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Passive acoustic monitoring (PAM) is increasingly being adopted as a non-invasive
method for the assessment of ocean ecological dynamics. PAM is an important
sampling approach for acquiring critical information about marine mammals, especially
in areas where data are lacking and where evaluations of threats for vulnerable
populations are required. The Indo-Pacific humpback dolphin (IPHD, Sousa chinensis)
is a coastal species which inhabits tropical and warm-temperate waters from the
eastern Indian Ocean throughout Southeast Asia to central China. A new population
of this species was recently discovered in waters southwest of Hainan Island, China.
An array of passive acoustic platforms was deployed at depths of 10–20 m (the
preferred habitat of humpback dolphins), across sites covering more than 100 km
of coastline. In this study, we explored whether the acoustic data recorded by the
array could be used to classify IPHD echolocation clicks, with the aim of investigating
the spatiotemporal patterns of distribution and acoustic behavior of this species.
A number of supervised machine learning algorithms were trained to automatically
classify echolocation clicks from the different types of short-broadband pulses recorded.
The best performance was reported by a cubic support vector machine (Cubic SVM),
which was applied to 19,215 5-min recordings (∼4.2 TB), collected over a period
of 75 days at six locations. Subsequently, using spectrogram visualization and audio
listening, human operators confirmed the presence of clicks within the selected files.
Additionally, other dolphin vocalizations (including whistles, buzzes, and burst pulses)
and different sound sources (soniferous fishes, snapping shrimps, human activities) were
also reported. The detection range of IPHD clicks was estimated using a transmission
loss (TL) model and the performance of the trained classifier was compared with data
synchronously collected by an acoustic data logger (A-tag). This study demonstrates
that the distribution and habitat use of a coastal and resident dolphin species can
be monitored over a large spatiotemporal scale, using an array of passive acoustic
platforms and a data analysis protocol that includes both machine learning techniques
and spectrogram inspection.

Keywords: passive acoustic monitoring, Indo-Pacific humpback dolphin, spatiotemporal patterns, distribution,
acoustic behavior, coastal waters
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INTRODUCTION

Cetaceans evolved from terrestrial ancestors, and their
morphology and physiology have adapted to enable them
to live as air-breathers in the vast ocean (Perrin et al., 2009).
In conjunction with this, their methods of interacting with
conspecifics and the surrounding environment have also
evolved; and sound is their primary resource for communication
(Au, 1993; Tyack and Clark, 2000). Species from the Delphinidae
family have exceptional acoustic capabilities and rely on sounds
for many vital life functions (e.g., navigation, foraging, feeding,
intraspecies communication, coordination, and predator
detection). However, determining the distribution of dolphins
and their habitat use presents a significant challenge (Tyack,
2008). In comparison to visual and photo-identification surveys
which only provide information on surface activities over
limited time periods, passive acoustic monitoring (PAM) can
be applied continuously over extended periods of time, even
in rough weather conditions (Mellinger et al., 2007). PAM is
a non-invasive and reliable method for surveying mobile and
phonating marine organisms, which can provide information
regarding species distribution and activity at high spatiotemporal
resolutions (Wang et al., 2016; Hildebrand et al., 2019; Monczak
et al., 2019). It is especially useful for marine mammals that are
otherwise difficult to visually monitor in the natural environment
(Cato and McCauley, 2001).

The use of multiple synchronized acoustic recorders can
improve our understanding of cetacean movements and
vocalizations across large sampling areas and can be useful for
studying changes in acoustic behavior over a range of spatial and
temporal scales. Large networks of acoustic and seismic sensors
have been used to study the calling behavior of baleen whales
(Tervo et al., 2012; Guazzo et al., 2017; Fournet et al., 2018;
Leroy et al., 2018) using low-frequency data from seafloor seismic
surveys (Wilcock, 2012; Caruso et al., 2016). Arrays of recorders
have also been utilized to investigate the occurrence and
distribution of cetacean species with smaller home ranges, such
as resident coastal dolphins (Munger et al., 2016; Temple et al.,
2016; Giorli and Au, 2017; Lammers et al., 2017). In recent years,
the identification of dolphin vocalizations using large acoustic
datasets has improved our ability to study these animals in the
wild (Zimmer, 2011). Moreover, the correlation between dolphin
acoustic behavior and ambient noise (natural, anthropogenic,
and other biological sources) can provide additional insights
into their ecology and habitats (Lammers et al., 2017; Marley
et al., 2017). In particular, the monitoring of coastal dolphins is
essential to identify critical areas of habitat use and mitigate the
impacts of anthropogenic activities (Ingram and Rogan, 2002).

Our improved ability to acquire acoustic data continuously
from multiple recording stations over extended periods of
time has increased the use of automatic signal identification
techniques (Zimmer, 2011) and machine learning approaches
(Bianco et al., 2019) for detecting marine mammal vocalizations
(Shiu et al., 2020). Several detection and classification algorithms
have been developed to identify cetacean sounds, particularly
the echolocation clicks of toothed whales (Soldevilla et al., 2008;
Roch et al., 2011, 2015; Giorli et al., 2016; Caruso et al., 2017;

Giorli and Goetz, 2019; Hildebrand et al., 2019). Compared to
manual analysis methods (spectrogram analysis), such algorithms
have the advantage of being able to quickly and reliably
analyze large amounts of data and produce standardized
measures of sound characteristics that can be used for statistical
analysis (Giorli et al., 2016; Caruso et al., 2017). Among
automatic detection systems for small cetaceans (porpoises and
dolphins), one approach is the use of data loggers that identify
echolocation clicks and provide rapid information regarding
animal distribution and biosonar activity (Akamatsu et al., 2005,
2011; Bailey et al., 2010). These instruments save information
from detection events and a number of other signal parameters
without keeping audio data (Dong et al., 2017; Zein et al., 2019).
This allows the user to collect data over extended periods of
time without the need to recharge the device’s batteries and
without requiring large amounts of memory. This method is
limited, however, in that it is unable to provide a full acoustic
description of the behavior and surrounding habitat of the species
recorded (e.g., vocal repertoire, other sound sources, effect of
noise, soundscape trends).

