section 2.1. 

ii. The management of hydraulic infrastructures (i.e. TSWT and reservoir outflows) in 

the RMRB is unchanged with respect to the baseline scenario, respecting physical 

constraints (e.g. maximum reservoir capacity is a constraint on reservoir storage). 

iii. Since the AWDUs represent the socio-economic agents in the case study area, 

irrigation water reductions are enforced at an AWDU scale. This means that, in 

AWDUs composed of several HERUs, a HERU inside a given AWDU may reduce 

water use by a higher or lower proportion than their neighbors (i.e. other HERUs 

inside the same AWDU) according to their preferences, as long as the overall 

irrigation water reduction for that particular AWDU is achieved at the AWDU scale.  

iv. Direct reductions of water withdrawals for irrigation are passed to the eco-

hydrologic model in the form of timing (i.e. amount of days between irrigation 

applications) and magnitude (i.e. amount of water applied per irrigation 

application), while indirect reductions may occur due to varying crop choices (e.g. 

switching from a water intensive crop to a crop with lower water requirements).  

 

 

3.3.1. Human system responses 

Table 5 shows how the portfolio of the most economically-relevant irrigated annual crops 

adjust to the changing water constraint in the RMRB. Economic agents (i.e. AWDUs) 

respond to the increasingly stringent water allocation constraint by reallocating their crop 

portfolio x (the decision variable) in order to maximize the utility function U within the 

domain F(x). This reallocation involves either substituting irrigated crops in the margin (i.e. 
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those delivering lower utility levels) with less water demanding crops or rainfed crops, or 

changing the way irrigated crops are managed, such as employing managed deficit 

irrigation techniques, in such a way to minimize the utility loss as compared to the baseline.  

Table 5. Variation in the crop portfolio of farmers (annual crops only) as a response to the implementation of an 

irrigation restriction policy. 

 

Area [km²] 

Crop Baseline p5 p10 p15 p20 p25 p30 p35 p40 p45 p50 

Alfalfa 3.72 3.72 3.70 3.73 3.77 3.87 3.94 3.76 3.15 1.33 0.83 

Barley 38.54 40.15 43.46 46.87 50.44 35.28 49.66 63.01 77.22 91.50 110.89 

Maize 144.99 127.13 107.78 87.51 67.13 56.84 42.87 30.48 19.30 8.80 1.57 

Lettuce 0.76 0.76 0.76 0.76 0.77 0.78 0.95 1.56 2.10 1.95 2.46 

Oats 10.08 10.13 10.23 10.67 11.14 12.32 11.59 11.67 11.90 13.04 13.37 

Wheat 23.90 38.61 53.46 68.57 83.80 95.26 95.63 95.92 96.16 96.36 88.75 

Tomato 11.01 11.08 11.17 11.24 11.34 11.66 11.87 10.75 10.31 10.40 9.07 

Pepper 5.27 5.32 5.25 5.24 5.06 4.92 4.47 4.38 4.18 4.19 5.04 

 

Table 5 indicates that irrigated crops are generally replaced by rainfed crops, such as barley 

and wheat. In some simulations, the objective function cannot be resolved within the 

domain due to the threshold irrigation requirements for perennial shrub and tree crops. This 

occurs in AWDU 2, where water allocation is reduced by ≥45%; AWDU 15, where water 

allocation is reduced by ≥35%; and AWDU 22, where water allocation is reduced by ≥30%. 

From these threshold reductions upwards, no further water restrictions are applied and thus 

the crop portfolio remains constant.   

As the water constraint is strengthened, agents tend to sacrifice the growing of more water 

intensive (and, in general, more valuable) crops in favor of less water intensive (and, in 

general, less valuable) crops. As a consequence, utility losses occur. Comparable water 

allocation constraints may yield asymmetric impacts on AWDUs’ utility values, which is 

conditional on agents’ preferences (as revealed in the utility function) and domain, resulting 

in some AWDUs suffering higher utility losses than others. The reduction in utility is 

accompanied by a reduction in income, measured as Gross Value Added (GVA) and 

displayed in Figure 5 for each AWDU.  

