IEEE

The journal for rapid open access publishing

Received June 12, 2014, accepted June 27, 2014, date of publication August 18, 2014, date of current version August 27, 2014.

Digital Object Identifier 10.1109/ACCESS.2014.2347992

Semantic Interoperability Architecture for
Pervasive Computing and Internet of Things

JUSSI KILJANDER', ALFREDO D’ELIA2, FRANCESCO MORANDI?, PASI HYTTINEN3, JANNE
TAKALO-MATTILA', ARTO YLISAUKKO-OJA', JUHA-PEKKA SOININEN', (Member, IEEE), AND
TULLIO SALMON CINOTTI?

I'VTT Technical Research Centre of Finland, Oulu FI-90570, Finland
2 Advanced Research Center on Electronic Systems, University of Bologna, Bologna IT-40125, Italy
3VTT Technical Research Centre of Finland, Kuopio FI-70211, Finland

Corresponding author: J. Kiljander (jussi.kiljander @ vtt.fi)
This work was supported in part by SOFIA and IoE ARTEMIS Projects, in part by IMPRESS/EU Project, in part by the Finnish Funding

Agency for Technology and Innovation, in part by the VIT Technical Research Centre of Finland, Oulu, Finland, in part by the Italian
Ministry of Education and Research, and in part by the University of Bologna, Bologna, Finland.

ABSTRACT Pervasive computing and Internet of Things (IoTs) paradigms have created a huge potential for
new business. To fully realize this potential, there is a need for a common way to abstract the heterogeneity of
devices so that their functionality can be represented as a virtual computing platform. To this end, we present
novel semantic level interoperability architecture for pervasive computing and IoTs. There are two main
principles in the proposed architecture. First, information and capabilities of devices are represented with
semantic web knowledge representation technologies and interaction with devices and the physical world
is achieved by accessing and modifying their virtual representations. Second, global IoT is divided into
numerous local smart spaces managed by a semantic information broker (SIB) that provides a means to
monitor and update the virtual representation of the physical world. An integral part of the architecture is a
resolution infrastructure that provides a means to resolve the network address of a SIB either using a physical
object identifier as a pointer to information or by searching SIBs matching a specification represented
with SPARQL. We present several reference implementations and applications that we have developed to
evaluate the architecture in practice. The evaluation also includes performance studies that, together with the
applications, demonstrate the suitability of the architecture to real-life IoT scenarios. In addition, to validate
that the proposed architecture conforms to the common IoT-A architecture reference model (ARM), we map
the central components of the architecture to the [oT-ARM.

INDEX TERMS
architecture, SPARQL.

I. INTRODUCTION

The term IoT was coined by Kevin Ashton in 1999 when
he envisioned new ideas for radio-frequency identification
(RFID) in a presentation he gave at Procter & Gamble [1].
A central idea in Ashton’s IoT vision was to enable devices
to publish information about physical world objects into the
Web. Object identification, especially RFID, played a central
role in the vision. Today the IoT vision is more ambitious
and aims at enabling smart and context-aware applications
for people everywhere in the world. In a way the current IoT
vision can be also seen as a global scale extension of ubiq-
uitous and pervasive computing paradigms [2], [3] focusing
on enabling seamless device interaction to assist people in
everyday life.

Internet of Things, pervasive computing, RDF, semantic interoperability, system

We believe that in order to realize pervasive computing
and IoT visions there is a need for common approaches
to enable high level interoperability! between heteroge-
neous IoT devices. This would make the functionality and
information provided by IoT devices easily accessible for
3" party application developers and would therefore open
a completely new business sector in the same way as smart
phones opened the market for mobile apps.

The ability of two systems to interoperate can be presented
using different kinds of layered models. For example, Tolk
presents a model consisting of six levels: no connection,

'Here the term interoperability refers to the ability of two systems to
communicate and share services with each other.

2169-3536 © 2014 IEEE. Translations and content mining are permitted for academic research only.

856 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 2, 2014

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE

The journal for rapid open access publishing

technical, syntactical, semantic, pragmatic/dynamic and
conceptual [4]. In [5] similar model is presented by Pantsar-
Syvéniemi et al. consisting of following levels: connection,
communication, semantic, dynamic, behavioral, and concep-
tual. Lappeteldinen et al., on the other hand, describe a more
simplified model for interoperability with three levels: device
level, service level and information level [6]. In this paper
we divide the interoperability challenge into two levels: con-
nectivity and semantic. In order to achieve device interoper-
ability in pervasive computing and IoT the interoperability
challenges in these levels needs to be solved in general way.

The connectivity level interoperability covers basically the
traditional Open System Interconnection (OSI) model layers
from the physical to the transport layer. When devices are
interoperable at the connectivity level they are able to transmit
data with each other. The devices are not, however, able to
understand the meaning of data.

The semantic level interoperability covers the technologies
needed for enabling the meaning of information to be shared
by communicating parties. The lack of explicit semantics
has not been a problem in traditional communication sys-
tems such as phones and computers in general, because the
semantic level interoperability has been solved by human
users who communicate with each other by using devices.
In pervasive computing and IoT, devices also become users
and they therefore need to communicate directly with each
other and interpret the meaning of information in run-time.
Early machine to machine (M2M) communication systems
(e.g. industrial automation systems) were typically closed
systems built for a particular purpose and did not thus require
common semantic level interoperability solutions. The exact
functionality of such systems and interactions between dif-
ferent components were fixed and tested in design-time.
Because of this the systems were predictable and robust.
Disadvantages are also obvious, namely difficulty in adding
new features and devices into the system. Consequently, this
kind of hard-wiring is not feasible for IoT or pervasive com-
puting systems that require open and extensible approach for
interoperability.

In order to provide interoperability and achieve wide
acceptance, it is nowadays typical to utilize existing and
widely used technologies and protocols such as the Devices
Profile for Web Services (DPWS) [7], Universal Plug and
Play (UPnP) [8], OSGi [9], Constrained Application Protocol
(CoAP) [10] and MQ Telemetry Transport (MQTT) [11]
when developing M2M communication systems. While the
aforementioned technologies provide basic interoperability
mechanisms within their domain, they do not enable interop-
erability at the semantic level (rather they can be classified as
syntactical and service level interoperability solutions using
the interoperability levels proposed in the literature). What
is further needed are mechanisms for explicating and repre-
senting semantics of information in a reusable and machine-
interpretable format.

Fortunately, the semantic level interoperability has been
identified as a main goal in another Future Internet

VOLUME 2, 2014

paradigm called the Semantic Web [12]. Although the
Semantic Web knowledge representations technologies
such as Resource Description Framework (RDF) [13],
RDF Schema (RDFS) [14], and Web Ontology Language
(OWL) [15] have been originally designed for representing
Web resources, the same technologies can be utilized also
in other domains. In fact, the structured and flexible linked
data model provided by the RDF is well-suited for repre-
senting knowledge about the physical world. Consequently,
semantic technologies have been used in various IoT related
projects such as Networked Embedded System Middleware
for Heterogeneous Physical Devices (HYDRA)?, SENSEI
(Real World Dimension of the Network of the Future)3 , Open
Source Solution for the Internet of Things into the Cloud
(OpenloT)*, and Internet Connected Objects for Reconfig-
urable Ecosystems (iCore)’, just to name a few.

In this paper we present novel semantic level interoper-
ability architecture for pervasive computing and IoT systems.
A core idea in the architecture is to enable all kind of devices,
even low capacity sensors and actuators, to interact with
each other only by sharing semantic information via common
knowledge brokers. The architecture builds upon semantic
information sharing solution called M3 (or Smart-M3) [16]
which we have been developing in several projects. The
physical object identification and resolution in the proposed
architecture is based on the Ubiquitous ID (ulD) architecture
(from ulD Center, Japan) [17] which provides globally unique
identifiers, called ucodes, for physical objects and methods to
find information about objects from all over the world.

The architecture design has been an iterative process in
which we have used feedback and experience obtained from
numerous applications and reference implementations that
we have developed during the last five years. Main differences
in the proposed architecture and existing semantic technology
based IoT solutions can be summarized as follows:

1) In the proposed architecture all interaction between
devices is based on semantic information sharing with
SPARQL 1.1 [18], [19]. This means that even data pro-
vided by resource restricted sensors in high frequency
is published and accessed in semantic format. To make
this possible we have developed both a protocol [20]
that provides SPARQL 1.1 like functionality in a com-
pact binary format and a processing engine that enables
efficient processing of SPARQL subscriptions.