The Indo-Pacific humpback dolphin (IPHD, Sousa chinensis)
is a species of coastal Delphinidae which inhabits tropical and
warm-temperate waters from eastern India throughout Southeast
Asia to central China (Jefferson and Rosenbaum, 2014). At least
seven or eight populations are found in Chinese waters (Jefferson
and Hung, 2004; Jefferson et al., 2017). The IPHD is classified
as “Vulnerable” on the International Union for Conservation of
Nature and Natural Resources (IUCN) Red List (Jefferson et al.,
2017), is listed as a Grade I National Key Protected Animal by
China’s Wild Animal Protection Law (issued in 1988) and its
protection is of global interest. However, the distribution and
abundance of the IPHD is yet to be comprehensively evaluated
(Chen et al., 2009; Jefferson et al., 2017). Generally, it is known
that the IPHD prefers enclosed inshore habitats (e.g., estuarine
areas, bays, rocky reefs, coastal lagoons, and mangrove swamps),
which are shallower than 20–30 m and within a few km from
the coast (Ross et al., 1994; Jefferson and Hung, 2004; Parra
and Ross, 2009). Furthermore, humpback dolphins are extremely
vocal and their acoustic behavior plays a fundamental role in
both their recognition of the environment and in mediating social
interactions (Van Parijs and Corkeron, 2001; Li et al., 2013).

According to local ecological knowledge and line transect
boat-based surveys conducted since 2013, a new IPHD
population was recorded in the waters southwest of Hainan
Island (northern South China Sea, China) for the first time
in 2014 (Li et al., 2016). This finding extended the known
distribution of the IPHD more than 300 km southward in
Chinese waters (Li et al., 2016). Subsequently, extensive boat-
based surveys, conducted over 4 years in the waters southwest
of Hainan Island have reported over 30 sightings of IPHDs. This
suggests that this population of IPHDs occupy a larger home
range than other populations previously described in Chinese
waters and in other regions of the world (Karczmarski and
Cockcroft, 1998; Keith et al., 2002; Cagnazzi et al., 2011; Xu
et al., 2015; Jefferson et al., 2017; Wu et al., 2017). However,
little is known regarding this new population of IPHD (Li
et al., 2016). Research is required to determine its spatiotemporal
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distribution and behavior, in order to identify its core habitat,
develop conservation management plans which may include the
designation of marine protected areas (MPAs).

Several passive acoustic projects have been carried out on the
world’s largest population of IPHD in the Pearl River Estuary
(China), which has the highest economic development and most
severe impact from human coastal activities in China (He et al.,
2014). These studies revealed important information regarding
the species’ biosonar activity, temporal occurrence, relationship
with fish choruses (prey availability), and the potential impact
of anthropogenic noise (Wang et al., 2014, 2015, 2019; Pine
et al., 2017a,b). Long-term PAM of the IPHD has also been
conducted at multiple sampling sites north of Lantau Island
(Hong Kong), as a part of the environmental impact assessments
for several development coastal projects (Munger et al., 2016).
However, PAM has never been proposed to investigate a recently
discovered population. Designing a sampling protocol to collect
accurate information from large areas of shallow water is
challenging. However, passive acoustics, in the form of an array
of sensors installed along the coastline, can be used to collect
data from zones which are currently data-deficient for marine
mammals, and subsequently less studied IPHD populations.
Moreover, as specific acoustic behavior is identified across
multiple PAM sites, ecological data from cetacean hotspots
are acquired simultaneously. Thus, through the analysis of
other sound sources recorded concurrently, the detection of
dolphin vocalizations may provide additional information on
their fine-scale activity (e.g., habitat use) within their supposed
area of residence.

In this study, we demonstrate the use of PAM for investigating
the IPHD population reported in the shallow waters of Hainan
Island. A sampling plan and data analysis protocol were
developed and tested. We aimed to apply this novel method to
studying the habitat of a vulnerable dolphin species, to assess the
potential impacts associated with coastal construction activities
and to the development of a Habitat Conservation Plan.

METHODS

Study Area and Passive Acoustic
Platforms
The study was carried out in the southwestern waters of
Hainan Island, in the coastal area spanning from Sanya to
Dongfang (Figure 1). Selection was based on preliminary results
from previous periodical boat-based visual surveys and local
ecological knowledge (Lin et al., 2019). During visual surveys,
only IPHD and Indo-Pacific finless porpoise (IPFP, Neophocaena
phocaenoides) were observed in the study area. An array of seven
PAM platforms (named from P#0 to P#6) were installed on the
ocean floor in very shallow waters (10–20 m in depth, Figure 1A).
Each platform consisted of a frame supporting a concrete weight
and stainless-steel tubes that protected the hydrophone inside
the structure (Figure 1B). PAM platform locations were selected
based on information from previous visual surveys and the
available literature regarding movements and migration patterns
of global humpback dolphin populations, which reported ranges

of approximately 100–150 km (Karczmarski and Cockcroft, 1998;
Keith et al., 2002; Cagnazzi et al., 2011; Jefferson et al., 2017). In
our study area, groups of dolphins were usually sighted traveling
at less than 20 km/h. Therefore, a distance of approximately 15–
20 km between each platform was chosen. The PAM sampling
sites were not progressively named numerically from south to
north because platform #0 was previously operated by another
PAM study (Dong et al., 2017). The PAM platform deployments
were carried out during a 5-day cruise between 25 February
and 1 March 2018. The area around each monitoring site was
characterized by a sandy–muddy seabed.

An acoustic stationary digital recorder (SoundTrap HF, Ocean
Instruments Ltd., New Zealand) was mounted on a stainless-
steel bar at the center of the PAM frame, at approximately 1.5 m
above the seafloor (Figure 1B). The SoundTrap recorder had
a linear frequency range of 20 Hz–150 kHz ± 3 dB, a self-
noise of less than sea-state 0 in the bandwidth 100 Hz–2 kHz
and a sensitivity of -203 dB re V/µPa (high gain setting with a
maximum sound pressure level of 172 dB re 1 µPa peak to peak
before clipping). A recording duty cycle of 5 min every 30 min
(16.6%) was established, with a sampling frequency of 288 kHz
with 16-bit quantization. The acoustic recording spanned over
75 days, between 25 February and 10 May 2018, and consisted of
19,215 5-min recordings (∼4.2 TB, Figure 1C). Platform #0 was
also equipped with an A-tag acoustic data logger (Marine Micro
Technology, Japan) for the first 31 days of the study, between 26
February and 29 March 2018. One platform (P#2) was lost, most
likely as a result of being removed or displaced by fishing trawling
activities, and could not be recovered.

Data Analysis Protocol
Data analysis was based on the complementary use of machine
learning techniques, in the form of signal processing and
classification algorithms, and the manual analysis method based
on spectrogram inspection.