*** FIGURE 05 *** 

Figure 5. Foregone Income – Gross Value Added (GVA) losses per AWDU in the RMRB [€/ha]. 

Overall, the AWDUs in the upstream areas of the RMRB (e.g. AWDUs 2 and 7) display less 

profitable crop portfolios and show lower absolute income losses as a consequence of water 

use restrictions with respect to downstream AWDUs (e.g. AWDUs 10 and 22). These spatial 

variations in GVA are important because, while focusing irrigation restrictions on upstream 

areas may improve environmental flows along the SRB at the least cost, it also raises 
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significant equity issues that call for some compensation to balance asymmetric on-farm 

losses and induced effects on the wider economy (e.g. agri-food industry) (Pérez-Blanco et 

al., 2016).  

 

3.3.2. Water system responses 

The implementation of an irrigation restriction policy has implications not only for the 

economic system within a river basin, but also for the dynamics of the water system. As 

described in section 2.2, reduction in the amount of irrigation water application directly 

impacts a river basin’s water balance by altering several hydrologic processes, such as 

evapotranspiration and percolation. Indirectly, farmers’ choices regarding their crop 

portfolio following the implementation of a particular irrigation restriction policy is another 

factor capable of affecting hydrologic processes, such as the fraction of rainfall converted to 

runoff. Ultimately, the implementation of an irrigation restriction policy is expected to 

reduce irrigation return flows and alter the total amount of water leaving land areas and 

being converted to river flow. Figure 6 presents the main changes in the water balance 

(Figure 6.a) and the estimated redistribution of the relinquished water (Figure 6.b) with 

respect to the baseline scenario after the implementation of an irrigation restriction policy in 

the RMRB.  

a. b. 

*** FIGURE 06.a *** *** FIGURE 06.b *** 
Figure 6. On the left (a.): changes in the hydrologic balance of the RMRB after the implementation of an irrigation 

restriction policy. On the right (b.): estimated redistribution of relinquished water following the implementation 

of an irrigation restriction policy. Values represent the absolute difference with respect to the baseline scenario 

In efficient irrigation systems, water that is applied to the soil during an irrigation operation 

is expected to be converted to evapotranspiration with minimal losses. Hence, it is not a 

surprise that evapotranspiration is the primary hydrologic flux affected by the 

implementation of an irrigation restriction policy, as shown in Figure 6.a. However, not all 

the amount of irrigation water reduction is fully converted to evapotranspiration. Due to 

inefficiencies in the irrigation systems or to the natural movement of water in the soil profile, 

other processes of the hydrologic cycle may be affected as well, such as surface runoff and 

percolation past the bottom of the soil profile (Figure 6.a).  

In contrast, other natural processes may be affected by the reduction of irrigation 

applications, in particular groundwater evapotranspiration (Figure 6.a). As near surface soils 

become drier due to higher near-surface evapotranspiration, more water from the 

underlying groundwater table is transported upwards to the near surface soils.  

Groundwater evapotranspiration, hence, acts as a natural attenuator to the negative effects 

on water requirements by crops following the reduction in the amount of water applied for 

irrigation. However, groundwater evapotranspiration also has an impact in reducing 

groundwater storage. 
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Interestingly, Figure 6.a also depicts a general slight increase in baseflow as irrigation 

applications are reduced at the river basin scale. As depicted in Figure 4.b, the majority of 

the irrigated area of the RMRB utilizes groundwater as its water source for irrigation 

(approximately 70%). In sub-basins where groundwater-fed irrigation is predominant, when 

irrigation applications are reduced, baseflow generally increases due to the reduced 

depletion of the aquifer system, even though aquifer recharge decreases (percolation in 

Figure 6.a). In sub-basins where the source for irrigation is predominantly surface waters, 

both aquifer recharge and baseflow processes decrease, potentially further impacting 

groundwater systems. 

Figure 6.b depicts the estimated amount of water that can be redistributed and their 

destinations following the implementation of an irrigation restriction policy. The water 

losses as expressed in this figure represent the difference between the amount of 

redistributed relinquished water following the implementation of an irrigation restriction 

policy and the amount of water that remains in the river basin system, either stored in 

reservoirs or groundwater systems, or converted as downstream flow. From the results 

depicted in Figure 6.a, water losses are mainly attributed to increased groundwater 

evapotranspiration. 