2) In contrast to the Giant Global Graph enforced by
Linked Data [21] community we propose that the vir-
tual representation of the physical world is divided into
numerous local graphs that represent the dynamically
changing context for a particular pervasive computing
environment in a given point of time. To enable devices
to discover these local graphs from anywhere in the

2http://projecthydra.org:,r/
3http://www.sensei—project.eu/
4http://openiot.eu/

5 http://www.iot-icore.eu/

857

IEEE

The journal for rapid open access publishing

J. Kiljander et al.: Semantic Interoperability Architecture

world the architecture proposes a global graph that rep-

resents necessary information about all the local graphs

in the world.
The rest of the paper is structured as follows. In the section II
we present existing semantic technology enhanced pervasive
computing and IoT interoperability approaches and highlight
the main novelties in the proposed architecture by comparing
it to these solutions. Section III gives an overview to the
architecture. In section IV we describe the interaction model
within a single smart space. Section V presents how the
architecture is extended from local pervasive computing envi-
ronment to the world wide IoT. In the section VI, we present
the evaluation for the architecture. The evaluation starts by
mapping the proposed architecture to the [oT-A Architecture
Reference Model (ARM) [22] to show that the architecture
conforms to the common IoT architecture reference model.
Then we present reference implementations of central archi-
tecture components and proof-of-concept implementations to
various application domains. Performance of the reference
implementation is also evaluated in a typical IoT scenario.
Finally, the section VII presents conclusions and ideas for
future work.

Il. RELATED WORK

The possibility for semantic level machine to machine
interoperability has inspired various research projects to
exploit Semantic Web technologies in development of perva-
sive computing and Internet of Things systems. Many of these
projects use semantic technologies to improve traditional
service oriented architectures. Some noteworthy examples of
this type of solutions include HYDRA middleware (currently
known as LinkSmart) [23], Task Computing Environment
(TCE) [24], COCOA [25], Ambient Intelligence for the Net-
worked Home Environment (Amigo) middleware [26], and
Semantic Middleware for IoT [27]. In HYDRA middleware
semantic technology enhanced Model Driven Architecture
is combined with service oriented architecture to provide
methods for developing pervasive computing applications on
top of heterogeneous devices and sensor networks. In TCE
the Semantic Web technologies are used to enhance SOAP
based Web Services to enable service discovery and mash-up
on behalf of the user. The COCOA continues with the idea
introduced by TCE and provides OWL-S [28] based middle-
ware for service discovery and composition. The COCOA
approach was further developed in the Amigo project. This
work led to Amigo-S semantic service description language
which can be used to enhance various SOA based services
supported by the Amigo middleware. In Semantic Middle-
ware for [oT the idea is to transform existing syntactical level
interoperability solutions such as Bluetooth and UPnP into
Semantic Web services that can be more easily discovered
and combined according to user requirements.

In addition to enhancing SOA based services the semantic
web technologies can be used in many other ways to improve
the functionality of a pervasive computing middleware. One
example of this is the breadboard architecture [29] which

858

focuses especially on the integration of sensors and perceptual
components manufactured by different technology providers.
The perceptual components access sensor data via the NIST
Smart Flow middleware [30] and extract context cues from
the raw sensor data. In addition to sensors and perceptual
components central entities in the approach are agents that
track higher level contextual situations and provide service
logic for the pervasive applications. Semantic technologies
are used for persistent storage of the data created by sensors,
perceptual components and agents.

In contrast to the aforementioned approaches where
semantic technologies are used either for representing meta-
data about services or as a persistent storage for context
information, the basis of the whole interaction model in our
architecture lies on semantic information sharing. In practise,
this means that all the agents interact with each other only by
performing queries, updates, and subscriptions represented in
SPARQL 1.1 syntax (i.e. there is no need for traditional ser-
vices or proprietary data formats in our architecture model).
Because of this our approach can benefit from semantic level
interoperability in all communication and is thus, in a way,
closer to the original vision of Semantic Web.

There exists also pervasive computing and IoT solutions
that use semantic technologies in more similar way to our
architecture than the aforementioned approaches. For exam-
ple, the Context Broker Architecture for Pervasive Comput-
ing (CoBrA) [31], Semantic Space [32], and SPITFIRE [33]
are examples of solutions that utilize semantic technologies
for sharing information about real world things.

The CoBrA is broker-centric agent architecture that aims
at providing centralized view of context for pervasive com-
puting applications. Context is represented according to
CoBrA ontology and a centralized context broker creates and
shares the context for all parties in the pervasive computing
environment. The context broker consists of four func-
tional components: Jena 2 based knowledge base, rule-based
context-reasoning engine, context-acquisition module and
privacy-management module. The agent communication in
CoBrA is based on Foundation of Intelligent Physical Agents
(FIPA) [34] standards.

Semantic Space is a semantic technology based perva-
sive computing infrastructure that focuses on explicit rep-
resentation, flexible reasoning, and expressive querying in
pervasive computing environments. Similarly to CoBrA a
core part of the Semantic Space approach is context ontology,
namely upper-level context ontology (ULCO), which defines
the basic concepts common for pervasive computing environ-
ments. The context information is collected, stored, and pro-
cessed by a context infrastructure which consists of context
wrappers, context aggregator, context reasoner and knowl-
edge base with RDQL query engine. The context wrappers
are implemented as UPnP services and context aggregator as
UPnP control point.

Our architecture differs from CoBrA and Semantic Space
architectures in three main ways. The first notable dif-
ference is that in CoBrA and Semantic Space there is

VOLUME 2, 2014

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE

The journal for rapid open access publishing

high number of primary actors because of clear distinction
between agents which utilize context information and entities
(e.g. sensors and cameras) that provide information to the
RDF database. In CoBrA the context broker actively acquires
context information from various sources via the context
acquisition module. In Semantic Space the architecture con-
tains context wrappers for weather, devices, location, envi-
ronment and activity, for example. In our architecture, on
the other hand, all information is produced and consumed by
agents. This is made possible by compact semantic informa-
tion sharing protocol that we have developed to enable utiliza-
tion of semantic technologies in resource restricted devices
and networks. The second difference is that the CoBrA and
Semantic Space do not describe how the link between phys-
ical object and their virtual representation is created. In our
architecture the physical objects are identified with 128-bit
ucodes (typically stored into a tag) and the same ucode is
used as an identifier for the object in the RDF graph. We first
introduced this idea in the paper [35]. The third difference
is that the CoBrA and Semantic Space are targeted for local
pervasive computing environments and are consequently cen-
tralized. We, on the other hand, extend the approach to IoT
and propose a highly distributed architecture where informa-
tion is divided into numerous information brokers that are
differentiated, for example, by geographical location, owner,
and information they contain.

In contrast to the CoBrA and Semantic Space that use
semantic technologies to provide context-aware services for
local pervasive computing environments, the SPITFIRE tar-
gets to the IoT domain and provides service infrastructure
for Semantic Web of Things. In particular, the SPITFIRE
aims at making it as easy as possible for application devel-
opers to exploit Internet-connected sensors. The SPITFIRE
architecture is based on linked open data cloud and RESTful
CoAP/HTTP sensors operating on top of 6LowPAN network.
The basic idea is to fetch raw data from sensors via RESTful
interface, transform the data into semantic format, and finally
link the data to the linked open data cloud. The linking is
enabled by a specific ontology vocabulary proposed by the
SPITFIRE.

The main contributions in SPITFIRE over preced-
ing semantic sensor web approaches are twofold. First,
SPITFIRE proposes semi-automatic creation of semantic sen-
sor descriptions based on hypothesis that sensors producing
similar data can be presented using similar representations.
In our architecture we have partly avoided this problem by
making it possible to utilise semantic technologies in resource
restricted sensors and actuators (and other type of devices).
This way the resource restricted devices can directly publish
information in semantic format and there is no need to create
descriptions manually or semi-automatically. However, in
situations where non-semantic devices need to be integrated
the semi-automatic creation of device descriptions proposed
by SPITFIRE would be very useful and we plan to investigate
the possibility utilise them in the future. Second main contri-
bution of SPITFIRE is prediction model based approach for

VOLUME 2, 2014

avoiding sensor state updates at high frequency into the linked
data could. In our approach this problem has been tackled
by dividing the world wide linked data cloud into plethora of
local pervasive computing environments. This way the sensor
updates (and other information sharing) can be localised
and parallelized into local area instead of the whole world.
Additionally, by optimizing the SPARQL query engine for
subscriptions we have made it possible to subscribe directly to
sensor state updates using SPARQL 1.1 query syntax. Other
notable differences between SPITFIRE and the architecture
proposed in this paper are following: 1) SPITFIRE seems to
mainly focus on sensors (and objects they monitor) whereas
we provide also means to interact with actuators (or any other
type of device) with semantic technologies, 2) the current ref-
erence implementation of SPITFIRE is centralized® whereas
we propose a distributed architecture, 3) similarly to the
previous approaches the SPITFIRE does not describe how the
link between a physical object and their virtual counterpart is
created.

We are not the only ones exploiting unique object codes as
links to data in semantic technology enhanced IoT systems
however. For example, in [36] Ziegler et al. present an
approach for using RFID as universal entry point to Linked
Data clouds. Instead of using tag technology independent
identifiers such as ucode the approach utilizes unique iden-
tifiers stored into every RFID tag. The obvious benefit with
this approach is that the RFID tags do not have to be pro-
grammed by developers. Another notable difference between
the approaches is the way object codes are represented in RDF
graphs. In the approach proposed by Ziegler et al. the RFID
identifier is linked to the URI of the virtual representation via
a property called 7fid. We, on the other hand, use directly the
ucode in URI format as a virtual identifier for the physical
object.