Humpback dolphins are known to produce three main types
of vocalization (Sims et al., 2012): short-broadband ultrasonic
(echolocation) clicks, tonal frequency-modulated whistles, and
rapid click-series of pulsed sounds (buzzes and burst pulses).
Echolocation clicks are believed to be used primarily to acquire
sensory information on the surrounding environment (i.e.,
to navigate and locate prey or other objects like reefs) (Au,
1993). While, whistles may be commonly used for intra-species
social communication and individual recognition (Sayigh et al.,
1999; Wang et al., 2013). The functional significance of pulsed
sounds (buzzes and burst pulses) is poorly understood in most
dolphin species (Lammers et al., 2003), including the IPHD.
However, buzzes are generally produced in the terminal phase
of the biosonar-based foraging process, while burst pulses are
typically isolated from echolocation clicks and are often produced
during social interactions and long-range detection (Blomqvist
and Amundin, 2004; Lammers et al., 2006; Finneran, 2013;
Arranz et al., 2016).

Indo-Pacific humpback dolphin seem to emit echolocation
clicks more frequently than other types of vocalizations, and
when other vocalizations are produced, clicks are usually
recorded alongside them (Munger et al., 2016). Echolocation
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FIGURE 1 | PAM sites and platforms. (A) Map of the locations of the PAM sites. (B) Image of a PAM platform. The acoustic recorder (SoundTrap) was deployed at
the center of the frame with a latch system. (C) Table reporting data acquisition information (monitoring period, number of files, storage). The frame P#2 was lost
during the study.

clicks were previously considered as the most reliable sound
with which to detect the presence of IPHD using PAM (Munger
et al., 2016). In general, the automatic detection of tonal signals
from dolphins is more complex (Zimmer, 2011). Therefore,
the presence of IPHD in our data was assessed by detecting
and classifying echolocation clicks using custom algorithms,
and subsequently, using manual analysis carried out by human
operators (spectrogram analysis and audio listening).

Supervised Machine Learning Algorithm
Within machine learning, supervised learning is based on the
process of learning patterns in the data, based on information
previously labeled by human (Bianco et al., 2019). Labeled data

constitute training data that are used to create a predictive
classification tool. Thus, the users provide a known set of
input data (observations) and a known response to the data
(classes), and the algorithm iteratively makes predictions from
the input to the desired output (Bianco et al., 2019). Machine
learning models were trained to classify echolocation clicks
recorded by the passive acoustic platforms to study the acoustic
presence of IPHD.

Data-labeling
Acoustic recordings were collected using a SoundTrap during
boat-based surveys. In the event of an IPHD or IPFP
sighting, the SoundTrap was lowered into the water to record
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echolocation clicks. The same procedure was applied during
different recording sessions of known conditions such as
passing vessels or adverse weather conditions (e.g., heavy rain,
high sea state). The SoundTrap used the same recording
specifications as described in Section “Study Area and Passive
Acoustic Platforms.” An experienced researcher analyzed the
waveform and spectrogram of the acquired signals using the
software Raven Lite (Bioacoustics Research Program, Cornell
Lab of Ornithology) and MATLAB (MathWorks, Natick, MA,
United States). Short-broadband pulses were identified from
acoustic sources of different nature (geophony, biophony, and
antropophony). The pulses (observations) were labeled and
five classes of short-broadband pulses were defined considering
previous knowledge as follows:

• IPFP: Clicks from Indo-Pacific finless porpoise.
• IPHD: Clicks from Indo-Pacific humpback dolphin.
• SNAP: Pulses from snapping shrimps.
• RAIN: Pulses produced by rain.
• SHIP: Ship pulses.

Measuring signal features
Once the data had been labeled, a custom routine (Caruso
et al., 2017), developed in MATLAB, was used to extract each
pulse recorded during the boat-based surveys and to measure
its time-frequency characteristics. The routine first applied a
3 kHz high-pass filter (Butterworth, fourth-order, zero-phase
digital filtering). An energy detector based on the Teager-Kaiser
Operator was then used to detect the short-broadband pulses
(Kaiser, 1990; Klinck and Mellinger, 2011) that exceeded an
“adaptive” threshold (Caruso et al., 2017). Each detected pulse
was then extracted using a time window of 512 samples (1.8 ms)
centered at the peak of the signal. Subsequently, the extracted
pulses were oversampled (by a factor of two) and their acoustic
features were measured. All parameters related to sound intensity
were not considered because they were mainly influenced by
an acoustic source of unknown position. The following acoustic
features were measured:

• Pulse Duration (d) [µs]: the duration of each pulse was
determined from the peak value of the envelope of the
Teager-Kaiser Operator. The onset and termination of the
click signal were defined as the points at which 10% of the
peak value was reached.
• Peak Frequency (fp) [kHz]: the first peak frequency

corresponds to the highest amplitude of the power spectral
density (PSD) of the pulse.
• Centroid frequency (fc) [kHz]: the frequency value that

divides the pulse spectrum in halves of equal energy.
• Bandwidth [kHz]: the bandwidth of the pulse was

parameterized by the -3 dB bandwidth (BW-3dB) and the
bandwidth root-mean square (RMS, BWRMS). The BW-3dB
is the frequency range in which the PSD is above half of
its maximum. The BWRMS is a measure of the spectral
standard deviation around the centroid frequency of the
spectrum (Madsen and Wahlberg, 2007). It can be used as
a proxy for the frequency window over which the animal

integrates both signal energy and noise (Moehl et al., 2003;
Madsen and Wahlberg, 2007).
• QRMS [kHz]: ratio of fc to BWRMS.
• Number of zero crossing (Zc) [#]: the number of times the

pulse crosses zero.
• Inter pulse interval (IPI) [ms]: the time interval between

consecutive pulses detected.

Figure 2 shows the distribution of values of signal features for
the five identified classes.

Creating training data
The input for the machine learning model was composed of
the known set of input data (signal features) and the known
responses to the data (labels of the five classes identified,
Figure 2). Before the training phase, the values of each
parameter within a single class were tested for a standard normal
distribution using a one-sample Kolmogorov–Smirnov test. The
test rejected the null hypothesis at the 5% significance level, so
outliers were removed if the data were not normally distributed.
Consequently, elements of more than 1.5 interquartile ranges
above the upper quartile or below the lower quartile were deleted
from the training data.

In total, 51,238 short-broadband pulses were identified as
training data. As far as possible, a similar number of pulses for
each class was included to balance the input of the machine
learning model. The number of pulses for each class was
distributed as follows:

• IPFP: 24% of the total.
• IPHD: 24% of the total.
• SNAP: 20% of the total.
• RAIN: 10% of the total.
• SHIP: 22% of the total.

Training data exploration
Data were standardized in order to facilitate the comparison of
parameters with different units. The distance of each data point
from the mean in terms of the standard deviation was measured.
Therefore, the standardized data set had a mean of 0 and a
standard deviation of 1, and retained the shape properties of the
original dataset (same skewness and kurtosis).