In general, the destination of relinquished water following the implementation of the 

assessed policy depends on the source of water used for irrigation (see Figure 4.b for 

reference). In sub-basins where groundwater-fed irrigation is predominant, the majority of 

relinquished water remains in the aquifer system, discounting losses such as groundwater 

evapotranspiration. The relinquished water from sub-basins where streamflow is the 

predominant water source for irrigation is mainly redistributed to downstream flow or 

artificial reservoirs storage. Water losses, however, can occur, such as evaporation from the 

surface of streams and reservoirs, percolation past the bottom of the reservoirs, and/or the 

upward movement of water from the saturated to the unsaturated zones in the soil. On 

average, Figure 6.b shows that approximately 50% of total relinquished water in the RMRB 

is redistributed to groundwater, 25% to downstream flow, and 10% reservoir storage, while 

the remaining 15% is estimated to be lost from the system. 

Spatially, the changes in water fluxes and storage are not homogeneous. Decisions taken by 

socio-economic agents can affect hydrologic processes in their own properties as well as in 

their neighbors’ lands. The results in Figure 7 show that farmers’ decisions at the HERU 

level have impacts on hydrologic fluxes at three spatial scales: i) evapotranspiration at the 

local scale; ii) groundwater evapotranspiration at the sub-basin scale; and iii) surface water 

yield at a combination of local and sub-basin scales. Water yield is defined as the net amount 

of water that contributes to streamflow in a river reach (Arnold et al., 2012). 
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*** FIGURE 07 *** 

Figure 7. Relative estimated spatial variation of evapotranspiration, groundwater evapotranspiration, and water 

yield processes for the irrigation policy restriction scenarios of 10, 30, and 50 percent with respect to the baseline 

scenario. 

As shown in Figure 7, the evapotranspiration is lower with respect to the baseline scenario 

in areas affected by the irrigation restriction policy. As less water is made available for 

irrigation, farmers change their crop portfolio and/or land management preferences as an 

adaptation measure to circumvent the negative impacts from lower availability of water. As 

a consequence, less water is removed from the soil profile and converted to 

evapotranspiration. In contrast, in areas that are not directly affected by the policy, no 

significant change is observable in evapotranspiration.  

Evaporation from groundwater can substantially impact groundwater dynamics by 

reducing groundwater elevations. Conversely, changes in groundwater dynamics can affect 

the groundwater evapotranspiration flux. Groundwater dynamics, in turn, are typically 

much less localized than surface processes. As a result, the socio-economic agents’ choices of 

responses to the implementation of an irrigation restriction policy can affect the rate of 

withdrawals from and recharge of aquifer systems, ultimately affecting the groundwater 

evapotranspiration flux at a sub-basin scale. Figure 7 shows that a general intensification of 

groundwater evapotranspiration occurs as a consequence of less water added to the soil by 

irrigation, especially in areas where irrigation water source is predominantly groundwater 

(see Figure 4.b for reference).  

Finally, the water yield is shown in the third column of Figure 7. Generally, AWDUs show a 

reduction of water yield, mainly due to the reduction of surface runoff as a consequence of 

reduced irrigation (i.e. irrigation return flow). In AWDUs where the water source for 

irrigation is mainly groundwater (e.g. northern RMRB), the reduction in water yield is less 

intensive than in AWDUs located in areas where the main source for irrigation is surface 

water (e.g. southern RMRB). In sub-basins where irrigation water source is mainly 

groundwater, reduced withdrawals from aquifer systems results in an intensification of 

groundwater hydrologic processes, such as baseflow and groundwater evapotranspiration. 

In contrast, in sub-basins where irrigation water source is mainly surface water, a general 

reduction in percolation and recharge of the aquifer systems occurs, having a negative 

impact on groundwater hydrologic processes such as baseflow and groundwater 

evapotranspiration. 

 

3.3.3. SWAT-PMAUP v. SWAT: Differences in describing complex agricultural-hydrological 

systems 



 

 
© 2018 American Geophysical Union. All rights reserved. 