When compared to the approach proposed by Ziegler et al.
main advantages of our approach are twofold. First, our
approach allows any kind of tag technologies to be used
(e.g. RFID, BLE, NFC, QR code). The second benefit of
using ucodes instead of normal RFIDs comes from the Ubig-
uitous ID (uID) architecture which provides methods for
locating information related to tagged objects. The resolu-
tion functionality in the ulD architecture is provided by a
distributed three level server hierarchy, called the ucode Res-
olution Server. The highest level in ucode Resolution Server
hierarchy is called a Root server. It manages the whole 128 bit
ucode space. Top Level Domain (TLD) servers are located
below the Root server and manage a 108 bit code space.
The Second Level Domain (SLD) servers form the third level
below TLD servers. Their address space ranges from 16 bits
to 96 bits.

IIl. ARCHITECTURE OVERVIEW
There are two fundamental characteristics in the proposed
semantic level interoperability architecture. First, to make

6The paper mentions that it is possible to implement the central RDF
triplestore as a distributed cloud service however.

859

IEEE

The journal for rapid open access publishing

J. Kiljander et al.: Semantic Interoperability Architecture

Resolution Infrastructure

ucode
Resolution
Server

Resolution
Service

FIGURE 1.

the interaction between devices as flexible as possible we
rely on information centric view in the interaction. This
means that instead of traditional end-to-end communication
between domain specific services and clients the interaction
model is based on autonomous agents which interact by
sharing semantic information (i.e. information represented
with RDF and OWL) with each other. The main advantage
of using RDF and OWL is that they provide a common
way to describe information in generic machine-interpretable
form and thus both provide means for semantic level inter-
operability and support information reusability. Second, to
make the interaction in IoT more scalable we propose a
distributed architecture model consisting of plethora of local
ubiquitous computing environments, called smart spaces. The
main advantage of this kind of approach is that it makes
privacy management easier and improves performance since
all local information does not need to be globally accessible
in a centralized database.

There are four main entities in the system model illus-
trated in the Fig. 1: Sematic Information Broker (SIB), Agent,
Virtual Entity (VE), and Resolution Infrastructure (RI).
The SIB is a semantic information sharing service provid-
ing semantic level communication channel for Agents to
interact with each other. In this paper the protocol defin-
ing the rules and syntax for Agent-SIB communication is
referred to as Knowledge Access and Management Protocol
(KAMP). We propose KAMP where the operations to access

860

®®®

Overview of the semantic level interoperability architecture for loT.

A ucodeRP
<==9 KAMP

~ -
F— J—

Virtual Entity

rdfs:subClassOf

ssn:SensingDevice

4\ P
|
|
|
_
|
|

rdf:type ac:Fan |
| "Celsius™ lll\ll* <ucode: 1> |
hasValue hasLocation asLocation

"25.9" T“ixu}dcﬂ"‘ rdf:type] 88 Loeation |
longitude latitude |

"\
. "25°28'E” "65°01'N")

/
— — H —

—_— — - —

Represents

Sensor
| Device

exposes =

A@’ """~ hosts

smart space

and manipulate the knowledge are based on SPARQL 1.1
Query and Update languages. The possible realizations of
the KAMP protocol are discussed in more detail in the
section IV.

Information available in a SIB represents the context for
a single smart space. Here the term smart space refers to
certain physical space where one or more Agents monitor the
environment and share their information and capabilities via
a SIB. Typically, the smart space relates to a static physical
location such as room, but it is also possible to have mobile
smart spaces such as vehicles and people. Several smart
spaces can also share the same physical location. For instance,
there can be one SIB assigned for an apartment building as
a whole, for each apartment inside the apartment building,
for each room inside an apartment, and for each person (i.e.
mobile smart space) inside a room. Although all these SIBs
exist in the same area they still represent logically different
smart spaces from the architecture point of view.

Main difference between the SIB and a normal SPARQL
endpoint is that whereas SPARQL endpoints are designed for
performing efficient queries on relatively slowly changing
data, the SIB is targeted for enabling the Agents to share
knowledge about the physical world in real time.” To this end,

7By real time we mean that the SIB is typically able to notify subscribers
without perceivable delay so that, for example, controlling lights is possi-
ble in responsive manner. Fixed deadlines required in traditional real-time
systems cannot be guaranteed however.

VOLUME 2, 2014

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE

The journal for rapid open access publishing

the SIB provides means both for subscribing to events occur-
ring in the smart space (expressed as persistent SPARQL
query) and for creating persistent SPARQL updates that mod-
ify the context of the environment when certain events occur.
The operations provided by the SIB are defined in more detail
in the section IV.

The virtual representation of the smart space is cre-
ated by Agents which realize applications for end-users by
interacting each other via the SIB. Agent can be divided
into three parts: Semantic Interface (SI), ucode Resolution
Client (uRC), and application logic. The Semantic Interface
provides means both for transforming information from local
data formats to semantic format and for interacting with
the local SIBs and the SIB Resolution Service. The role of
the uRC is to interact with the ucode Resolution Server to
locate a SIB service hosting information about a particular
physical world object. In addition to the aforementioned
components an Agent can contain means for both collecting
information about and interacting with the physical world
(i.e. sensor and actuator agents). This functionality is not
necessarily required however (i.e. the Agent can also be just
an aggregator that modifies the information provided by other
Agents).

When Agent publishes information about a real word object
into a SIB the collection of RDF triples representing the
object is called VE. The VE can represent any kind of phys-
ical world entities such as sensors, actuators, food products,
buildings and people, to name a few. The VE both provides
information about and allows interaction with the correspond-
ing physical world entity. Our architecture is agnostic to the
ontology used to represent VEs and we do not enforce any
particular ontology. A key idea in proposed architecture is
that VEs are identified with ucodes and when feasible the
same ucode is stored into a tag attached to the corresponding
physical object. This way we can easily link the Virtual Entity
to its physical counterpart.

The Resolution Infrastructure enables Agents to locate
Semantic Information Brokers of interest. It provides resolu-
tion both based on identifiers and specifications. The former
is called lookup and the latter discovery. In practise, the log-
ical Resolution Infrastructure consists of two components:
ucode Resolution Server and SIB Resolution Service. The SIB
Resolution Service is a SIB (with known Internet address) that
stores semantic descriptions of all other SIBs and provides
discovery functionality for the Agents. The ucode Resolution
Server is responsible for providing lookup functionality by
mapping the physical object identifiers (i.e. ucodes) directly
to SIB address where information about the particular VE can
be found.

IV. AGENT INTERACTION WITHIN LOCAL SMART SPACE

A key idea in the proposed information centric interaction
model is that the interaction between Agents is based solely
on the information they share via a common knowledge bro-
ker. This means that sensor measurements can be read and
actuators controlled by simply querying and modifying their

VOLUME 2, 2014

TABLE 1. Data manipulation and access operations.

Operation DESCRIPTION

Insert Inserts RDF triples into the SIB. The triples
can be ecither concrete or constructed in
WHERE pattern matching.

Delete Deletes RDF triples from the SIB. The triples
can be ecither concrete or constructed in
WHERE pattern matching.

Update First deletes triples from then inserts triples
into the SIB. The triples can be either concrete

or constructed in WHERE pattern matching.

Request information from the SIB. Returned
results depend on the query format (SELECT,
ASK, or CONSTRUCT).

Query

Subscription Registers a persistent query into the SIB. The
SIB sends a notification (new and obsolete
results) every time the results of the query

change.

Persistent Registers persistent insert operation into the

insert SIB. New triples are constructed (and inserted)
every time the WHERE pattern matching
provides a solution.

Persistent Registers persistent delete operation into the

delete SIB. New triples are constructed (and deleted)
every time the WHERE pattern matching
provides a solution.

Persistent Registers persistent update operation into the

update SIB. New triples are constructed (and inserted
and deleted) every time the WHERE pattern
matching provides a solution.

Terminate Terminates a persistent operation.

Virtual Entities available in the SIB. This kind of blackboard
architectural pattern based interaction model is flexible and
decouples Agents efficiently so that the Agents do not need to
know anything about each other.

The operations proposed in the architecture to manipu-
late and access semantic information in the smart space are
presented in the Table 1. All the operations (except terminate)
are based on SPARQL 1.1 Query and Update Languages.
In addition to these operations a SIB can support various
graph level management operations defined in SPARQL 1.1
Update Language.

The presentation format for the operations (i.e. encoding
and serialization) depends on the used KAMP. There are cur-
rently two realizations for the KAMP available: Smart Space
Access Protocol (SSAP) and Knowledge Sharing Protocol
(KSP).

The SSAP is the name for the M3 communication protocol
supported by the first SIB reference implementations. The
original SSAP utilized non-standard data manipulation and
query operations. We have modified the SSAP so that it now
uses SPARQL 1.1 as a payload and provides Agents with the

861

IEEE

The journal for rapid open access publishing

J. Kiljander et al.: Semantic Interoperability Architecture

operations defined in the Table 1. There are two serializa-
tion formats for SSAP available: XML and World Aligned
XML (WAX). SSAP/XML is the original serialization for-
mat. The SSAP/WAX provides a more compact serialization
format enabling it to be more easily exploited in resource
restricted devices [37].