Figure 3 shows a series of scatter plots for the parameters
measured with the training data, grouped by the defined classes.
These formed the training data necessary for the development of
the supervised learning algorithm.

Trained classifiers
Different types of classifiers (decision trees, discriminant analysis,
support vector machines, and nearest neighbor classifiers) were
trained in MATLAB considering the following criteria:

• Observations: 51,238.
• Predictors (signal features): 8.
• Response classes: 5.
• Validation: fivefold cross-validation.

The validation process assessed the performance of each
model using new data, compared to the training data. In
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FIGURE 2 | Signal features. Histograms showing the acoustic features measured for the five classes of short-broadband pulses. In blue, echolocation clicks emitted
by Indo-Pacific finless porpoise (IPFP). In green, echolocation clicks emitted by Indo-Pacific humpback dolphin (IPHD). In red, pulses emitted by snapping shrimps
(SNAP). In cyan, pulses generated by rain (RAIN). In magenta, pulses produced by ship (SHIP).

FIGURE 3 | Training data exploration. Series of scatter plots of the training dataset after standardization. The data have been grouped according to the five classes
selected (IPFP, IPHD, SNAP, RAIN, SHIP). Each individual set of axes contains a scatter plot of a column of x against another column of x. In the diagonal, graphs of
the contours of the grouped histograms (similar to Figure 2 but with standardized data).

this study, the k-fold cross-validation method was used to
examine the predictive accuracy of the fitted models. This
process evaluates the data across the entire training set, dividing
it randomly into k groups and then training the model k

times, each time leaving a different group out and using it
instead as a validation set. Therefore, the cross-validation is
repeated until each group has been used as the test set and
the average test error is calculated over all groups. The k-fold
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strategy was used to prevent overfitting and for the selection
of the best model.

A classification confusion matrix can be used to visualize the
performance of each classifier (Fawcett, 2006). Given a classifier
(columns, predicted class) and a set of instances (rows, true class),
a two-by-two confusion matrix can be constructed to represent
the dispositions of a set of instances (Fawcett, 2006). Therefore,
there are four possible outcomes:

• True positive (TP): if the instance is positive and is
classified as positive.
• False negative (FN): if the instance is positive and is

classified as negative.
• True negative (TN): if the instance is negative and is

classified as negative.
• False positive (FP): if the instance is negative and is

classified as positive.

The confusion matrix forms the basis for many common
performance metrics [TP rate = TP/P; FP rate = FP/N;
Precision = TP/(TP+FP); Accuracy = (TP+ TN)/TOT], where P
represents the number of real positive cases in the data (all output
positives), N is the number of real negative cases in the data (all
output negatives), and TOT is the total number of instances.

The performance of each trained model (supervised machine
learning algorithm) was checked considering the overall accuracy
of the validation process (the score represented the accuracy of
all observations). The classifier with the best performance was
used to predict the new data acquired by the array of passive
acoustic platforms.

Spectrogram Visualization and Listening
In the first stages of the development of automatic detection or
classification algorithms for a specific and complex underwater
habitat, it is imperative to test and confirm their reliability using
manual spectrogram analysis (Caruso et al., 2017; Hildebrand
et al., 2019). After applying the trained classifier to the data
from the six PAM platforms, each file with pulses classified
as “IPHD” was manually checked using the program Raven
Lite. PAM expert operators analyzed the selected files, and also
reported the presence of other signals of interest which were
recorded concurrently with the IPHD vocalizations. Information
was logged regarding:

• IPHD vocalizations (whistles and click-series
of pulsed sounds).
• Phonating animals (snapping shrimps and

soniferous fishes).
• Human-related activities (ship noise, explosions, others; the

category others included sonar, low frequency pulses, and
all acoustic signals considered as man-made).

All these sounds have stereotypical and identifiable
spectral components.

Detection Range
The classification process provided information on the time and
signal features of the identified IPHD clicks. However, it was

not possible to acquire information regarding the distance of
detections or the correlated spatial abundance of the animals
recorded (DeRuiter et al., 2010). To estimate the probability
of click detection as a function of range in the study area, we
estimated a transmission loss (TL) model for clicks emitted by
IPHDs (Figure 4). Acoustics recordings were collected during
IPHD sightings using a six-arm star type hydrophone array
with 13 elements, and specific criteria were applied to identify
on-axis clicks recorded close to the central hydrophone of
the array (Jensen et al., 2009; Gong et al., 2019). The source
spectral density level (SSD or SL, dB re 1 µPa/

√
Hz @ 1 m)

of the most intensive on-axis click was estimated and a TL
model was applied for all frequency components to study the
variation of PSD (dB re 1 µPa/

√
Hz) during signal propagation.

We considered attenuation due to geometric spreading and
absorption processes related to seawater properties (Francois
and Garrison, 1982a,b). The geometric spreading model was
calculated as spherical spreading in approximation for short and
high-frequency echolocation clicks (Madsen and Wahlberg, 2007;
Villadsgaard et al., 2007; DeRuiter et al., 2010). Propagation
loss was simulated assuming the source (dolphin) at different
ranges from the platforms (R = 100 m; R = 200 m; R = 500 m;
R = 1000 m). The TL model applied the following formulas:

TL = 20log(R)+ αR

RL = SL− TL

The frequency-dependent absorption α coefficient was
associated with temperature, hydrostatic pressure, pH, and
salinity (Ainslie and McColm, 1998). These measurements were
collected using a portable YSI Professional Plus device (Ohio,
United States) and a Hondex PS-7 portable Depth Sounder
(Honda Electronics, Japan). The detection range of the platforms
for IPHD echolocation clicks was estimated in relation to the
average PSDs calculated at each PAM location (from the entire
dataset). The received levels (RLs) considered the sound pressure
received by the recording hydrophone with source at different
distances (Figure 4).

Spatiotemporal Distribution and
Acoustic Behavior
The IPHD spatial distribution was evaluated across the PAM
platforms, based on the number of files with click detections
(confirmed by manual analysis). The number of clicks logged per
file was also considered as an index of dolphin acoustic activity
within the detection range of each platform.

The biosonar activity of the species was also analyzed in
relation to the presence of possible temporal patterns. In
particular, the diel cycle was explored in relation to the acoustic
presence and echolocation activity of IPHDs in the study area and
among each deployment location. The probability of detection
was investigated based on the time of the day, which was divided
into clusters of 4 h (00:00–04:00; 04:00–08:00; 08:00–12:00;
12:00–16:00; 16:00–20:00; 20:00–24:00). Generalized additive
mixed models (GAMMs; Wood, 2017) were also used to evaluate
the variation of dolphin click occurrence (presence/absence) and
number of clicks detected at the daily scale. Binomial-based
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FIGURE 4 | Detection range. The average calculated over all power spectral densities (PSDs, dB re 1 µPa2/Hz) measured for the files acquired by the six platforms
(different colors). The gray curve represents the PSD of an IPHD click as source spectral density (SSD, dB re 1 µPa/

√
Hz @ 1 m). The dotted lines show the received

levels (RL) model of the click, respectively, at 100, 200, 500, and 1000 m. The variation of the signal during propagation is shown in relation to the ambient noise
recorded at the PAM sites.

