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Highlights
The analysis ofCF respiratorymicrobiome
data is rapidly increasing our understand-
ing of the microbiological correlates of
lung disease, fueling hope for rational de-
sign of therapeutics that target the micro-
biota or its behavior to improve the health
of the CF lung.

Recent work using metagenomic tech-
niques has not only identified variable
taxonomic composition of microbiota,
but also a conserved set of functional
microbial genes in patients with similar
disease severity, suggesting functional
Despite over a decade of cystic fibrosis (CF) microbiome research, much
remains to be learned about the overall composition, metabolic activities, and
pathogenicity of the microbes in CF airways, limiting our understanding of the
respiratory microbiome’s relation to disease. Systems-level integration and
modeling of host–microbiome interactions may allow us to better define the
relationships between microbiological characteristics, disease status, and treat-
ment response. In this way, modeling could pave the way for microbiome-based
development of predictive models, individualized treatment plans, and novel
therapeutic approaches, potentially serving as a paradigm for approaching
other chronic infections. In this review, we describe the challenges facing this
effort and propose research priorities for a systems biology approach to CF
lung disease.
redundancy that may present opportu-
nities for treatments. These findings
have led to harnessing the sputum
microbiome composition as predictive
over disease progression.

Among the members of the microbiota,
agonistic and antagonistic interactions
have been disclosed, allowing the hy-
pothesis of interventions based on the
restoration of healthy ecological relation-
ships inside the CF microbiome.
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The CF Microbiota: Where Are We Now?
CF (OMIM 219700) is the most common life-shortening Mendelian disease in the white populations
of Europe and North America, with an incidence of approximately one in 2500–6000 live births and a
prevalence of more than 70 000 people living with CF worldwide [1,2]. Disease is caused by muta-
tions in the CF transmembrane conductance regulator (cftr) gene, which encodes an anion channel
(CFTR) found in both secretory and absorbing epithelia. This defect results in abnormal sodium,
chloride, and bicarbonate transport across these epithelia, altering the composition of secretions
in the lung, gastrointestinal tract, pancreas, biliary ducts, and other secretory glands. In the airways,
absent or dysfunctional CFTR results in thick and tenacious mucus that compromises mucociliary
clearance. This condition predisposes individuals to chronic bacterial infections and airway inflam-
mation. During chronic infection, bacterial pathogens adapt to the microenvironment of CF airways
[3,4], such as a thickened mucus layer and steep hypoxic gradients [5,6], possibly also modulating
virulencemechanisms and resulting in damage to the airways and consequent chronic lung disease.

Bacterial lung infections are associated with reduced quality and length of life in CF (median
predicted survival age of 43.6 years between 2013 and 2017, according to the Annual Data
Report 2017 of US Patient Registry Data [7]). These infections are key drivers of a pathophysio-
logical cascade that leads to progressive and irreversible airway damage [8]. Affected individuals
consistently maintain high bacterial loads in their airways both during periods of clinical
stability and episodic increases in symptoms known as pulmonary exacerbations (PEx),
(see Glossary). Standard clinical microbiology of CF, both during stability and PEx, usually iden-
tifies a relatively low number of bacterial species that are often thought to be important for driving
PEx (Table 1), occasionally also including nontuberculous mycobacteria (NTM) and fungi, such as
Candida spp., Aspergillus spp., and Scedosporium spp. [9,10].
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Table 1. Traditional CF Pathogens (Left) and Taxa Commonly Detected by Molecular Methods (Right) in CF
Respiratory Secretions

Traditional CF pathogens CF respiratory secretion-associated genera

Pseudomonas aeruginosac

Staphylococcus aureusb

Stenotrophomonas maltophiliac

Burkholderia cepacia complexc

Haemophilus influenzaeb

Nontuberculous mycobacteriac

Achromobacter xylosoxidansc

Neisseriac

Rothiac

Atopobiuma

Capnocytophagaa

Leptotrichiaa

Porphyromonasa

Prevotellaa

Veillonellaa

Actinobacillusa,b

Actinomycesa,b

Abiotrophiab

Gemellab

Granulicatellab

Lactobacillusb

Streptococcusb

Detected with classical culture Detected with molecular methods

Typically identified down to the species level Typically, only identified to the genus level