The KSP is designed especially for low capacity
devices and resource restricted networks [20]. It provides
SPARQL 1.1 like mechanism for querying, updating, and
subscribing to RDF data in compact binary format. The
persistent format for update operations was first introduced
in KSP. KSP also enables Agents to define maximum size
for SIB responses which makes it more suitable for resource
restricted devices. In a way the KSP is the same for SSAP that
the CoAP is for HTTP.

One of the main principles in the proposed architecture is
that we do not enforce any particular transport, network or
radio protocol to be used by Agents within a single smart
space. The only requirement is that the local SIB needs to
support all the connectivity level technologies used by the
Agents. Because the Agents only interact with each other via
the SIB this makes it possible for devices using heterogeneous
connectivity solution to share information and interoperate
with each other. If an Agent needs to interact with a remote
smart space via the Internet it needs, of course, use IP or
6LowPan network protocols.

In order to illustrate the information centric communi-
cation model in practise we will next demonstrate it in a
simple scenario consisting of three types of Agents: Sensor
Agent, Fan Agent, and Control Agent. In this scenario we
have a house with many rooms. Each room is equipped
with a temperature sensor and a fan actuator exposed via
the Sensor Agent and the Fan Agent, respectively. A single
Control Agent is responsible for controlling the fans in the
rooms (i.e. turning the fans on in a room when the temper-
ature rises above a certain limit® defined separately for each
room).

All the Agents need to first discover the SIB responsible
for the local smart space (section V describes the discovery
process in more detail). Then each Sensor and Fan Agent need
to virtualize the corresponding physical entities by publishing
their VE descriptions into a SIB responsible for the smart
space of the house. Following INSERT DATA operations
demonstrate how this can be done for a single temperature
sensor and fan actuator.

Inserts example temperature sensor
INSERT DATA

ucd:3690 a ex:TemperatureSensor ;
ex:value 22.9 ;
ex:unitType “C”
ex:location ucd:7891
ucd:7891 a ex:Room

}

8This limit could be, for example, calculated from the temperature prefer-
ence values of the persons present in the given room.

862

Inserts example fan actuator
INSERT DATA

{

ucd:3695 a ex:FanActuator ;
ex:state 0 ;
ex:location ucd:7890

ucd:7891 a ex:Room

}

In these operations it is assumed 1) that the ucode® (and
URI) of the room is obtained by reading a tag attached to the
room when the sensor and the actuator are deployed to the
room and 2) that the ucode of the sensor and actuator is known
by the developer of the given Agent. Note that for the sake of
clarity prefix definitions are omitted from all the examples
presented in this paper.

In addition to publishing the VE descriptions, each Fan
Agent needs to subscribe to the VE attribute specifying the
fan state to be aware of modifications made by other agents
and each Sensor Agent needs to update the temperature value
whenever the temperature changes in the room. Examples of
these operations can are presented below.

Subscription to the fan state

SELECT ?state
WHERE

{
}

Temperature value update .
DELETE { ucd:3690 ex:value ?oldvalue }
INSERT { ucd:3690 ex:value 27.0 }

WHERE { ucd:3690 ex:value ?oldvalue }

ucd:3695 ex:state 7?state

The application logic in this scenario is realized by
the Control Agent which subscribes to the fans that need
to be turned on. This subscription can be performed as
follows.

SELECT ?fan
WHERE

{

?sensor a ex:TemperatureSensor ;
ex:value ?temperature ;
ex:location ?room

?room a ex:Room ;

ex:maxTemperature ?maxTemp ;

FILTER (?temperature > ?maxTemp)

?fan a ex:Fan ;

ex:location ?room

}

The first result set of the subscription contains all the fans
that need to be turned on. After this the Control Agent will
receive notifications of fans that need to be turned on (new
results) and fans that need to be turned off (obsolete results).
The fans can be turned on and off with following simple
DELETE and INSERT DATA operations.

Turns the fan ucd:3695 on.

DELETE DATA { ucd:3695 ex:state 0 }
INSERT DATA { ucd:3695 ex:state 1 }

9For clarity sake the ucodes are presented in a simple format.

VOLUME 2, 2014

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE

The journal for rapid open access publishing

Control Agent SIB Sensor Agent 2 ‘ Fan Agent 2
7 T [T
| i [|
| | insert(Sensor description) [!
| e) |
| | insert(Fan description) |
subscril Fa ate,
subscribe(fans to turn on) subseribe(Fan state)
i
resp(none} i
update(Temperature = 27.0) |
notify(new = Fan 2) !
[
ate(Fan 2 state =
} update(Fan 2 state == ON) notify(Fan state == ON)
> Turns the

|
I
1
|
I
| fan on
|
|
|

N update(Temperature = 23.0)
notify(obs = Fan 2)

1
[
I
I
I
I
I
I
I

update(Fan 2 state = OFF) |
|
L
I

notify(Fan state — OFF)
R Turns the

fan off

|
|
|
|
N
|
|
|
|
|
|
|
|
|
|
|
Ny
|

FIGURE 2. Example of agent interaction within a smart space (control
agent implemented with SPARQL subscription and update).

Control Agent SIB Sensor Agent 2 Fan Agent 2
T T T T
} : insert(Sensor description) : }
| K 1 |
} : insert(Fan description) }
| I T 1
} persistent_update(rule) : subscribe(Fan state) }
—_ N T 1
| SiB 7 i |
| evaluates | | I
} the rule : : }
I 1 I I
| 1, update(Temperature = 27.0) | |
I . i I
I sIB |] I
! aluates! . ! !
| evalu. llC\| notify(Fan state == ON) ITurns the
| the rule 1 |
I T T >fan on
I | 1 I
I 1 i I
| i | |
update(Temperature = 27.0)
| s jepdaetiem | |
! evaluateh notify(Fan state == OFF) !
} A i :) Turns the
I

b
the rule i ' ! fan off

FIGURE 3. Example of agent interaction within a smart space (control
agent implemented with a single persistent SPARQL update).

Turns the fan ucd:3695 off.
DELETE DATA{ ucd:3695 ex:state 1 }

INSERT DATA{ ucd:3695 ex:state 0 }

Alternatively, the Control Agent could also create a per-
sistent SPARQL update rule which modifies the state of the
fans when necessary. This generic persistent update can be
presented as follows.

DELETE { ?fan ex:state ?current }
INSERT { ?fan ex:state ?new }
WHERE

{

?sensor a ex:TemperatureSensor ;
ex:value ?temp ;
ex:location ?room

?room a ex:Room ;

ex:maxTemperature ?maxTemp

?fan a ex:Fan ;

ex:location ?room ;
ex:state ?current

BIND (IF (?temp > ?maxTemp, 1,0) AS ?new)

FILTER (?new != ?current)

}

In this case the whole Control Agent is implemented with
this single rule and no other interaction by the Control Agent
is needed. Fig. 2 and 3 illustrate the message exchange
between the Agents and the SIB in the example scenarios.

VOLUME 2, 2014

V. FROM LOCAL SMART SPACES TO

INTERNET OF THINGS

When the idea of semantic interoperability is extended to
global IoT domain there is a need 1) for globally unique
methods to identify physical objects and 2) for ways to resolve
the address of the SIB that provides information about or ways
to interact with the physical object. In the sections A—C we
describe how this is achieved in the proposed architecture.

A. VIRTUAL ENTITY IDENTIFICATION AND LLOOKUP
We use ucode based Uniform Resource Name (URN) [38] as
the identifier (i.e. URI) of the virtual representation instead of
HTTP URI [39] recommended for Linked Data. There are two
reasons for this. First reason is that the HTTP URI is meant
for identifying Web resources whereas ucode is designed
to identify physical world objects. This might seem to be
more a philosophical issue than an actual problem, but this
can also have impact in practise. This is because the HTTP
URI points always to a specific network location and that
location is presented in the identifier itself (i.e. the domain
name). This causes problems in practise if the author owning
the domain name does not want to maintain the database
presenting the physical object anymore or if the domain name
is lost for some reason. This would mean that a new URI for
the physical object would need to be assigned and this new
URI would need to be updated to every description related to
that VE and to the tag attached to the physical object the VE
represents. Additionally, many physical objects are mobile
which would cause problems with the architecture proposed
in the paper if the HTTP URIs are used as physical object
identifiers. This is because each smart space represents VEs
in its geographical location and the HTTP URIs point always
to a fixed service and it would not be thus possible to update
the VE address (i.e. URI) when the VE moves from one smart
space to another. The second reason to use ucode as identifier
for physical objects instead of HTTP URI is that the ucode
has a fixed length (typically much shorter than verbose HTTP
URISs) and it is therefore more predictable in term of memory
and faster to process. This makes it more feasible for resource
constrained devices and networks that are typical in IoT.
When compared to other physical object identification
methods the main advantage of using ucodes comes from
the ulD Resolution Architecture which provides methods for
1) creating new identifiers for objects and for 2) resolving the
network address of the SIB containing information about the
physical object. This type of resolution is referred as lookup in
the architecture proposed in this paper. The SIB associated to
a given ucode is called primary SIB. In addition to the primary
SIB, it is possible that information about given VE exists in
other SIBs. This distribution of VE information into multiple
SIB services is discussed in more detail in the section B.
When Agent needs to lookup an address of a SIB containing
information about a VE identified by ucode it simply sends a
resolve request with the ucode as a parameter to the ucode
Resolution Server. The ucode Resolution Server responds

863

IEEE

The journal for rapid open access publishing

J. Kiljander et al.: Semantic Interoperability Architecture

Agent ucode Resolution Server SI
X T T

1 issue() 1 |
1 I |
r » |
1 ucode I |
1 I |
Ko m oo — .
: msert(VE description) } :
L + 1)
i Status ' i
,,,,,,,,,,,,,,,,,,,,,,,,,,, N |

: change_entry(ucode, SIB_address) ; :
1 » l
I N] l
| Status " |
___________________________ J |
<= i
1 1
I I

FIGURE 4. Virtual Entity publishing process.

with the SIB address represented with a non-standard sib
URI scheme defining the hostname and port for the SIB
(e.g. sib:example.com:10010).