GAMMs with a logit link function were performed using R
(RStudio Inc., Boston, MA, United States). The hour of the
day was used as a fixed effect and dolphin occurrence was
transformed to a binary scale (1 = present and 0 = absent). The
models were fitted using the R package “mgcv” (R Core Team,
2019; Wood, 2019), and the splines library was used to build
cyclic cubic regression splines (Wood, 2017). Knots were capped
at four smooths following the method described by Dinh et al.
(2018). The number of clicks recorded during the entire day and
night phase was also inspected, based on the mean time of sunrise
and sunset in the study area (25 February–10 May; sunrise: 07:02,
sunset: 18:26; acquired from the Time and Date AS website1).

Spatial occurrence of the other sounds identified during the
manual analysis (IPHD vocalizations, other phonating animals
and anthropogenic sources) were also analyzed to provide
insights regarding habitat use and ambient noise characteristics
across the study area.

A-tag Acoustic Data Logger
The A-tag acoustic data logger is a submersible acoustic data
logger (Marine Micro Technology, Saitama, Japan) which logs
the occurrence of possible click events but does not record an
audio file (Akamatsu et al., 2005; Li et al., 2010). The A-tag
data logger consisted of a waterproof cylindrical aluminum
case, two hydrophones (sensitivity of –201 dB re 1 V/µPa,
frequency response ± 5 dB in the range of 100–160 kHz), a
band-pass filter (-3 dB with a range of 55–235 kHz), an analog-
to-digital converter, a CPU (PIC18F6620; Microchip Technology
Inc., Chandler, AZ, United States) for system control and data

1www.timeanddate.com

processing, a 128 MB flash memory module for data storage, and
two UM-1 batteries (Akamatsu et al., 2005).

Dolphin sonar pulse events were extracted from the A-tag
data logger using custom software written in Igor Pro 5.01
(WaveMetrics Inc., Lake Oswego, OR, United States). Following
previous work in the study area (Dong et al., 2017), the
following discriminating parameters were used to identify
dolphin sonar pulse events: the minimum number of pulses
(five); the maximum duration of Inter Click Intervals in a click
train (200 ms); and the changes in the patterns of the ICIs
between two adjacent pulses (smoothly changing patterns, i.e.,
each ICI greater than half and less than twice the duration of
the previous one). After the click trains were extracted, a manual
examination was also performed to eliminate false detections
such as ship noise and pulses made by snapping shrimps, which
were characterized by randomly changing SPLs and/or ICIs
(Akamatsu et al., 2011; Dong et al., 2017). A confusion matrix
was constructed, based on the acoustic classification process for
the True condition (column), while the A-tag was considered the
Predicted class (rows).

RESULTS

Identification of IPHD Clicks
The entire acoustic dataset (collected over 75 days, from six
platforms, and totaling 19,215 files, ∼4.2 TB) was inspected
to search for IPHD clicks. The number of files acquired did
not differ significantly across the six PAM sites (one-sample
Wilcoxon signed rank test, alpha = 0.01, p > 0.01) and the median
number of recordings collected was equal to 3190.5 files.
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FIGURE 5 | Identification of IPHD clicks. (A) Spectrogram (nfft = 2048; overlap = 50; Hann window) of 5-s file interval with IPHD clicks. (B) The flowchart
(International standard symbols for flowchart, ISO 5807:1985) shows the procedure applied for click classification and data analysis. The method considered the
application of the trained classifier (Automatic Analysis) and an intermediate step to check the results through spectrogram analysis (Manual Analysis). Additional
information about IPHD acoustic behavior and other sound sources were also logged during spectrogram visualization and listening.

Echolocation clicks from IPHDs (Figure 5A) were identified
through the following processing stages (Figure 5B).

1. Pulse detection: short-broadband pulses were detected in
the band 3–144 kHz using the methodology described to
measure the signal features of the training data (section “
Measuring Signal Features”).

2. Trained classifier: the cubic support vector machine (Cubic
SVM) had the best performance, with an accuracy of 89.9%.
The TP rate for the class “IPHD” was 96%. Figure 6 shows
the confusion matrix plot for the selected trained classifier.
A post-classification filter was applied to the data, and files
which were classified as IPHD, with at least 30 pulses with
a duration of less than 100 µs (Fang et al., 2015) were
selected. The list of all the files analyzed, with information
on the presence/absence of IPHDs and number of clicks
per file, was reported in table “Events” (Figure 5B).

3. Manual analysis: expert PAM operators used spectrogram
analysis to check the selected files to confirm the presence
of dolphin clicks. All the files where click presence was
manually confirmed were reported in table “Presence”
(Figure 5B), alongside the number of clicks detected.

4. Signal features: the parameters measured for all short-
broadband pulses were stored in table “Features” for
IPHD clicks and in table “Other Pulses” for the other
classes (Figure 5B).

Acoustic Occurrence and
Spatiotemporal Patterns
According to the TL model of the IPHD clicks and the
average PSDs, the acoustic recorders were capable of detecting
dolphin clicks at a range of at least 500 m approximately,
depending on ambient noise levels (average PSDs) at each PAM
site (Figure 4).

In total, 346 recordings were selected based on the presence
of pulses classified as “IPHD” (Figure 7A). Within these, the
manual analysis reported visible echolocation clicks in 276 files
(79.77%; 1.44% of the entire dataset) (Figure 7B). The algorithm
performed differently across the six PAM locations (χ2 test,
p < 0.001), relative to the spectrogram inspection. The Cubic
SVM performed best in site P#6, with 87.61% confirmed presence
(Figure 7A). The lowest level of confirmed detections was for site
P#1, with 57.89%.
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FIGURE 6 | Confusion matrix. The confusion matrix was used to visualize the performance of the trained classifier (Cubic SVM) among the five classes (IPFP, IPHD,
SNAP, RAIN, SHIP). The rows show the true class and the columns show the predicted class. Each cell shows how the classifier performed per class, and true
positive (TP) rate and false negative (TP) rate are reported. Cross-validation was used, so the confusion matrix was calculated using the predictions on the held-out
observations. The diagonal cells show where the true class and predicted class matched. If these cells are green, the classifier has worked well. On the right, a
summary of TP rate and FN rate for each class.