In order to verify if the preferences of socio-economic agents affect both hydrologic and 

economic processes in complex coupled human-water systems, a new set of results is 

generated by eliminating the ability of socio-economic agents to make reasonable decisions. 

Since this new scenario does not endow the socio-economic agents with decision-making 

capacity, they are unable to “perceive” environmental and/or socio-economic changes and to 

adapt accordingly. The comparison between the two scenarios (i.e. adaptive, when agents 

are endowed with decision-making capacity, and non-adaptive, when agents are deprived 

of decision-making capacity) is shown schematically in Figure 8 for selected crops. 

a. b. 

*** FIGURE 08a *** *** FIGURE 08b *** 

c. d. 

*** FIGURE 08c *** *** FIGURE 08d *** 

*** FIGURE 08 Legend *** 
Figure 8. Graphical representation of how the crop area coverage and crop yields of the four dominant annual 

crops in the study area vary as a response to how socio-economic agents respond to the implementation of 

different irrigation restriction policies. On the top left (a.), the crop area coverage responses under the adaptive 

scenario. On the top right (b.), the crop area coverage responses under the non-adaptive scenario. On the bottom 

left (c.), estimated crop yields variation under the adaptive scenario. On the bottom right (d.), the crop yields 

responses under the non-adaptive scenario. 

Socio-economic agents balance their crop portfolio aiming to maximize the utility derived 

from the provision of a range of attributes they value and with respect to a set of constraints. 

Figure 8.a. shows how farmers, following the methodology described in section 2, reallocate 

their land at a river basin scale as water available for irrigation is reduced following the 

implementation of an irrigation restriction policy. In general, for the crops depicted in 

Figure 8.a, farmers switch from growing maize to either barley, wheat, or, at a lower scale, 

oats, depending on their utility function. By taking such action, farmers generally switch 

from higher to lower water intensive crops, while at the same time maximizing their 

welfare, even though income is generally affected by taking such adaptation measures (see 

Figure 5 for reference). Figure 8.b. depicts the evolution of the land distribution for the same 

crops when farmers are not allowed to choose their preferred alternative solutions. By 

ignoring agents’ capacity to decide which crop to grow in alternative irrigation restriction 

scenarios, the stand-alone SWAT model results in lower crop yields and revenue (as 

depicted in Figure 9), larger utility losses, and sub-optimal welfare.  

Figure 8 also compares the two contrasting behavioral scenarios for the same four selected 

crops. When farmers are not allowed to change their crop portfolio (Figure 8.d), the only 

way they can meet the water use reduction enforced by the irrigation restriction policy is to 

use less water for irrigation (i.e. deficit irrigation). In contrast, when farmers are able to 

change their crop portfolio (Figure 8.c), the irrigation reduction target can be achieved by the 

combination of the total water demand per crops (i.e. crop selection) and the amount of 

water used for irrigation (i.e. deficit irrigation). As explained in section 3, irrigation 

reductions are achieved at an AWDU scale, meaning that water available for irrigation is 
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better allocated in a situation where farmers can adapt their crop portfolio as a response to a 

policy. This optimal allotment of water for irrigation results in generally higher crop 

productivity, as depicted in Figure 8.c. 

The two behavioral scenarios based on the ability of socio-economic agents to adapt to 

changes and to select their crop portfolio also have different spatially-distributed impacts on 

the human and water systems, as shown in Figure 9. 

*** FIGURE 09 *** 

Figure 9. Relative estimated spatial variation of gross value added (1st row), groundwater evapotranspiration (2nd 

row), and water yield (3rd row) processes for the irrigation policy restriction scenarios of 30 percent with respect 

to the baseline scenario. The maps on the left column represent the results under the adaptive scenario, while the 

maps on the right column display the responses under the non-adaptive scenario. 

The implementation of the considered irrigation restriction policy impacts the income of the 

socio-economic agents, as shown in Figure 5; however, when farmers are not allowed to 

define their crop portfolio as an adaptive measure to counter-act the reduced access to water 

resources, higher economic impacts are observed. Figure 9 (first row) shows that, across the 

whole basin, a reduction of 18.6% in GVA occurs in the scenario when farmers are deprived 

the ability to make decisions, while a lower reduction of 15.2% in the GVA is observed when 

farmers are able to make rational decisions. Moreover, when farmers are unable to adapt 

their crop portfolio, not only higher economic damages are observed, but also their choices 

(or lack thereof) result in larger risk and management complexity, thus intensifying the 

reduction of farmers’ utility. 