In order to make the above-described lookup possible
the Agents publishing representations of the physical world
entities are required to update the SIB address containing the
representation of the physical object to the ucode Resolution
Server. The process related to creating and publishing a VE
(illustrated in the fig. 4) works as follows. When a new VE
is created an Agent requests a unique ucode for the physical
object (and the corresponding VE) from the ucode Resolution
Server with the issue request. If possible this ucode is stored
to a tag and the tag is attached to the physical object. Then
the Agent publishes the VE description into a local SIB.
Finally the Agent updates the SIB address for the given ucode
by sending a change_entry request to the ucode Resolution
Server.

B. VIRTUAL ENTITY DISTRIBUTION
There are many situations where information about a single
VE can be distributed into multiple SIB services. This is
very typical in the case of mobile objects such as cars, peo-
ple, and mobile phones, but can also happen with stationary
objects. For instance, a device manufacturer could store basic
information about a product (e.g. washing machine) in their
official semantic database (i.e. the primary SIB) which is
linked to the ucode of the product unit in the ucode Res-
olution Server. When user purchases the washing machine
and deploys it in her/his personal smart space the washing
machine will start publishing semantic information to the
local SIB. This information cannot be found by resolving the
ucode attached to the washing machine however. To make
information distributed into various SIBs discoverable, links
to these other SIBs need to be added to the primary SIB.
In practise this could happen so that when a customer registers
the product her/his Personal Agent will add a link to the
home SIB into the primary SIB (i.e. the manufacturer’s SIB
in this case). This allows the manufacturer to keep track
of their devices and act immediately in the case of device
malfunction.

To make the other SIB services associated to certain VE
attributes discoverable there is a need for a common ontology
which defines these associations in a machine interpretable

864

format. To this end, we have defined two properties, namely
as:hasAttribute and as:associatedTo, which can be used to
represent VE attributes that are associated to other SIBs
instead of the primary SIB. The as:hasAttribute property
is used to define the property associated to another SIB.
The as:associatedTo property links the property to a specific
SIB instance. Following RDF triples illustrate parts of an
example VE description (stored to a primary SIB) that has
two attributes associated to another local SIB:
ex:Device a ssn:SensingDevice ;

ex:madelIn dpedia-owl:Taiwan ;

as:hasAttribute ex:value ;
as:hasAttribute ex:location .

ex:valueas:associatedTo<sib:vtt.fi:10011>
ex:locationas:associatedTo<sib:vtt.fi:10011>

C. SEMANTIC INFORMATION BROKER DISCOVERY

In addition to the lookup operation described in the section
V-A, our architecture provides methods for resolving SIB
address based on SIB service specification. This operation is
called discovery.

The information model defining the type of information
that can exist in SIB service description and specification
is represented in the SIB service profile (SSP) ontology.
A central concept in the SSP ontology is the ssp:SIB class
representing all SIB services. The ssp:serviceArea property
ties a SIB instance to a physical location in which the SIB is
active. The range for the ssp.serviceArea property is defined
as both the geo:SpatialThing class from the W3C Basic Geo'?
vocabulary and the geo:Feature class from the GeoSPARQL
ontology [40]. This is because although the GeoSPARQL
provides far more advanced methods for spatial queries than
the very simple W3C Basic Geo it is not yet widely supported
in SPARQL endpoints. In practise, this means that the SIB
service area can be presented either as a simple point using
W3C Basic Geo or GeoSPARQL ontologies, or as a more
complex geographical area are using GeoSPARQL ontology.

The ssp:owner property can be used to specify the owner
of the SIB service. The range for the ssp:owner property is
the foaf:Agent class from FOAF ontology [41] and it includes
thus both organizations and individual people. In addition to
the properties and classes used the present the owner and the
geographical area of the SIB, the SSP ontology contains prop-
erties, namely ssp:containsClass and ssp:containsProperty
for representing the domain specific RDFS/OWL classes and
properties that are used to represent VEs inside a SIB. These
properties make it possible to model the content of each
smart space in terms of classes and properties and therefore
enable an Agent to discover SIBs that contain information
modelled according to a certain domain specific ontology
(or more precisely information modelled using the classes
and properties). This information is useful when there are
many SIBs in the same geographical area but the SIBs contain
information represented with different classes and properties.

Ohttp://www.w3.0rg/2003/01/geo/

VOLUME 2, 2014

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE

The journal for rapid open access publishing

To enable global SIB discovery there is a need for entity
which stores the RDF graph representing all the SIBs in the
world. This is the role of the SIB Resolution Service. Although
the SIB Resolution Service is logically a single entity the
global SIB service graph can be also stored into distributed
cloud service. The distribution of the SIB Resolution Service
is out of the scope of the paper however. Following listing rep-
resents a simple example for the content of the SIB Resolution
Service consisting of two SIB descriptions:

<sib:example.com:10010> a ssp:SIB ;
ssp:owner <http://www.vtt.fi/> ;
ssp:containsClass ex:SensorDevice ;
ssp:containsProperty: ex:hasValue ;
ssp:serviceArea _:areal
_tareal a geo:SpatialThing ;
geo:lat 65.056697 ;
geo:long 25.45819
<sib:example.com:10011> a ssp:SIB ;
ssp:owner <mailto:john.doe@vtt.fi> ;
ssp:containsClass ex:Actuator ,
ex:Sensor ;
ssp:serviceArea _:areal2
rarea2 a geo:SpatialThing ;
geo:lat 65.056695 ;
geo:long 25.45818

An Agent that wants to discover a SIB that provides means
to interact with an actuator represented with ex:Actuator class
within the premises of VIT Oulu could perform a following
SPARQL 1.1 query to the SIB Resolution Service:

SELECT ?sib

WHERE {

?sib ssp:containsClass ex:Actuator

ssp:serviceArea ?area
?area geo:long ?long;
geo:lat ?lat

FILTER (xsd:float (?long) > 25.45580 &&
xsd:float (?long) < 25.45600 &&
xsd:float (?lat) > 65.05680 &&
xsd:float (?lat) < 65.05700)

?sib a ssp:SIB}

The SIB descriptions are published and updated by a spe-
cial purpose Agent, called the SIB Advertiser Agent, assigned
for every SIB. When a new SIB (and SIB Advertiser Agent)
is launched, the SIB Advertiser Agent first publishes the SIB
service description into the SIB Resolution Service. Then it
subscribes both to all RDFS/OWL classes that have instances
and all RDF properties that are used in triples. This way it is
able to keep track of the type of VEs published into the SIB
at any given time. When the SIB notifies that a new class or
property has been inserted or that an instance of a class or
property has been removed, the SIB Advertiser Agent updates
the SIB service description into the SIB Resolution Service.
In addition to updating the SIB description when the content
of the SIB change, the SIB Advertiser Agent is also respon-
sible for updating the SIB service description whenever any
other SIB description parameter changes (e.g. service area in
the case of a mobile SIB). Fig. 8 presents a sequence chart
illustrating the SIB service description management process.

VOLUME 2, 2014

SIB Advertiser Agent SIB

SIB Resolution Service

T
insert(SIB deseription)]

T
I
I
1
i
I status
I
I
I
I
I

i
1
|
i
R e e i 1
subscribe(Classes, Properties) : :
> 1
status ! !
e = 1
| I 1
| | 1
I i 1
: | New class 1
4 notify(new Class) I ik !
jis added H
} update(SIB description) :
i status 1 "
| | 1
€ TR 1
i

FIGURE 5. SIB service description management process.

User

T

invokes interacts with

Active Digital Artefact Human
Service is associated to Virtual Entity represents Physical Entity
_ N

acts on

identifies

monitors

exposes

Actuator Tag Sensor

v

Resource Device
hosts

FIGURE 6. loT-A Domain Model.