Often remain stable; decrease in relative abundance prior to
exacerbation

May increase in relative abundance with
exacerbation

High relative abundance associated with more advanced
disease

High relative abundance associated with healthier
lung function

Many associated with faster lung function decline

aContains/is an anaerobic species.
bContains/is a facultative anaerobic species.
cContains/is an aerobic species.
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Subsequent studies utilizing culture-independent analysis demonstrated that a complex mix of
bacteria, fungi, and viruses form the airway microbiota (i.e., the communities of microorganisms
that inhabit a given environment) of chronically infected individuals with CF [11]. Pioneering
studies by Rogers and colleagues [12,13] identified bacterial species not previously associated
with CF airways in many CF sputum samples, expanding the list of potential CF pathogens and
chronic airway colonizers, and establishing the polymicrobial nature of most CF respiratory infec-
tions (Table 1). Research during the past decade using next-generation sequencing confirmed
and broadened this list of CF respiratory microbiota [14] and added to the list of potential ‘atypical
CF pathogens’ both obligate and facultative anaerobes, such as Gemella, Rothia, and members
of the Streptococcus anginosus group [15,16]. Recent metagenomic andmetatranscriptomic
studies on sputum samples suggested a role for these taxa in the CF airway microbiome (i.e., all
microorganisms colonizing a defined environment as well as their genomic content and the
surrounding environmental conditions) [17].

Finally, next-generation sequencing has also identified diverse fungi (including novel taxa from
Candida spp. and Aspergillus spp.) [18] in the airways of people with CF, although their involve-
ment in respiratory disease remains controversial and largely understudied [10,19,20].
Metagenomic studies have also revealed an impact of respiratory viral infections in CF airway
damage [21–23], as well as the presence of bacterial viruses (phages) in CF airways [24,25].
Phages may play roles in infection dynamics, perhaps by limiting specific bacterial populations
and facilitating the adaptation of bacteria to CF airway conditions and/or the spread of antimicro-
bial resistance (e.g., through transduction) [26], as well as providing a potential therapeutic ave-
nue. However, due to the lack of universal gene markers for viruses (as opposed to bacterial
16S ribosomal RNA gene), the overwhelming majority of investigations of CF microbiota have
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Glossary
CFTR modulator therapy: recently-
developed drugs targeting the causative
defect in the CFTR protein, enhancing
function of the ion channel. Such drugs
are partially specific to CF mutation.
Cross-sectional studies: refers to a
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focused on bacteria [22]. Consequently, we will mainly review studies on the bacterial fraction of
the CF airway microbiome, beginning with an overview of the CF microbiota and the factors that
potentially affect its community structure, composition, and diversity, then moving on to the im-
portant role of the functional interaction patterns in development of precision medicine tailored
to the microbiome of individual people with CF.

Factors Influencing the Evaluation of CF Microbiota

Study Design

snapshot of a particular group of people
who differ on one key characteristic at

one specific point in time. They are used
to describe what is happening at the
present moment.
Culturomics: refers to the collection
and analysis of microbial composition by
the application of high-throughput
culture conditions.
α-Diversity: taxonomic diversity within
a given habitat or environment.
Commonly described using richness
(the number of taxa), Shannon, or
Simpson diversity indices in microbiota
studies. An additional diversity measure
is evenness, which quantifies how
numerically equal the taxonomic
Both longitudinal and cross-sectional study designs have been applied to investigate CF re-
spiratory microbiota. Each of these approaches offers distinct advantages and disadvantages,
providing complementary insights into CF respiratory microbiology (Figure 1). In longitudinal stud-
ies, individuals act as their own controls, allowing for a more fine-tuned analysis of how individual
taxa correlate with different clinical and patient factors. Longitudinal studies have demonstrated,
for instance, interpatient heterogeneity in CF respiratory microbiota to be higher than intrapatient
heterogeneity; these studies have also identified great variation in the rate of microbiota change
within patients [27,28]. The complexity of performing longitudinal studies, however, often limits
sample size and, therefore, generalizability [29].

Conversely, cross-sectional studies tend to be larger, helping to mitigate the confounding effects
of interpatient heterogeneity. Cross-sectional studies have also identified substantial interpatient
composition of the microbiota is.
Holobiont: an assembly of different
species that, together, form an
ecological unit. In the CF airway, this
includes all of themicrobes aswell as the
host.
Longitudinal studies: look at a group
of people over an extended period.
They involve taking multiple measures
over a period of weeks, months, or
even years.
Metabolomics: the global metabolite
profiles in a system (cell, tissue, or
organism) under a given set of
conditions.
Metagenome: the collection of
genomes and genes from the members
of a microbiota.
Metaproteomics: the large-scale
characterization of the entire protein
complement of a defined sample at a
given point in time.
Metatranscriptomics: the analysis of
the suite of expressed RNAs of the
corresponding meta-cDNAs by high-
throughput sequencing.
Pulmonary exacerbations (PEx):
refers to the acute worsening of
symptoms, entailing an increase in
respiratory symptoms (e.g., increased
cough, sputum production, shortness of
breath) accompanied by an acute
decrease in lung function. These
episodes are usually treated with
antibiotics.
16S rRNA amplicon sequencing:
relies on sequencing of the 16S
ribosomal RNA (rRNA) gene as the