The results shown in Figure 9 show that modeling the behavior of socio-economic agents 

also has hydrologic implications. When socio-economic agents are not allowed to define 

their crop portfolio as an adaptive response to the implementation of a restrictive irrigation 

policy, farmers are restricted to continue growing crops that usually demand more water 

than the amount of water to which they have access (see Figure 8 for reference). 

Consequently, the soil moisture drops, intensifying the soil moisture gradient between the 

underlying water table and the near-surface soils and the groundwater evapotranspiration 

flux. The results in the second row of Figure 9 show that, basin-wide, the groundwater 

evapotranspiration flux is 1.47 million m³/year higher under the non-adaptive scenario.  

The groundwater evapotranspiration flux is also variable in space due to the connection 

with the crops’ evapotranspiration demand and the water availability in the aquifer system; 

this means that the water availability in the aquifer systems is also tied to the crop portfolio 

of farmers. As discussed in section 3.3.2, the groundwater evapotranspiration flux is 

intensified in sub-basins dominated by groundwater-fed irrigation (see Figure 4.b for 

reference) due to the combination of the reduced depletion of the aquifer systems located in 

these sub-basins and the reduced artificial supply of water by means of irrigation. When 

farmers are not allowed to select alternative crops; however, the groundwater 
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evapotranspiration flux is further intensified due to a higher evapotranspiration deficit. The 

spatial variability of the groundwater evapotranspiration flux is represented in the second 

row of Figure 9. 

The decision of which crop to grow in HERUs also affects hydrologic processes occurring at 

the surface; for example, the fraction of precipitation intercepted by vegetation and the 

evapotranspiration rate are functions of crop characteristics. Consequently, processes such 

as infiltration and surface runoff are also influenced by the decision of farmers in defining 

their crop portfolio. Combined, these processes contribute the total amount of water leaving 

the land surface and being converted to streamflow, which is quantified by the water yield 

and depicted in the third row of Figure 9. In general, water yield reductions inside AWDUs 

are slightly higher (1 to 2% in relative terms, 1 to 4 mm/year in absolute values) under the 

non-adaptive behavioral scenario. This is mainly due to the fact that the groundwater 

evapotranspiration is higher when farmers are deprived of decision-making capacity, 

meaning that more water is removed from the system by evapotranspiration rather than 

being converted to streamflow. 

 

4. Conclusions  

The complex dynamics of human and water systems requires innovative methodological 

frameworks capable of capturing the connections and feedbacks between these two systems. 

Where considered independently, changes in one system might have unforeseen 

consequences on the other. An example is the complex dynamics between agricultural and 

hydrological systems, where feedbacks from one system might affect the functionality of the 

other. In the microeconomic literature, behavioral responses in agricultural systems are 

typically driven by non-linear utility functions whose outcome is conditional on information 

pertaining to a multiplicity of factors driving socio-economic processes. Reponses in 

hydrologic systems, in turn, depend not only on biogeophysical processes but also on 

interactions with agricultural systems.  

Changes in governance and policy may affect the resilience of natural systems and trigger 

behavioral responses from socio-economic agents. The success of adaptive actions and 

policy design in social-ecological systems, hence, is determined by information on the 

dynamics of human-water systems; i.e. how well the behavior (i.e. reasoning that guides the 

decision-making process) of socio-economic agents is understood with respect to a 

multitude of factors (be they social, economic, or hydrologic), and how socio-economic 

agents’ responses affect the water system. While the understanding of complex human-

water systems can be explored by means of socio-hydrology (i.e. by exploring the self-

organization of people and its connections with the water system), the provision of 

information to support decision-making can be provided through means of modeling (e.g. 

systems analysis and decision support systems). As highlighted by Blair and Buytaert (2016), 
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decision-making and policy formation are ultimately where (socio-hydrologic) model 

outputs can be put into practice to make a real difference. 