VI. EVALUATION
A. MAPPING TO THE IoT-A ARCHITECTURAL REFERENCE
MODEL
To our knowledge, the only formal reference model for IoT
architectures is the IoT-A ARM developed in the Internet
of Things - Architecture project. The IoT-A ARM has four
main purposes. First, it serves as a cognitive aid by providing
terminology for IoT concepts. Second, the reference model
provides a common grounding for specific IoT architectures.
Third, the IoT-ARM can be exploited in architecture genera-
tion process. Fourth, by mapping existing IoT architectures
to the IoT-A ARM it is possible to better compare these
architectures and find similarities between them. In order
to both evaluate that the proposed architecture aligns with
the IoT-A ARM and to make the architecture more easily
understandable for people who are familiar with the IoT-A
ARM we will next make a brief comparison between them.
The IoT-A ARM consists of several models and views.
In this mapping we will mainly focus to the Domain Model
(DM) (depicted in the Fig. 6) which is a central model in

865

IEEE

The journal for rapid open access publishing

J. Kiljander et al.: Semantic Interoperability Architecture

the ARM and defines the main IoT concepts and their rela-
tionships. There are six core entities in the Domain Model:
Physical Entity (PE), User, Virtual Entity (VE), Resource,
Service, and Device.

A Physical Entity is an identifiable object of the physical
world that is relevant for an IoT application. They can be
living organisms such as humans and animals or inanimate
objects such as cars and buildings, for example. The Users are
Humans or Active Digital Artifacts (e.g. software agents) that
interact with a Physical Entity to achieve a certain goal. The
Virtual Entity is a digital representation of a Physical Entity.
A VE description consists of a unique identifier (VE-ID) and
a set of attributes. Ideally, the VE attributes provide a syn-
chronized representation of PE properties. This means that
the attributes not only provide real-time information about the
PE, but may also allow interacting with it. For example, by
modifying the state attribute of a light switch VE it is possible
to turn the lights on and off in the real world.

The VEs are created by computing platforms that have
methods to monitor and interact with the PE. This kind of
computing platform is typically divided into software and
hardware components. In IoT-A terms the software compo-
nent is called Resource and the hardware component is called
Device. The IoT-ARM further classifies devices into three
groups: Sensors, Actuators, and Tags. To interact with the
Resource (and Device) there is a need for standard interface
that defines the rules and syntax for interaction. In IoT-A
ARM this interface is called Service. The relation between
Service and VE is called Association. The Association models
which VE attributes can be read and modified via the specific
Service. Service can be associated to any number of Virtual
Entities.

It is practical to start the mapping between the architec-
ture proposed in this paper and the IoT-A ARM from the
VE concept because it is very similar in both models. In
both IoT-ARM and the architecture proposed in this paper,
the VE attributes both provide information about and allow
interaction with physical world entities. The main difference
is that the IoT-A ARM does not dictate how the VE should
be represented or identified in practise (i.e. binary, XML,
RDF, efc.). In the proposed architecture VEs are represented
with Semantic Web knowledge representation technologies
and identified with ucodes.

The main difference between the IoT-A ARM and the
architecture proposed in this paper is that the [oT-A ARM
is service oriented whereas we propose information centric
interaction model. To concretize, in IoT-A ARM the interac-
tion between users and physical world is achieved via domain
specific services that provide specific operations to read or
modify certain VE attributes. In contrast the interaction with
physical world in our architecture is achieved by modifying
and accessing RDF graph(s) representing the current state of
the physical world. However, if we think the SIB as a general
purpose Service (from IoT-A ARM) which is associated with
all the VEs (and their attributes) published into the SIB, the
fundamental difference (i.e. service vs. information centric)

866

between the architecture models becomes more a philosoph-
ical point of view than an actual difference.

There is no direct one-to-one representative for an Agent
in the IoT-A ARM. The Agent can be seen as Active Digital
Artefact because it invokes services provided by the SIB
service. Additionally, since some Agents (e.g. sensor and
actuator Agents) are responsible for exposing and interacting
with the physical word entities, the Agent can be also mod-
elled as a Resource hosted on a Device.

The Resolution Infrastructure does not have a representa-
tive in the IoT-A DM. This is because the Resolution Infras-
tructure is a functional component enabling the lookup and
discovery of SIB services and VEs, and the DM is focused on
presenting the main IoT concept - not functional components
enabling the discovery of them. However, like mentioned
earlier there are also other models in the IoT-A ARM and
the Resolution Infrastructure maps directly to the Service
Level Resolution component described in the IoT-A ARM
Functional Model.

B. REFERENCE IMPLEMENTATIONS

The architecture presented in this paper is an outcome of an
iterative process where different ideas and technologies have
been developed and evaluated through several applications
and reference implementations. In this section we will briefly
describe these reference implementations and most notable
applications.

1) SEMANTIC INFORMATION BROKERS

The first official SIB reference implementation is the Smart-
M3 [42] based on the Piglet [43] RDFS++ database. It pro-
vides support for the original SSAP primitives and utilises
non-standard XML-based encoding for RDF triples, called
RDF-M3. For query and subscription it supports non-standard
RDF query language and Wilbur Query language [44]. With
the emergence of SPARQL (especially SPARQL 1.1 Query
and Update Languages) the limitations in these query, sub-
scribe and update operations became evident. Additionally,
the performance and scalability of the Smart-M3 was not
adequate for pervasive computing applications where it is
required to react to changes in near real-time. To address
these challenges, we have developed various SIB reference
implementations including: RDF Information Base Solution
(RIBS), OSGi-SIB and Red-SIB.

The RIBS is a secure and fast SIB implementation targeted
for resource limited devices [45]. It is implemented with
ANSI C programming language and the system dependencies
are limited to Berkeley Software Distribution (BSD) style
socket library and select() function. This makes RIBS easily
portable to different computing platforms. RIBS manages
memory resident bit-cube triple store in which RDF triple
subjects, predicates and objects span the 3D vector space. The
main advantage of the bit-cube triple store is that after URIs
and RDF Literals are converted into bit-cube coordinates the
access to the store becomes a simple random access lookup
operation with constant latency. This is achieved with the

VOLUME 2, 2014

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE

The journal for rapid open access publishing

side-effect of cubical memory consumption. Communication
security and access control in RIBS are based on standards
and their open source implementations. The selection of stan-
dard to be used during a session is negotiated between Agents
and the RIBS at runtime. This makes it possible for Agents
to use different security mechanism depending on their need.
At information level RIBS uses a fine grained approach
where access rights can be specified separately for each
triple.

The OSGi-SIB is based on OSGi technology and takes
inspiration from the principles presented by Manzaroli et al.
in [46]. The main advantages of OSGi are modularity, expres-
sivity and portability that simplify the deployment and main-
tenance of OSGi based systems. The OSGi-SIB uses Jena
framework!! with Pellet [47] to manage and reason over RDF
graphs. Consequently, it supports SROIQ [48] based descrip-
tion logics (DL) and provides means for DL based backward
chaining. Smart space system administrators can exploit these
features to define what kind of reasoning their SIB executes.
In addition to the DL based reasoning, the OSGi-SIB pro-
vides support for persistent SPARQL update rules. Because
persistent SPARQL update operations can be expressed with
KAMP it enables Agents to specify their own domain specific
reasoning rules for a smart space with SPARQL 1.1.

The Red-SIB has been developed from the Smart-M3
reference implementation by substituting the Piglet with
Redland RDF database and by improving performance and
stability of the SIB [49]. The Red-SIB is available as open-
source!? and is consequently the most used SIB reference
implementation. We have obtained decisive improvements
to performance by optimizing the subscription processing in
three ways. First, we use selective subscription processing
that makes it possible to avoid unnecessary access to the
RDF store when the inserted or removed triples cannot alter
the SPARQL subscription results. This optimisation is used
also in the OSGi-SIB. Second, the subscriptions processing
is implemented in independent threads containing separate
context triple stores for each subscription. This optimisation
minimises the impact to the main triple store and allows par-
allel processing of subscriptions. This is especially beneficial
in multi-core computing platforms that can assign separate
cores for each subscription handler. Third, we have designed
a SPARQL subscription algorithm that does not compute the
whole result set but focuses only how the results have changed
from last notification.

2) AGENTS AND APPLICATIONS

In this section we present seven smart space systems that
we have developed following principles of the architecture
presented in this paper. These systems include: Open-M3,
Smart Greenhouse, Smart Building Maintenance, Smart
Meeting, Smart Health Monitor, Home Garden and Smart
Lighting.

1 https://jena.apache.org/
12http:// sourceforge.net/projects/smart-m3/

VOLUME 2, 2014

The Open-M3 was one of the first applications where we
utilized semantic technologies to achieve interoperability in
a pervasive computing environment [50]. It is a very simple
system that contains two types of Agents deployed on various
COTS devices; sensors that publish measurement informa-
tion and viewers which display the information for the user.
The interoperability between the sensor and viewer Agents is
achieved by agreeing on common sensor ontology developed
for the application.

The sensor ontology and sensor Agents developed for the
Open-M3 are also used in the Smart Greenhouse [51]. When
compared to the Open-M3, the Smart Greenhouse demon-
strates a more complex pervasive computing system which
has been developed incrementally by adding new Agents
for specific purposes. The first version of the Smart Green-
house consisted of Actuator, Sensor and Gardener Interface
Agents. It enabled the gardener to view sensor measurements
and control physical actuators manually via his personal
device. In the second generation, the demonstration was
expanded by introducing Autocontrol Agent which controls
actuators on behalf of the gardener. The third generation of
the Smart Greenhouse expanded the previous versions by
making it possible to interact with the physical objects by
touching. This interaction is based on ucodes stored into
RFID tags.