TrendsTrends inin MolecularMolecular MedicineMedicine

Figure 1. Cystic Fibrosis Microbiome Study Designs: Features and Insights from Longitudinal and Cross-
Sectional Studies. The main advantages and limits are reported for each strategy. The left panel refers to longitudina
studies where subjects are sampled over time. Each patient is represented by a different color, sampling points are
reported using arrows. On the right panel, a general scheme of cross-sectional studies shows cohorts of patients colored
using the same colors in different shades. Shades are used to represent differences between patients belonging to the
same cohort. Arrows indicate possible comparisons between patient cohorts.
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genetic marker to study bacterial
phylogeny and taxonomy (who is
there?).
Shotgun metagenomic sequencing:
refers to massive parallel sequencing of
DNA samples. It involves random
fragmentation of DNA, sequencing of
these fragments, followed by
reconstruction and assembly of
overlapping sequences into a
continuous sequence. It provides insight
into community biodiversity (who is
there?) and function (what is microbiota
capable of doing?).
Systems biology: refers to the
systematic study of complex interactions
in biological systems (i.e., between
community microbes, and between the
microbial community and the host) using
integration models.
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variation in microbiota composition, albeit generally at single time points and without providing a
view of intrapatient variation. However, the relatively large sizes of many cross-sectional studies
have facilitated the distinction of common CF respiratory microbes from uncommon ones
(i.e., core and satellite taxa) [30]. These large sample sizes have allowed several investigators to
identify important differences in average microbiota with varying age and disease state [31].

Antimicrobial Treatment and Exacerbation Events
Collectively, both longitudinal and cross-sectional CF respiratory microbiota studies have identi-
fied important correlations with patient characteristics, treatments, and outcomes (Table 2).
While it is difficult to either predict or demonstrate causality (i.e., whether microbiology drives
disease, or whether the diseased airway environment or its treatments drive microbiology), the
relative dynamics of both microbiota and clinical characteristics from observational trials over
time can help to suggest clinically relevant relationships. Many longitudinal studies have identified
remarkable stability among CF respiratory microbiota even during clinical changes [27,32,33].
In some studies, PEx onset was associated with transient changes in abundance of a number
of taxa, such as anaerobes [34] andGemella [35].However, studies have also shown that sputum
microbiota within patients exhibited remarkable resilience, returning to their baseline states after
treatment ceased [27,28,32,33,36,37]. Interestingly, there is little evidence that the density of
canonical CF pathogen Pseudomonas aeruginosa changes appreciably during exacerbation
[38], and the degree to which antibiotics reduce P. aeruginosa levels following treatment
has not been correlated with therapeutic success [39]. Transient microbiological changes
with antibiotic therapy are often most pronounced among aerobic taxa, most notably in
P. aeruginosa [32,33], a common target of antibiotics in CF. However, these changes in sputum
microbiota do not necessarily signify the mechanism of the clinical effects of these antibiotics
Table 2. Effects of Patient Characteristics on Airway Secretion Microbiota

Effector Effect on microbiota

Age Relatively sterile airways in infancy
Gradual rise in total microbial abundance throughout childhood and early adulthood
Transition from dominance by oral anaerobes to ‘traditional’ pathogens (S. aureus,
P. aeruginosa), generally during childhood
Decreased community diversity and dominance of traditional CF pathogens
in adulthood

Pulmonary
exacerbations (PEx)

Stability and resilience: few microbiota changes, often involving shifts to higher
anaerobe abundances, preceding or during exacerbations. Where changes occur,
community often rebounds afterwards to pre-exacerbation state
Persistent communities (climax microbiomes) during periods of clinical stability
Transient communities (attack microbiomes) associated with PEx

Antibiotic exposure Stability and resilience: few changes with antibiotic therapy for PEx. Where changes
occur, community often rebounds afterwards to pretreatment state
Gradual decrease in microbial diversity over individuals’ lifetimes correlates with
cumulative antibiotic exposure load

Host immunity Limited and contradictory data
Decreased inflammation associated with increased α-diversity
Increased inflammation associated with specific anaerobes, traditional pathogens, and
increased absolute bacterial abundance

Genetic background Limited data, more investigation needed
Trends towards higher P. aeruginosa prevalence with F508del CFTR mutation
F508del CFTR mutation associated with loss of airway bacterial diversity and
conserved community composition

Disease state/Lung
function decline

Stability over months and decades, less stability during periods of rapid clinical decline
Decrease in α-diversity, increase in absolute and relative abundance of traditional
pathogens with advancing disease
Decreased diversity early in life associated with faster rate of decline
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[36,40]. Thus, it is important to be conservative when assigning any change in microbial commu-
nity constituency as causally related to therapeutic success or lung function decline.