This paper has contributed to the development of a socio-hydrologic inspired instrument by 

exploring a multi-factor methodological framework aimed at connecting human and water 

systems under a common modeling framework. The proposed methodological framework 

utilizes the SWAT model as the eco-hydrologic module, while a PMAUP model is used as 

the microeconomics module. The socio-economic and eco-hydrologic modules are spatially 

connected and interact by means of a new common element, defined as the Hydrologic-

Economic Response Units (HERUs). The dynamics of HERUs and related land use 

management, in turn, affects and is affected by responses from the coupled human-water 

system, which can feed back to the system through responses that impact on land and water 

management. Hence, the proposed methodological framework is suitable for the exploration 

of adaptation dynamics in complex human-water systems through land and water 

management. Using a similar methodological framework, other socio-economic and eco-

hydrological models could be coupled and employed to support decision-making in 

different contexts, such as transboundary water management issues. 

In order to explore the capabilities of the proposed methodological framework, a case study 

involving the assessment of the consequences in the coupled human-water system following 

the implementation of an irrigation restriction policy is presented. The selected case study 

area is the Rio Mundo River Basin (RMRB), in south-eastern Spain. The results obtained 

illustrate how decisions taken by socio-economic agents with regards to land management 

affect the water flow and hydrologic balance in the water system. Our findings highlight the 

relevance of considering the spatial connections between the socio-economic and eco-

hydrologic processes occurring at the river basin scale in order to design successful water 

policies in complex human-water systems.  

Although the results of this work are promising, the coupling of PMAUP and SWAT models 

explored in this paper has some limitations, in particular: i) labor, machinery, and other 

inputs prices, and output prices, are exogenous to the PMAUP model; ii) spatial physical 

characteristics may only be indirectly taken into account when modeling socio-economic 

agents’ behavior; and iii) data availability constraint the range of choices, attributes and the 

overall accuracy in the representation of socio-economic agents’ behavior and responses.  

The first limitation is a standard assumption in mathematical programming models, such as 

the PMAUP model; but still represents a significant limitation to the proposed model as 

structural shifts through major crop portfolio changes may be macro-economically relevant, 

depending on the case study that is explored. On-farm adaptation to water rationing or 

other policies may impact aggregate farmers’ choices, inputs used, and outputs produced. 

Where changes are marginal or happen at a small scale, these feedbacks can be ignored (as is 

the case study explored in this paper, since the economic relevance of the RMBM in the 
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wider basin and regional scale is limited).  However, where changes are not marginal, large 

scale structural changes in the crop portfolio can lead to impacts on prices through 

feedbacks into the output of economic sectors at a regional and supra-regional scale (Hertel 

and Liu, 2016). As the economy transitions towards a new equilibrium, commodity prices, 

including those relevant for agriculture, will change, thus affecting irrigators’ decisions. 

The second limitation refers to the spatial scale of socio-economic agents. Physical 

characteristics at a sub-spatial-level of socio-economic agents may not be fully taken into 

consideration for the calibration and modeling of agents’ behavior (e.g. spatial variability of 

soil). Such information is implicitly considered in the calibration process with regards to 

real-life observations and is one of the reasons why importing relevant crops and land 

management techniques from nearby areas is problematic, as it may violate the PMAUP 

model’s constraints (e.g. climate, soil, etc.). This means that the decision-making process of 

socio-economic agents does not take directly into account soil or topographic properties. 

However, by coupling the PMAUP model with a hydrologic model, these characteristics can 

then be used to estimate water availability, which is a factor that is directly taken into 

account by socio-economic agents in their decision-making process. 

The third limitation refers to the calibration of the PMAUP model. In this paper, each 

possible combination of crops and management techniques are treated as unique crops 

within the crop portfolio of farmers. Since the model is calibrated using observed 

information, data availability constrains crop portfolio options. For example, if no 

information is available on the outcomes of deficit irrigation for a particular crop, the 

expected income or variability cannot be estimated, thus deficit irrigation for that particular 

crop is not a feasible option in the model. This is a known limitation of this data-intensive 

modeling approach that is acknowledged in section 2.1. In order to render this constraint 

less stringent, it is possible to consider the inclusion of relevant crops and management 

techniques from nearby areas, assuming that these can be adapted to the conditions of the 

case study, something that has been discussed in the second limitation above. 