The Smart Building Maintenance pilot [52], [53] deals with
many topics relevant to the maintenance of large office build-
ings. The maintenance processes are managed and monitored
by Agents with minimal human effort. In particular, the pilot
focuses on detection and correction of faults occurring in
office buildings. All the main actors in the scenario are taken
in consideration from maintenance companies to building
managers and maintenance operators. The developed Agents
detect faults automatically and classify and associate them
to correction procedures. For the maintenance operator the
Agents provide seamless interfaces that enable the mainte-
nance personnel to monitor faults, accept or refuse proposed
correction procedures, and follow the accepted correction
processes step by step. The workers in the area affected by
a fault are promptly notified by Agents and provided with
means to follow the status of fault correction. This way
the waiting time of workers can be minimized. Addition-
ally, procedures strictly connected to business and quality
of service (e.g. the intervention requests are sent only to
personnel skilled for that particular kind of problem) are
solved by using semantic connections between maintenance
personnel and different types of faults that can occur in the
building.

The Smart Meeting application [54] demonstrates how a
local meeting application is built using the interaction model
proposed in this paper. In Smart Meeting users can share
their contact information and files with each other via their
personal Agents implemented to various mobile phones. The
file sharing methods are not predefined but instead the
Agents can advertise their files and then negotiate about
the file transfers methods via the SIB. The semantic level

867

IEEE

The journal for rapid open access publishing

J. Kiljander et al.: Semantic Interoperability Architecture

interoperability is achieved by agreeing on a common ontol-
ogy which describes concept such as meetings, participants,
files, requests, and transfer protocols.

We have also applied the architectural principles in health-
care domain and developed a Smart Health Monitor sys-
tem [55] that merges environmental and biomedical data to
provide services for monitoring the wellbeing and health of
people. The idea behind the Smart Health Monitor system is
that health services based on telemonitoring can be improved
by relating biomedical parameters of interest to their context
and combining them with environmental data. To this end,
we have implemented Agents for collecting environmental
and physiological data such as room temperature, humid-
ity, heart rate, skin temperature, respiration rate and activity
index. Additionally, the system includes Agents that track the
location of patients, refine data into more descriptive format
(e.g. Thom Index), and provide means to monitor the wellbe-
ing of patients in real time.

The Home Garden application continues the gardening
theme in the applications. The system consists of two Agents:
Active Tag and Home Garden Agent. The Active Tag was our
first attempt to implement an Agent into extremely resource
restricted computing platform [37]. The idea is that the user
can equip her/his potted plants with Active Tags that blink
a LED if the soil is too dry for a given plant and the user
is present in the room. To do this the Active Tag utilizes
information about its location, plant preferences and user
presence published into the SIB by a Home Garden Agent.
By using the WAX encoded SSAP format we managed to
implement the Active Tag to a redwire LLC Econotag board
(32-bit ARM?7 platform) with total code size of 39.7 kB
and RAM consumption of 25.3 kB. We also estimated an
average current consumption of 241 A at 60 s wake-up and
communication interval which means an approximate battery
duration of 1.3 years with two 1.5V, 2700 mAh alkaline
batteries.

A more recent example of Agents in resource restricted
computing platforms is presented in the Smart Lighting
system. This demonstration consists of two low capacity
Agents: battery operated motion sensor and light actua-
tor. The motion detector is a simple Agent which detects
motion with passive infrared sensor (PIR) and publishes the
motion information into the SIB. A Light Agent is sub-
scribed to the motion events and controls the lights based
on this information. Additionally, the Light Agent enables
other Agents to override this automatic control by modifying
its representation inside the SIB. This way the system can
be extended if the lights need to be used by other appli-
cations (e.g. by alarm system) in the future. Both Agents
use KSP messages over Bluetooth Low Energy (BLE) radio
in communication with the SIB. While the Home Garden
Active Tags were implemented on 32-bit ARM?7 platform,
the Light and Motion Detector Agents are implemented on
a lower capacity, 8-bit 8051 microcontroller with 128 kB
of flash and 8 kB of RAM memory. For the motion sensor
Agent, the flash memory consumption was 122.9 kB and

868

RAM memory consumption was 6.3 kB. This means 11%
and 3% increase in flash and RAM memories respectively
when compared to the implementation without KSP pro-
tocol. The Bluetooth Low Energy stack consumed major
part of the memories. A 1000 mAh capacity battery would
last for 1.5 years in the motion detector when motion is
sensed once per minute, or more than 10 years at 30 s
interval if the sensor consumption was omitted (the PIR type
motion sensor consumes 100 ©A of current continuously).

C. PERFORMANCE EVALUATION

1) AGENT INTERACTION WITHIN SINGLE SMART SPACE

It is impossible to make a general performance evaluation
for the Agent interaction. This is because the performance
of the operations depends heavily on many factors (e.g. the
complexity of the SPARQL WHERE patterns; the amount,
the type and the organization of context information in the
SIB; the computing platform the SIB is deployed on; efc.).
However, to demonstrate that it is feasible to use semantic
technologies to directly interact with sensors and actuators (as
proposed in the architecture) we measured the performance in
a typical scenario (the one presented in the section I'V).

Round-trip latency is used as a measure for the perfor-
mance and it is calculated from 100 iterations for each oper-
ation. In this evaluation we focused to the performance of the
SIB (i.e. we did not want to measure the latency caused by the
different connectivity technologies) and measured the latency
taken to perform the updates and subscriptions used in the
example scenario. For update the latency is defined as the
time interval between the SIB receives an update request and
the update operations has been performed. For subscription
the latency is defined as the time interval between the SIB
receives an update that triggers a subscription and the SIB is
ready to send the notification to the Agent.

As a SIB we used the RedSIB reference implementation
deployed on 64-bit Ubuntu 12.04 LTS virtual private server
(VPS) with one processor unit and 4GB RAM reserved for
each VPS. Dell Precision T5600 Server with two Inter Xeon
E5-2665 processors (eight core, 2.4 GHz) and 64 GB RAM
is used as a host computer with VirtualBox 4.3.6 as the
virtualizing software.

To evaluate the scalability we measured the latencies with
different amount of data in the SIB. Because latency of sub-
scription to the fans to turn on depends on the amount of
rooms the Control Agent needs to monitor this latency was
also measured with different amount of rooms. The RDF
triples presenting the temperature sensor, fan actuator, and the
room (with temperature preference) were created as presented
in the example (see section IV). All the other triples have been
created randomly (i.e. it is assumed that they are produced
by Agents not part of this application). Table II presents and
Fig. 7 illustrates the latencies for operations with different
amount of RDF triples in the SIB.

The SIB scales well respect to the amount of RDF triples as
can be seen from the latencies that do not increase when the

VOLUME 2, 2014

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE

The journal for rapid open access publishing

TABLE 2. Latency (Ms) for agent interaction operations.

RDF update update subscribe subscribe fans subscribe fans subscribe fans
Triples temperature fan state fan state (1 room) (10 rooms) (100 rooms)
1000 1,89 1,04 0,53 1,30 2,34 39,71
10000 1,79 1,05 0,53 1,36 2,31 40,30
100000 1,91 0,99 0,52 1,30 2,26 46,22
1000000 1,88 1,02 0,53 1,26 2,29 46,33
100 in discovery I) only the service area and owner of the
» » ” X SIB are used and the SPARQL query is formulated as
- - follows:
SELECT ?sib
2 1 WHERE {
i ?sib ssp:owner <http://www.vtt.fi/> ;
§ pya— % ssp:serviceArea ?area
= Q’| * i ! ?area geo:long ?long ;
1 - — - geo:lat ?lat
dr r - 4 FILTER (xsd:float (?long) > 25.45580 &&
xsd:float (?long) < 25.45600 &&
xsd:float (?lat) > 65.05680 &&
0 xsd:float (?lat) < 65.05700)
1000 10000 100000 1000000 ?sib a ssp:SIB
RDF triples }

—#—1update temperature ~@—-update fan state

—a—subscribe fan state —&—subscribe fans (1 room)

~=subscribe fans (10 rooms) subscribe fans (100 rooms)

FIGURE 7. Latency for Agent interaction operations respect to the number
of RDF triples stored into the SIB.

amount of triples is increased. For subscribe fans operations
it can be seen that the latency increases significantly when the
amount of rooms is increased. This is because the SPARQL
subscription performed by the Control Agent needs to process
more data as the variables in the SELECT query pattern
receive more bindings when the amount of rooms (and sen-
sors) is increased. However, even with 100 rooms the latency
is still reasonable as the Agent will be notified on average
43 ms after the status has changed. For other operations the
latencies are between 0,5 ms and 2,4 ms which is fast enough
for typical IoT systems.