Host and Therapeutic Factors
While stability and resilience are core features of the CF respiratory microbiome, both cross-
sectional and long-term longitudinal studies have identified a number of host and therapeutic
factors that are associated with differences (cross-sectional) and changes (longitudinal) in micro-
biota, many of which vary over time, not only within individuals, but also in CF populations, as care
evolves (Table 2) [41]. Studies have demonstrated that, on average, CF respiratory communities
are usually dominated by oral anaerobes early in life, after which α-diversity (diversity within
sample; i.e., the number and/or evenness, and types of taxa within a local community) usually de-
creases due to increasing abundances (relative and absolute) of ‘traditional’ CF pathogens
[42–45]. These changes are associated both with decreasing lung function and also increasing
antibiotic exposure [30,46]. Treatment with CFTR modulators, which address the underlying
defect in CF, was recently shown to be followed by an initial decrease in absolute and relative
abundances of P. aeruginosa and with an accompanying increase in relative abundances of
Streptococcus and Prevotella spp. These changes resulted in increased overall α-diversity,
all of which accompanied an increase in lung function [47]. Interestingly, pre-exacerbation
α-diversity and disease severity also appear to predict the degree of community perturbation at
exacerbation [34,35], and decreased microbial diversity early in life has also been associated
with a faster rate of lung function decline [48]. Such findings underscore the importance of
systems-level approaches that more fully reflect the complexity of these microbiota. Additionally,
agonistic and antagonistic interactions among members of the CF airway microbiota can occur,
influencing community composition dynamics, as suggested by various reports and confirmed
on some microbial species under in vitro conditions [49–53]. While host factors, including genetic
background and immune responses, also play important roles in CF pathogenesis, their contribu-
tion in shaping respiratory microbiota is not well studied. CF genotype has not been associated
with microbiota composition [54], although small sample sizes and diversity of CF genotypes
may have limited this analysis. Similarly, while few studies have investigated relationships between
host immune responses and the respiratory microbiota, inflammation has been found to be
inversely associated with α-diversity in some studies [45].

Methodological Factors
Finally, there are a number of methodological factors to consider when assessing influences on
any microbiota evaluation. For example, different methods for extraction [55,56] and sequencing
of DNA [57] can yield different microbiota profiles, with effect sizes often similar to those of the
biological factors being studied [58]. Respiratory sample type (sputa, swabs, bronchoalveolar
lavage fluid, protected brush sampling, lung explant) can also influence calculated community
structure, not only because they may reflect different airway locations, but also because different
sampling methods tend to be used in the various life and disease stages of patients with CF
(e.g., swabs are used most often in children, sputum tends to be produced at later stages, and
lung explants usually reflect end-stage disease) [43,59]. In addition, some studies have reported
microbial heterogeneity in different sites within the same lung [59,60], highlighting how difficult it
can be to accurately sample the entire ‘respiratory microbiota’ at once. The heterogeneity
found between studies examining microbiota dynamics during exacerbations and antibiotic
treatments may be attributable in part to such variation in sampling approaches [27,54]. All of
these methodological differences make it difficult to compare results across studies.

Therefore, while there are many host and therapeutic factors that influence the CF respiratory
microbiome, methodological variation is equally important. In addition, the observational nature
Trends in Molecular Medicine, Month 2019, Vol. xx, No. xx 5
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of many studies, and the correlation between antibiotic burden, disease severity, and age in CF,
make it difficult to definitively establish the causal relationships between clinical and microbiolog-
ical characteristics. These concerns underscore the importance of using consistent approaches
for sampling, processing, sequencing, and data analysis to allow for more rigorous evaluation of
factors contributing to CF respiratory microbiota assembly and dynamics and to allow for inves-
tigation of causality. Harmonized approaches to addressing contamination, sample processing,
and sequencing methodology will also help facilitate comparison across studies. Furthermore,
the ecology of CF respiratory microbiology is changing as therapies evolve, which complicates
the comparison of recent and past results even while providing an opportunity to better under-
stand the microbial determinants of this disease [61], highlighting the importance of repeating
these studies as treatments progress.