Finally, there are several improvements that can be made towards delivering a socio-

hydrologic model that can assess the long-term dynamics of coupled human-water systems 

(e.g. co-evolution). In order to move in that direction, a wider economic and eco-hydrologic 

perspective is required. In economic terms, the incorporation of macroeconomic models that 

assess the behavior and response of socio-economic agents in the wider economy can 

provide the tools to explore the dynamics of markets and prices that drive adaptation 

processes in the longer term (Pérez-Blanco et al., 2016). Moreover, the incorporation of 

interactions among socio-economic agents at a microeconomic level could also provide the 

means for the identification of complex processes, such as emergence and self-organization 

(Ratter, 2012). Information on the institutional (rules and regulation capacity) and 

organizational investments (people and knowledge capacity) required to achieve water 

policy objectives is also necessary to understand institutions’ adaptive ability and the range 
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of policy options that can be realistically implemented; and to avoid path dependence and 

irreversibility (i.e. lock-in costs) and ensure adaptive robustness in policy design (Marshall, 

2013). In eco-hydrologic terms, factors such as climate change and natural land-cover 

changes have to be taken into account (Pande and Sivapalan, 2017), as does the uncertainty 

in the hydrologic model. Explicit modeling of the groundwater dynamics is also needed to 

fully incorporate the effects of changes in groundwater elevations, storage, and fluxes 

(Bailey et al., 2016).  

The methodological framework proposed in this paper aims to maintain the complexity of 

both agricultural and hydrologic systems, while targeting the exploration of the adaptation 

dynamics of socio-hydrologic systems. The key message conveyed by our research is that, 

when representing coupled human-water systems, not only should the complexity of eco-

hydrologic processes and their spatial variability be taken into account, but the complexity 

and spatial variability of socio-economic agents’ behavior must be considered and 

conceptualized so that the relevant feedbacks between the systems can be implemented.  
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Figure 1. Procedures for projecting observed points onto linear approximations of the efficient set. 
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Figure 2. Modeling framework resulting from the connection between the PMAUP and the SWAT models. 
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Figure 3. Schematic representation of the definition of a HERU. 
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Figure 4. The case study area. Figure a. displays the Rio Mundo river basin (RMRB) and its AWDUs. Figure b. 

displays the spatial distribution of the main water sources for irrigation in the RMRB 
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Figure 5. Foregone Income – Gross Value Added (GVA) losses per AWDU in the RMRB [€/ha]. 
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Figure 6. On the left (a.): changes in the hydrologic balance of the RMRB after the implementation of an 

irrigation restriction policy. On the right (b.): estimated redistribution of relinquished water following the 

implementation of an irrigation restriction policy. Values represent the absolute difference with respect to the 

baseline scenario 
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Figure 7. Relative estimated spatial variation of evapotranspiration, groundwater evapotranspiration, and water 
yield processes for the irrigation policy restriction scenarios of 10, 30, and 50 percent with respect to the baseline 
scenario. 
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Figure 8. Graphical representation of how the crop area coverage and crop yields of the four dominant annual 
crops in the study area vary as a response to how socio-economic agents respond to the implementation of 
different irrigation restriction policies. On the top left (a.), the crop area coverage responses under the adaptive 
scenario. On the top right (b.), the crop area coverage responses under the non-adaptive scenario. On the bottom 
left (c.), estimated crop yields variation under the adaptive scenario. On the bottom right (d.), the crop yields 
responses under the non-adaptive scenario. 
  



 

 
© 2018 American Geophysical Union. All rights reserved. 

 
Figure 9. Relative estimated spatial variation of gross value added (1st row), groundwater evapotranspiration 

(2nd row), and water yield (3rd row) processes for the irrigation policy restriction scenarios of 30 percent with 

respect to the baseline scenario. The maps on the left column represent the results under the adaptive scenario, 

while the maps on the right column display the responses under the non-adaptive scenario. 

 