The number of files recorded which contained IPHD clicks
was highest at site P#6 (99 files) and lowest at site P#1 (22
files); 51, 25, 45, and 34 files with clicks were recorded at
site P#0, P#3, P#4, and P#5, respectively (Figure 7B). The
number of files containing clicks did not differ significantly
between the 2 months which had the same acquisition effort
(April and March) across the six PAM sites (Mann–Whitney
U-test, p > 0.05) (Figure 8). However, the number of click
events selected per file differed significantly between the PAM
sites (Kruskal–Wallis nonparametric test; H [5, N = 6] = 44.9,
p < 0.01). The files with the highest number of clicks detected,
were recorded at sites P#3 (median: 152; 25th percentile: 58.5;
75th percentile: 358) and P#5 (median: 116.5; 25th percentile:
51; 75th percentile: 223). A multiple pairwise comparison of
mean ranks (input from the Kruskal–Wallis test) was performed
to test for differences among all the locations (Figure 7C).
The two sites with the highest mean number of clicks
recorded per file (P#3 and P#5) were significantly different
from all other PAM locations (p < 0.05). In Figure 8, the
spatiotemporal temporal distribution of dolphin presence is
shown in term of number of clicks recorded per day (48 5-
min recordings).

The probability of detection was explored at the daily level,
across all the platforms within the 4-h clusters selected (Figure 9),

and revealed there was no significant difference in the number
of files containing clicks (Kruskal–Wallis nonparametric test;
H [5, N = 6] = 9.8, p > 0.05; Figure 9A). Moreover, no
significant differences were found between the different platforms
across each cluster (all: p > 0.05; Figure 9B). In general, the
highest detection probability was identified within the cluster
from 04:00 to 08:00 (median: 0.22, 25th percentiles: 0.18, 75th
percentile: 0.29). Additionally, GAMMs demonstrated a high
variability between the different platforms for dolphin acoustic
presence and activity, when hour of the day was used as a fixed
effect (Figure 10). The smoothing estimators at site P#4 for
both dolphin presence and number of clicks (p < 0.001), and
at site P#6 for dolphin presence (p < 0.05), were significantly
different. In addition, the number of clicks detected during the
day and night phases (Mann–Whitney U-test, p < 0.05) at site
P#6 were statistically significant, with a higher rate of clicks
recorded during the night. There were no significant differences
in the number of clicks recorded at the other PAM sites (Mann–
Whitney U-test, p > 0.05). Therefore, hour of the day could not
be considered a relevant predictor of dolphin click occurrence
within the study area, during the 75 days of monitoring.

Results from the manual analysis of the files selected for
the presence of IPHD clicks (276 files) also revealed the
spatiotemporal distribution of other IPHD vocalizations and

Frontiers in Marine Science | www.frontiersin.org 10 April 2020 | Volume 7 | Article 267

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00267 April 28, 2020 Time: 15:42 # 11

Caruso et al. PAM of Sousa chinensis at Hainan Island

FIGURE 7 | IPHD occurrence. (A) Table showing the results of the checks of automatic detection and classification of IPHD clicks (AUT) through manual analysis
(MAN). (B) Table with information about the total number of files acquired by each platform and relative percentage of files with confirmed presence of visible IPHD
clicks. (C) Boxplot shows the number of clicks detected per file at the PAM sites (P#1, P#0, P#3, P#4, P#5, P#6). In each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. Whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually using the “+” symbol (in red). On the right, a multiple pairwise comparison of mean ranks was performed to
test significant differences between the PAM sites.

diverse sound sources. The occurrence of whistles and click-series
of pulsed sounds differed across the six PAM locations (both:
χ2 test, p < 0.01). In conjunction with the number of
echolocation clicks detected per file, sites P#3 and P#5 recorded
the highest percentage of files containing whistles (52.00 and
44.12% respectively), and bursts pulses and buzzes (P#3: 76.00%;
P#5: 47.07%). Sounds from snapping shrimps were identified in
all of the files inspected. Calls emitted by fishes (Hawkins, 1986)
were identified at significantly different rates across the PAM sites
(χ2 test, p < 0.01). Platforms P#6, P#5, and P#3 recorded the
highest number of files containing fish calls (80.81%, 76.47%,
and 68.00%, respectively). Furthermore, sounds related to human
activities within the defined groups (ships noise, explosions,
others) were identified in all of the files manually inspected (346
files). Results showed that the distribution of these anthropogenic
noise sources differed around the PAM locations (all: χ2 test,
p < 0.01). The presence of ship noise was higher at sites P#1
and P#0 (100.00 and 76.19% of the files analyzed contained these
noises). Whereas, site P#5 was the quietest location with regard to

the presence of ship noise (20.51% of files contained these noises).
Explosions were identified in three files (one file each in P#1,
P#3, and P#4). The occurrence of other artificial sounds (sonar,
low frequency pulses, etc.) was higher at sites P#3 (27.27%), P#4
(23.23%), and P#1 (15.79%) compared to the other locations.

Comparison With A-Tag Data Logger
The output of the classification process was also compared with
detections logged by an A-tag data logger during the first 31 days
of monitoring at site P#0 (1474 files). Both sets of detections,
from the Cubic SVM and the A-tag, were validated using manual
checks. Within this sub-dataset, 17 files were selected for the
presence of dolphin clicks (Figure 11). Results of the confusion
matrix test (Figure 11A) showed that in five files, both methods
confirmed the presence of dolphin clicks (TP rate = 1). No
FP detections occurred, meaning there were no cases where
the trained classifier detected candidate clicks when the A-tag
detection was triggered (FP rate = 0). In 98.84% of the dataset
(1457 files), neither method identified the presence of dolphin

Frontiers in Marine Science | www.frontiersin.org 11 April 2020 | Volume 7 | Article 267

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00267 April 28, 2020 Time: 15:42 # 12

Caruso et al. PAM of Sousa chinensis at Hainan Island

FIGURE 8 | Spatiotemporal distribution. Bar plots showing the number of clicks detected during the study (25 February–10 May 2018) at the PAM sites (P#1, P#0,
P#3, P#4, P#5, P#6). Each bar represents the number of clicks detected per day (duty cycle: 5 min every 30 min). Number of clicks (y-axis) is shown in logarithmic
scale.
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FIGURE 9 | Diel detection probability. (A) Boxplot showing the detection probability in the 4-h clusters selected for all the PAM sites (P#1, P#0, P#3, P#4, P#5, P#6).
(B) Stacked bar graph showing the detection probability within the different 4-h clusters for each PAM site.