Many Singers, but Which Song(s)?
Most of the studies assessing CF respiratory microbiota utilize 16S rRNA amplicon sequencing
[33,34,37,62–65], limiting their ability to infer strain-level and genetically-conferred functional com-
munity characteristics [66,67]. Indeed, as different bacterial lineages may harbor largely different
gene sets (and hence different functional capacities) [68], strain-level profiling may provide a
more complete picture of microbiota dynamics in CF. Relevant bacterial species in CF, such as
P. aeruginosa [69] and Staphylococcus aureus [70,71], possess large, flexible gene pools, includ-
ing genes encoding antibiotic resistance, pathogenicity, environmental response, and metabolic
flexibility, which may explain the adaptive nature of chronic infections [72]. Although the
metagenome contributes greatly to interactions with the host [25,73], very few studies on CF
metagenomes have been performed, involving a limited number of both patients [29,63,74,75]
and specific metabolic functions [76]. By analyzing the abundance of specific genes, such studies
found a homogeneous distribution of predicted bacterial community activities (e.g., specific
metabolic pathways) across patients with similar pulmonary function, as indicated by forced
expiratory volume in 1 second (FEV1) [73], suggesting a relationship between microbiome function
and clinical status. This finding is in line with other metagenomic studies in humans and other sys-
tems, suggesting that changing the taxonomic composition does not drastically alter the functional
capacity of the microbiome (see [77] for a comprehensive list of studies). This interpretation is also
in line with the finding that the functional capacities of human microbiomes tend to be more
conserved than their taxonomic composition [77]. This concept has earned a catchphrase: ‘the
song not the singer’, meaning that functional interaction patterns, rather than the taxa responsible
for them, are the relevant factors in establishing a microbiome [77]. From this point of view, the
airway microbiome in CF can be considered, as a whole, only partially dependent on the taxonomy
of its members when performing its ‘ecosystem services’, as described for other microbiomes
[77–79].

Predicting CF Patient Respiratory Microbiome Interactions
The studies that have investigated which factors influence, and are influenced by, CF respiratory
microbiota have mainly been observational, as detailed earlier. To move beyond mere associa-
tions, and to investigate mechanisms by which the microbiota intersect with disease, requires a
different approach. One promising framework for mechanistic studies is provided by systems
biology, which involves the integration and interpretation of multiomics data, using concepts
and methods from a wide array of disciplines, including microbiology, cell biology, biochemistry,
chemistry, physics, mathematics, bioinformatics, and biostatistics [80,81].

Systems (Micro)Biology in CF
The goal of systems biology studies is to develop and validate models that accurately reflect, and
predict, the behaviors of complex biological systems (i.e., a cell, an organism, or a community),
6 Trends in Molecular Medicine, Month 2019, Vol. xx, No. xx
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which may then be used to predict microbiome behavior in similar systems. For host–microbe
interactions, this goal – the precise interpretation and prediction of phenotypic (e.g., health status
or the composition of the microbiome) outcomes from currently available measures – is one of the
greatest challenges in human microbiome analysis [82–85]. Nevertheless, systems biology
approaches offer a promising direction in understanding the dynamics and pathophysiology of
airway microbiomes in CF [25].

Understanding how microorganisms interact with their hosts is not a trivial task. Indeed, host-
associated microbes, as in the CF lung airways, run the gamut from innocuous environmental
TrendsTrends inin MolecularMolecular MedicineMedicine

Figure 2. Towards a Prediction of the Cystic Fibrosis Lung Microbiome Dynamics. The host, and all of its microbial symbionts can be collectively defined as a
single biological entity called ‘the holobiont’. Upper panel: Microbes can coevolve with the host and positively affect its phenotype (blue) by forming complex community
structures that prevent microbial dysbiosis. The airways of cystic fibrosis (CF) patients are also colonized by organisms that may still coevolve with the patient but negatively
affect its phenotype (red), reducing the network of overall interactions. The presence of species that may not contribute directly to host fitness (gray) or that may be
inconsistently acquired from the environment (white) further complicate this scenario. Such microbes are often sampled during metagenomic studies but do not
provide information about the clinical condition of the host, as they do not directly alter its phenotype. Developing an accurate predictive model based on microbial
assemblages implies the correct identification of both the ‘blue’ and the ‘red’ components of the microbiome. Lower panel: Reconstructing the network of interaction
between microbes and the host is an essential step for discerning relevant and nonrelevant species in the context of CF disease; center: a healthy subject, left: a
possible scenario of how the lung microbiome reacts to a worsening of CF disease, and right: after network reconstruction we can train predictive models in recursive
ways (i.e., from microbiome data to the model and then back to the microbiome). Large-scale longitudinal studies or well-defined animal models will be needed for
optimizing models useful for rapid diagnosis or to fine-tune clinical cares.
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Clinician’s Corner
Despite decades of research using
traditional, culture-based microbiologi-
cal approaches, the microbial determi-
nants of cystic fibrosis (CF) lung
disease and response to treatment
remain unclear. Culture-independent
techniques, including next-generation
sequencing and PCR-based methods,
provide new opportunities to study
these vital topics. Culture-independent
studies reveal that CF respiratory secre-
tions during early life harbor diverse
bacterial communities that are variably
composed of oral and upper airway mi-
crobes. This diversity has been ob-
served to decrease with increasing
age, cumulative antibiotic exposure,
and worsening disease state, and as
classical CF pathogens that are rou-
tinely identified with culture-based diag-
nostics become dominant. Because of
their association with advancing dis-
ease, these microbiota changes are be-
lieved to be clinically unfavorable.

The same anaerobic bacterial species
that are prevalent and abundant in CF
respiratory secretions in early child-
hood are also observed in healthy
lung secretions. While this observation
could be interpreted to signify that
anaerobes are beneficial, perhaps
diminishing lung disease severity and
maintaining airway microbiota stability,
the relationship between their gradual
replacement with traditional pathogens
and antibiotic exposure could con-
versely indicate that anaerobes are a
marker, not the cause, of clinical stabil-
ity. In support of the latter model, tran-
sient increases in sputum anaerobe
relative abundance preceding PEx
have been observed, with decreases
upon antibiotic treatment. Again, it is
not entirely clear whether the anaerobe
dysbiosis simply precedes, or triggers,
exacerbations. While antibiotics fre-
quently modify respiratory microbiome
profiles, the microbiota observed
postantibiotic treatment usually resem-
ble their pre-exacerbation states,
underscoring the resilience of these
microbiota, and also supporting the
existence of a causal relationship be-
tween airwaymicrobiota, clinical stabil-
ity, and exacerbations.

Antibiotic therapy is a cornerstone of
CF respiratory disease management.
Currently, antibiotics are administered
as part of both maintenance and
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microbes, to microbes affecting their host (positively or negatively), to microbes intimately
coevolved with their hosts [86] (Figure 2). From an ecological perspective, a host and all of its as-
sociated organisms (i.e., microbes affecting and/or coevolving with the host) can be considered
as an integrated unit, a holobiont, all of which is investigated concurrently using a systems biol-
ogy approach [86]. Furthermore, the environment also affects the composition of the holobiont in
most cases, including in CF lungs. The genes within microbial communities can be transmitted
vertically (from mother cells to offspring) or horizontally (between cells belonging to different
genealogies) and are likely acquired from environments proximal to the CF airway. In support of
this idea, the microbiota of the oral and nasal cavities both share taxonomic features with the
lower airway microbiota, both in healthy children and those with CF [87,88]. It is important to
note that environmental microbes external to the host are not interacting members of the
holobiont, although they may act as reservoirs for microorganisms introduced into the system.
In this context, analyzing the relationships between the respiratory microbiome and the host
in CF can be difficult, underlining the need for reliable methods to discern between ‘casual’
interactions and physiologically-relevant host–microbiome interactions (Figure 2).

Applying (Meta-)Omics to the CF Microbiome
Classically, meta-omics data can be useful both as markers of disease processes and to give in-
sight into which biological pathways, processes, or taxa differ between CF and control groups.
[89]. Even if resultant findings cannot be used directly in clinical settings, such association is es-
sential for developingmechanistic models that can be used for biomarker development or applied
directly in clinical settings [90]. Machine learning approaches based on microbiome composition
have been used in many diseases, including colorectal cancer [91,92], Crohn’s disease [93], and
nonalcoholic fatty liver disease [94]. However, the complexity of performing such studies has thus
far limited the utility and generalizability of their predictive outcomes. For example, in one of the
largest studies, He et al. [92] assessed the generalizability of diagnostic models based on gut
microbiota data of 7009 individuals. Their results showed that predictive diagnostic models
are reliable, but only at regional scale, and that geographical variation plays a significant role in
shaping host-associated microbiota. Indeed, the high complexity (elevated number of taxa)
and the strong influence of the environment (e.g., diet) involved in these microbiota strongly
limit the applicability of the resulting models. By comparison, CF, which is characterized by
relatively low taxonomic complexity, could be ideal for testing the reliability of machine learning-
based diagnostic models. Thus, further studies are needed to approach CF disease from a
‘multiomics’ perspective, not only focusing on individual, isolated clinical aspects but integrating
taxonomical, metabolic, and functional features of the airway microbiome with diverse clinical
characteristics [90,95].