FIGURE 10 | Daily patterns. Plots showing smoothing estimators of GAMMs with hour of the day as fixed effect and knots capped at four smooths. The shaded
areas represent the 95% confidence intervals. For each site (A–F), click presence is shown in blue (left) and number of clicks is shown in red (right). Approximate
significance of smooth terms: (A) P#1 (n = 3185; Presence: R2 = 0.000583, d.e. = 0.0878%, p-value = 0.141; Number of Clicks: R2 = 0.000227, d.e. = 0.0389%,
p-value = 0.251). (B) P#0 (n = 3073; Presence: R2 = 1.3e-10, d.e. = 3.55e-08%, p-value = 0.454; Number of Clicks: R2 = 0.000211, d.e. = 0.0368%,
p-value = 0.263). (C) P#3 (n = 3228; Presence: R2 = -9.71e-12, d.e. = 1.56e-09%, p-value = 0.735; Number of Clicks: R2 = 2.37e-11, d.e. = 4.96e-09%,
p-value = 0.384). (D) P#4 (n = 3189; Presence: R2 = 0.00585, d.e. = 0.641%, p-value < 0.001*; Number of Clicks: R2 = 0.00419, d.e. = 0.474%, p-value < 0.001*).
(E) P#5 (n = 3348; Presence: R2 = 0.000109, d.e. = 0.02%, p-value = 0.303; Number of Clicks: R2 = 1.48e-12, d.e. = 5.54e-10%, p-value = 0.505). (F) P#6
(n = 3192; Presence: R2 = 0.00181, d.e. = 0.227%, p-value = 0.02*; Number of Clicks: R2 = 0.00119, d.e. = 0.16%, p-value = 0.0564). The abbreviation d.e. is the
deviance explained by each variable.

clicks (TN) and in 12 files the A-tag did not trigger with the
presence of clicks (FN). In general, in the files classified as TP, a
higher number of clicks were identified (mean± SD = 717± 830)

compared to the others (mean ± SD = 39 ± 12) (Figure 11B).
Nevertheless, the A-tag was highly reliable in terms of the
detection of IPHD clicks (accuracy = 0.99).
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FIGURE 11 | Comparison with A-tag Data Logger. (A) A confusion matrix shows the comparison between A-tag performance and the Cubic SVM. (B) Scatterplot
showing the number of clicks detected for files classified as true positive (red dots) and false negative (blue dots). For all of these files, the presence of clicks was
confirmed by manual analysis (spectrogram analysis).

DISCUSSION

The distribution and habitat characteristics of the second largest
population of IPHD off the east coast of Zhanjiang city (China)
were recently studied as part of a 7-year boat-based visual
survey effort (Xu et al., 2015). Research has also been carried
out on IPHD in the Northern Beibu Gulf (China), using data
acquired through a 3-year visual survey study (Wu et al.,
2017). Traditional visual surveys of dolphins can cover large
spatial areas, and are fundamental for specific research utilizing
animal sightings (behavioral ecology, genetics, ecotoxicology,
etc.) and for specimen identification (photo identification). The
data acquired during boat-based visual surveys are essential
for investigating group size and composition, and to fully
understand population ecology and inform wildlife management

plans (Xu et al., 2015). However, visual surveys are limited by:
(1) their high cost and the availability of research vessels and
personnel and (2) the difficulties associated with collecting data
at night, in rough weather conditions and from animals when
they are underwater.

Passive acoustic monitoring surveys are increasingly being
adopted as a key sampling approach to acquire novel information
about ocean ecosystems, including their biodiversity (Ricci
et al., 2016), habitat degradation (Gordon et al., 2018), the
distribution and abundance of elusive species (Hildebrand et al.,
2019), benthic communities (Freeman and Freeman, 2016),
coral reef health (Bertucci et al., 2016), macroalgae production
(Freeman et al., 2018), the status of MPAs (Buscaino et al., 2016;
Gabriele et al., 2018), and the effect of human activities (Lammers
et al., 2017). In this study, we described the use of multiple PAM
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sites to investigate spatiotemporal patterns in the distribution and
acoustic behavior of an IPHD population.

Recently, Munger et al. (2016) conducted a long-term PAM
project to investigate IPHD occurrence north of Lantau Island,
Hong Kong, as a part of environmental impact assessments for a
number of coastal development plans. The survey was designed
to monitor potential areas of impact for IPHD, in relation
to planned coastal reclamation and seabed modification. Over
2 years of monitoring, Ecological Acoustic Recorders (EARs)
were deployed across several PAM sites (13) during different time
periods. The EARs were placed in small subgroups, separated by
a distance of a few kilometers. The results reported by Munger
et al. (2016) were consistent with the known spatial patterns
of IPHD in Hong Kong waters, and indicated the potential
use of PAM to study the distribution of the species in shallow
waters. However, the acoustic data were acquired at a limited
sampling frequency (64 kHz) for the analysis of full bandwidth
echolocation clicks, and the signal identification was conducted
manually (spectrogram visualization). Munger et al. (2016) also
reported that a high level of ambient noise generated by human
activities and the constant presence of snapping shrimps may
compromise the reliability of an automatic detection process.

In this study, a PAM system using multiple recorders
(SoundTrap) set to record at a high sampling frequency
(288 kHz) was tested, together with a trained classifier (support
vector machine) and a specific data analysis protocol, to study
the acoustic occurrence of IPHD. The described classifier was
able to detect echolocation clicks from IPHD from within a large
dataset, avoiding the other signals recorded, and in particular
the short-broadband pulses emitted by snapping shrimps and
finless porpoises. The Cubic SVM model was highly reliable in
the classification process, and the manual analysis confirmed the
presence of dolphin clicks in 79.77% of the files automatically
selected. As the distribution of the population is not yet clear,
data were acquired from a large area. Performance was slightly
different across the PAM sites (Figure 7), where the lowest level
reported at site P#1 seemed to be related to the strong influence
of anthropogenic noise at this location. However, the main goal
of the automatic selection was an effective reduction of the
large dataset. Only 346 files (1.44% of the total number of files
acquired) were manually inspected.

The methodology applied in this study represents an
influential approach to a big data challenge, which included
the need to examine recordings from multiple platforms and
different acoustic scenarios. Spectrogram resolution could be
considered a limiting factor during the human-operated checks
of the data, especially when low intensity clicks were recorded
(when the animals were more than 500 m from the platform
or traveling and echolocating in other directions) or in states of
high background and broadband noise generated by ship traffic
and/or adverse climatic conditions. However, the manual check
of the automatic results was imperative as a validation technique
(Hildebrand et al., 2019). In addition, the spectrogram analysis
was an important complementary monitoring technique which
produced information on soundscape composition. The analysis
of the selected data revealed significant insights regarding
the fine-scale differences between the PAM sites, and possible
correlations with dolphin presence and acoustic behavior. For

example, IPHD social and feeding sounds were recorded more
frequently at sites P#3 and P#5, in conjunction with the automatic
detection of the highest number of clicks. This result confirmed
the potential applications of PAM using both automatic and
manual methods of data analysis.