Ecological Modeling in CF Microbiome Predictions
Nevertheless, to properly address predictive mathematical models of CF–microbiome interac-
tions, both large studies (cross-sectional and longitudinal) and proper in vitro and in vivo animal
models are needed (Box 1). Indeed, while in vitromodels have been used to investigate pathogen
physiology and identify molecular-level interactions between cells [96–100], animal models allow
for more in depth and nuanced investigation of ecological dynamics of CF microbiota and could
provide relevant opportunities to experimentally validate predictions [101–103]. These could
allow researchers to investigate functional interactions among members of the microbiome
in vivo and in simplified simulated conditions (e.g., lung organoids) as well as the role of specific
taxa in microbiome dynamics in health and in response to perturbation [104]. By taking into
account the spatial heterogeneity and the temporal variability of a given district of the human
body [105], recent modeling of microbial interactions has also increased our knowledge of CF
disease pathogenesis [105,106]. However, as noted earlier, we do not yet understand the
8 Trends in Molecular Medicine, Month 2019, Vol. xx, No. xx



episodic regimens, with the intention of
targeting traditional CF-associated
pathogens (P. aeruginosa, S. aureus,
B. cepacia complex, etc.). However,
these treatments also impact other
members of the microbiota, often in
patient-specific fashions, including an-
aerobic taxa. These ‘off-target effects’
may, in part, explain why a majority of
patients benefit from antibiotic treat-
ment despite failure to eradicate the
classical ‘pathogens’, and why clinical
and traditional microbiological out-
comes do not always correlate. Never-
theless, the complexity of microbiome
data suggests that our current thera-

Box 1. Models of CF Lung Disease

Type of model Expectations

In vitro Glass capillaries, growth substrates (e.g., mucin), biofilm conditions, including various microbial
species and viruses [94–96] are used to define the molecular aspects and physiology of
microbial species.

Cellular models can be used to evaluate the molecular determinants of microbial (and viral)
infectivity [97,98].

Organoids offer the possibility to identify interactions between the microbiome, the host, and the
immune system signaling [107].

In vivo Animal models (e.g., mouse, ferret, pig, sheep) provide opportunities to experimentally manipulate
the microbiome in the host and validate predictions [99–101].

Trends in Molecular Medicine

Trends in Mo
peutic approach is simplistic and rela-
tively uninformed. To develop rational
antimicrobial interventions, we must
understand not only which species
are truly pathogenic or ‘healthy’,
whether generally or only in specific
contexts or patients, but also both the
beneficial and negative effects of anti-
biotics on respiratory microbiomes.
microbial determinants of exacerbations or responses to antibiotic therapies; a microbial ecology-
oriented perspective may allow therapies to shift the community to an alternative, and perhaps
healthier, stable state, following treatment [107,108]. Future studies using patient-specific
organoids may permit the development of personalized medicines and targeted therapies for
opportunistic pulmonary infections [109].

The Microbiome as a Therapeutic Target
As stated previously, lung infection is a major contributor tomorbidity andmortality among people
with CF. For some traditional CF pathogens, timely and aggressive antibiotic treatment can erad-
icate infection in early stages, and continuous suppressive therapy is indicated if eradication is not
successful [110]. In addition, antibiotic treatment is given at the time of PEx, and the individual role
of antibiotics in recovery from exacerbation has been shown [111], highlighting the importance of
infection in PEx pathogenesis. Currently, the standard of CF exacerbation care [112] is to select
antibiotics targeting traditional CF pathogens, including P. aeruginosa, S. aureus, and others. For
P. aeruginosa, antibiotic treatment for eradication can be successful [113], although treatment
failures are common and are associated with worse prognosis [114].