The acoustic complexity of marine ecosystems in shallow
waters can vary within a few kilometers, especially where the
transition between sandy, muddy, rocky, and coral seabed creates
micro-benthic communities with different acoustic scenarios
(Radford et al., 2010; Ceraulo et al., 2018; Lillis et al., 2018),
which are also influenced by broadband ship noise and other
human activities (Li et al., 2015; Liu et al., 2017; Marley et al.,
2017). As such, the differences in the detectability of dolphin
clicks across the PAM sites could be a factor of the environment
(shallow waters) and the acoustic signal (dolphin click) being
investigated. In the future, the use of a specific classification
process (trained classifier) for each location will be considered, in
order to decrease any potential bias in the analysis (DesJardins
and Gordon, 1995). Further investigations are also ongoing to
define the spatiotemporal distribution of the other biological
sources identified in the study area (finless porpoises, snapping
shrimps, soniferous fishes).

The northernmost site (P#6) revealed a higher, consistent
acoustic presence of IPHD (the highest number of files with clicks
and days with presence; Figures 7, 8). At sites P#3 and P#5, the
highest number of clicks in association with the general acoustic
activity of IPHD were recorded. These three sites also logged
the highest percentage of files containing fish calls which were
concurrently recorded with dolphins. These results suggested
that the abundance of soniferous fishes could be considered as
a possible primary habitat distribution factor and an index of
prey availability for IPHD (Munger et al., 2016; Würsig et al.,
2016; Pine et al., 2017a,b). The abundance of pulse sounds from
snapping shrimps confirmed that this was the most abundant
biological sound source in tropical coastal waters (Au and Banks,
1998; Lillis et al., 2018). In addition, the southern sites in the study
area (P#1, P#0, P#3, and P#4) appeared to be more influenced by
anthropogenic noises, compared to the northern sites (P#5 and
P#6). Further analyses are ongoing to describe the variation in
the ambient noise levels in the study area in relation to IPHD
presence and acoustic behavior, and to describe the long-term
acoustic trends and patterns in these sound sources.

The probability of click detection was higher for the 4-
h clusters before, during, and after dusk and sunrise (4:00–
8:00; Figure 9). A variety of odontocetes species around the
world, including IPHD, have been reported as being more active
acoustically during the night and close to sunset and sunrise,
with specific daily patterns (Benoit-Bird et al., 2009; Soldevilla
et al., 2010; Klinck et al., 2012; Au et al., 2013; Baumann-
Pickering et al., 2015; Wang et al., 2015; Giorli et al., 2016;
Temple et al., 2016; Munger et al., 2016; Caruso et al., 2017).
In our study area, the daily patterns of acoustic presence and
the number of clicks recorded were very different among the
PAM sites (Figure 10). GAMMs revealed that hour of the day
was not a relevant predictor of dolphin click occurrence or rate
of clicks. Considering only the daily and nightly phases, only
site P#6 showed a statistical difference in the number of clicks
recorded. This was not found for the other five locations and
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could be a result of the low number of detections logged by the
other platforms. Similar results were also reported by Munger
et al. (2016) in Hong Kong waters, where one of the PAM sites
recorded an insufficient number of detections to determine diel
pattern, despite the long-term monitoring carried out. Overall,
Munger et al. (2016) reported a high detection rate of IPHD
during nighttime, which reinforces the importance of conducting
PAM surveys, and not only visual surveys which are mostly
limited to daylight hours.

The comparison between the classifier developed in this study
and the A-tag data logger demonstrated the high reliability of
both methods for the detection of IPHD clicks (Figure 11).
No recordings were marked as FP and the two approaches had
similar results for the selection of files without click events
(TN). The classifier had a higher resolution (12 files) in the
identification of clicks (FN). Within the FN class, all the
recordings contained a lower number of clicks than the TP class
(Figure 11). Therefore, mainly in the cases where few clicks were
recorded, the A-tag did not identify events. The acoustic data
logger was highly reliable. However, there were both advantages
and limitations associated with using this device to analyze
dolphin occurrence. Using the A-tag, it was possible to acquire
data with a higher duty cycle, reduce the data storage requirement
(as no audio files were saved), and accelerate the data processing
and availability of results. Despite this, the absence of audio files
for post-processing analyses, for example, for the measurement
of additional click parameters, the detection of other sounds,
and the assessment of environmental noise levels and temporal
patterns of the soundscape, was a disadvantage. Additionally, the
detection range of the SoundTrap was estimated as larger than
previous estimates for the A-tag in the study area (Dong et al.,
2017). Dong et al. (2017) estimated a detection range of 200 m
for IPHD clicks. Whereas, in this study, we estimated a detection
range for the acoustic platforms of at least 500 m (Figure 4).
However, we strongly suggest carrying out a manual check of the
results when using both methods.

CONCLUSION

The IPHD is a nationally protected species of high conservation
value in China. However, it is predicted that in the near future, the
recently discovered Hainan population will be subject to a series
of environmental upheavals. The methodology described in this
study demonstrates the potential of PAM for the investigation of
the ecology of nearshore dolphin species. The study involved the
deployment of underwater acoustic platforms in shallow waters
within the supposed habitat of the IPHD, and the acquisition
of data simultaneously at six locations distributed along more
than 100 km of coastline. Preliminary information regarding
habitat use has been acquired and the hotspot areas characterized
by higher acoustic activity were identified (P#6, P#5, and P#3),
in relation to IPHD feeding and social sounds. As the highest
number of detections were recorded at the northernmost site
(P#6), the survey area has been extended, and new platforms have
been installed north of this location. During future PAM projects,
the occurrence of typical Inter Click Intervals will be considered

as a significant parameter in the automatic classification of clicks
from other cetacean species (Frasier et al., 2017). The results of
this study also revealed preliminary information regarding the
distribution of other phonating animals and noise producing
human activities. The use of PAM has expanded our survey ability
in the study area. Furthermore, the information regarding the
IPHD acoustic occurrence will be crucial in advancing this field of
investigation. Recent boat-based surveys focused in the hotspot
areas defined in this study, and the rate of animal encounters is
increasing considerably. Therefore, our demonstration that PAM
is a powerful technique which can be applied to monitor IPHD
habitat, and to improve the efficiency of the direct monitoring of
this recently discovered population is very timely.
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