From a microbiome perspective, current antimicrobial strategies can be perceived as focusing on
only one side of a coin. Focus on P. aeruginosa or S. aureus may ignore either the pathological or
healthy effects of ‘nontraditional’ CF organisms, whether direct or indirect. Specifically, our current
strategies may either not be effective against undetected pathogens, or they may be adversely
impacting beneficial organisms through off-target effects (see Clinician’s Corner). The first notion –

of treating PEx with additional antibiotics, selected according to patient’s personal microbiome – is
being evaluated in the first microbiome-based, interventional clinical trial: CFMATTERS
(clinicaltrials.gov: NCT02526004; www.cfmatters.eu). This study aims to determine whether
targeting nonclassical (e.g., anaerobic) species with antibiotics will improve CF outcomes.

Perhaps more likely is the second notion: that current strategies targeting classical pathogens
inadvertently kill beneficial members of the CF microbiome, to the detriment of the holobiont
(including the lung microbial ecosystem). It may be possible to tailor therapeutic interventions
considering the entire microbiome, including the microbial taxa present, their abundances, and
the nature of their interactions with each other and with the host. Deciphering the intimate
interactions within the microbiome and the ‘ecosystem service’ it provides to the holobiont
(the ‘song’ referred to previously [77]) could lead to identification of keystone functions and taxa
and allow for the maintenance of a healthy respiratory microbiome [75]. Moreover, in a holobiont
framework, considering the data already collected on the gut–lung axis [115], it may be reason-
able to hypothesize that manipulation of the airway and gut microbiomes through dietary
lecular Medicine, Month 2019, Vol. xx, No. xx 9
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Outstanding Questions
What role do microbes play in driving
CF respiratory exacerbations?

What role do microbes play in driving
CF lung disease progression?

What are the effects of antibiotics and
other therapies on the CF respiratory
microbiome? On other microbiota in
people with CF?

How will CFTR modulators change
these relationships?

How can we develop improved
models, either computational, in vitro,
or animal-based, of CF respiratory dis-
ease pathogenesis using microbiome
and multiomics data?

Will metagenomic sequencing improve
our understanding of CF respiratory dis-
ease pathogenesis, particularly with
high-resolution, longitudinal studies?

Will microbiome-driven therapeutic in-
terventions, including probiotics, im-
prove future healthcare management
of people with CF?
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intervention, probiotic cocktails, CFTR modulators, or others therapeutic interventions
(like vitamin D supplementation, sodium chloride supplementation, or antioxidant vitamin
intake), could synergize with antimicrobial treatment and may be used for designing personal-
ized precision approaches for prevention as well as treatment of CF lung disease.

Concluding Remarks
Although a substantial number of CF respiratory microbiome studies have described changes
related to PEx and to the use of antibiotics [32,33,37,40,64], the lack of robust predictive models
has limited discovery of novel, ecology-minded interventions that could be more beneficial to
patients. We are therefore not ready to rationally modify antibiotic regimens in a way that we
can be certain will promote healthier individual microbiomes (see Clinician’s Corner). Yet we
can foresee microbiome-directed treatment as part of a new CF precision medicine era that will
tailor therapies to individual patient characteristics, including high-resolution microbiological
data, similar to tailoringCFTRmodulator therapy according to CFTR genotype/theratype [116].

Optimizing study design and focus is integral in this effort and there are a number of consider-
ations that, we believe, will facilitate development of such personalized treatments. The field
of microbiome research has begun deemphasizing 16S rRNA amplicon sequencing to focus
on shotgun metagenomic sequencing, as well as other multiomic approaches (like
metatranscriptomics, metabolomics, and metaproteomics), that afford more complete and
nuanced pictures of microbial communities [117]. These newer descriptions may allow for
selection of antibiotic therapies based on the composition and relative abundance of antibiotic
resistance genes within the respiratory microbiome. As mentioned previously, CF respiratory mi-
crobiota vary considerably between individuals, so designing longitudinal studies with frequent
sampling together with complementary cross-sectional studies with larger sample sizes to fully
account for this interpatient variability will be necessary to formulate such generalizable models
of disease progression and response to therapy. Finally, the field of CF clinical care is rapidly
evolving, and new drugs (e.g., CFTRmodulators) are predicted to improve lung function and clin-
ical outcomes. Proactive study designs that collect samples before and after starting such novel
therapies provide a unique opportunity to examine causality and should be leveraged if possible.
Finally, more complete knowledge of the CF microbiome will permit identification and possibly
culture (by culturomics approach) of still unknown bacteria [118], widening the diagnostic
capabilities of CF clinical microbiology.

A substantial number of CF respiratory microbiome studies have described changes related to
PEx and to the use of antibiotics. However, we still lack strong functional and cause–effect
data to build predictive models to foresee ecology-minded interventions that could be beneficial
to patients. The more relevant questions to address this main goal are listed (see Outstanding
Questions).
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