2) SEMANTIC INFORMATION BROKER

LOOKUP AND DISCOVERY

To evaluate the performance and scalability of the Resolution
Infrastructure, we measured the average latencies for SIB
lookup and discovery operations with five different SIB ser-
vice description counts: 1, 10, 100, 1000, and 10.000 services.
We used similar SIB description to the one presented in
the section V with the exception that instead of one class
and property each SIB contained 10 different classes and
properties.

The latency of the discovery operation is highly affected
by the SIB service specification (i.e. the SPARQL query).
To evaluate this effect we measured the latency for two
different SIB specifications. In the first specification (used

VOLUME 2, 2014

In the second SIB specification (used in discovery 2) infor-
mation about the classes of interest is added. A SPARQL
query that searches SIBs containing instances of both the
example sensor and actuator classes can be presented as
follows:

SELECT ?sib
WHERE {
?sib ssp:owner < http://www.vtt.fi/> ;
ssp:containsClass ex:Sensor ,
ex:Actuator ;
ssp:serviceArea ?area
?area geo:long ?long ;
geo:lat ?lat
FILTER (xsd:float (?long)
xsd:float (?1long)
xsd:float (?lat)
xsd:float (?lat)
?sib a ssp:SIB

> 25.45580 &&
< 25.45600 &&
> 65.05680 &&
< 65.05700)

}

The latency was measured by an Agent implemented with
Python and deployed on Ubuntu virtual machine in HP Elite-
book 8460p laptop with Core 15-2520M processor and 2 GB
of RAM. The TLD and SLD ucode Resolution Servers respon-
sible for the lookup run in virtual private servers on top of
VirtualBox with 2 GB of memory reserved for each server.
As ahost computer we used Dell PowerEdge 2900 server with
two Intel Xeon dual-core processors and Ubuntu 11.10 as the
operating system. The RedSIB reference implementation was
used as the SIB Resolution Service and it was deployed on
Dell OptiPlex 755 with Intel Core 2 Duo vPro processor, 2
GB of RAM, and Ubuntu 12.10 operating system.

Table III presents and Fig. 8 illustrates latencies for SIB
service discovery and lookup operations. To evaluate the
performance and the actual latency caused by the Resolution

869

IEEE

The journal for rapid open access publishing

J. Kiljander et al.: Semantic Interoperability Architecture

TABLE 3. Latency for resolution operations (ms).

SIB count Lookup Discovery 1 Discovery 2
1 192,14 67,94 68,43
10 192,51 67,50 69,11
100 191,16 71,21 77,85
1000 190,48 95,90 143,96
10000 192,66 315,13 808,15
900
800
700
— 600 -
=
= 500
&
§ 400 -
=]
= 300 -
200 | — + - 9
00 o -— -
0 T T . T
1 10 100 1000 10000
SIB services
—+—Lookup ——Discovery 1 Discovery 2

FIGURE 8. Latency for resolution operations with different amount of SIB
service descriptions.

TABLE 4. Latency for resolution operations (ms).

Operation Latency (ms)
Lookup 150,02
Discovery 1 65,11
Discovery 2 65,46

Infrastructure we measured also the latency caused by the
network for each operation (depicted in Table 4).

The results show that the reference implementation scales
quite well up to 1.000 SIB services. With 10.000 SIB service
specifications there is a dramatic increase in latency of the
discovery 2 operation. The latency of discovery I increases
also significantly, but it still scales better than the second
operation where more complex SIB specification is used.
This is because with simpler SIB specifications (i.e. simpler
graph pattern) there are fewer bindings for the variables in
the query pattern and the SPARQL query engine perform less
computing.

In contrast to the discovery operation there is no notable
increase in latency of the lookup even with 10.000 SIB service
descriptions. The main reason for better scalability is that the
lookup is quite simple process (compared to SPARQL query)
where a ucode is mapped to a SIB address. Additionally,
the ucode Resolution Server used for lookup is designed
especially for scalability in mind.

Another important observation is that most of the latency
for SIB resolution operations comes from the network

870

(excluding discovery 1 and 2 with 10.000 SIB services).
For instance, for SIB discovery with 100 SIB services the
network latency is around 95% and 96% respectively. In SIB
lookup the network latency part is not as high but still 78%
of the whole latency. Since the actual processing executed
by the SIB Resolution Service takes typically only around
3 ms it means that the it is able to process around 350 dis-
covery operations per second (assuming 1.000 or fewer SIB
services and similar SIB specifications to the test setup).
In the lookup operation the TLD server part of the latency
is around 41 ms which leads to 24 operations per second.
However this does not take into account the fact that the
ucode Resolution Server is distributed. In reality there can
be up to 1.048.576 (i.e. 20 bits reserved for TLD server
addresses) parallel TLD servers which could theoretically
process even 25 million operations every second (assuming
even distribution of lookup operations between the servers).

Vil. CONCLUSION

In this paper novel semantic level interoperability architec-
ture for pervasive computing and IoT was presented. The
architecture design has been an iterative process in which we
have followed the original Semantic Web vision and based
the whole interaction model on semantic technologies. A key
idea in the architecture is that the worldwide IoT is divided
into smaller, more manageable smart spaces. The SIB is the
central unit of a smart space and provides methods for agents
to share semantic information with each other. The main
difference with a SIB and normal SPARQL endpoint is that
the SIB provides means both to monitor events in real time
with SPARQL subscription and to update the context in the
smart space with persistent SPARQL update rules. Agents can
discover the SIB of interest by using either a simple lookup
service that uses ucode attached to a physical object as a
pointer to related information or a SIB Resolution Service
with SIB specification as the discovery parameter.

To evaluate that the proposed architecture is in line with
the IoT-A ARM we described how the main entities in the
architecture map to the main ARM Domain Model enti-
ties. The architecture is also evaluated through reference
implementations and numerous applications that we have
developed according to the architecture principles. We also
executed performance measurements for various resolution
and agent interaction operations in an example IoT use case.
The main observation from the performance measurements
is that the Agent interaction operations scale very well and
enable interaction with the physical world in real time fash-
ion. For resolution operations most of the latency is caused
by the network and the only scalability issues were measured
for the SIB Resolution Service which had significant increase
in the latency when SIB count was increased to 10.000 SIB
services.

Common approach to enable semantic level interoper-
ability by abstracting the heterogeneity of different devices,
communication technologies and protocols is essential in
order to enable 3™ party developers to create applications for

VOLUME 2, 2014

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE

The journal for rapid open access publishing

future pervasive computing and IoT systems. The architecture
described in the paper provides vital information and guid-
ance for device manufactures and IoT system developers in
this regard. The current reference implementations still need
improvements before large scale IoT systems can be fully
supported however. For instance, a more scalable implemen-
tation of the SIB Resolution Service is needed in the future.
This could be implemented, for example, as a distributed
hierarchical service where each SIB Resolution Service man-
ages a certain geographical area in a similar way to the
Domain Name System (DNS) architecture. Also approaches
to manage resource access of applications with conflicting
goals are needed to really enable 3" party developers to create
applications to our everyday living environments. In addition
to the architecture and reference implementations there is also
a need for tools that support development and deployment of
devices and applications into the future IoT systems.

REFERENCES

[1]
[2]
[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Ashton, “That ‘Internet of Things’ thing,” RFID J., Jul. 2009. [Online].
Available: http://www.rfidjournal.com/article/view/4986

M. Weiser, “The computer for the 21st century,” ACM SIGMOBILE
Mobile Comput. Commun. Rev., vol. 3, no. 3, pp. 3-11, Jul. 1999.

D. Saha and A. Mukherjee, “‘Pervasive computing: A paradigm for the 21st
century,” Computer, vol. 36, no. 3, pp. 25-31, Mar. 2003.

A. Tolk, “Composable mission spaces and M&S repositories—
Applicability of open standards,” in Proc. Simulat. Interoperability
Workshop, Washington, DC, USA, 2004, pp. 1-14.

S. Pantsar-Syvdniemi, A. Purhonen, E. Ovaska, J. Kuusijdrvi, and
A. Evesti, “Situation-based and self-adaptive applications for the smart
environment,” J. Ambient Intell. Smart Environ., vol. 4, no. 6, pp. 491-516,
2012.

A. Lappeteldinen, J.-M. Tuupola, A. Palin, and T. Eriksson, “Networked
systems, services and information the ultimate digital convergence,” in
Proc. Ist Int. NoTA Conf., Helsinki, Finland, 2008, pp. 1-7.

D. Driscoll and A. Mensch. (Jul. 1, 2009). Device Profile for Web
Services Version 1.1. [Online]. Available: http://docs.oasis-open.org/ws-
dd/dpws/1.1/0s/wsdd-dpws-1.1-spec-os.pdf

Contributing Members of UPnP Forum. (Oct. 15, 2008). UPnP Device
Architecture 1.1. 136 p. [Online]. Available: http://upnp.org/specs/arch/
UPnP-arch-DeviceArchitecture-v1.1.pdf

(Oct. 2005). OSGi Service Platform Release 4. [Online]. Available:
http://www.osgi.org/Release4/Download

Z. Schelby, K. Hartke, and C. Bormann, (Aug. 28, 2013) “Constrained
application protocol (CoAP),” CoRE Working Group Internet-Draft.
[Online]. Available: http://datatracker.ietf.org/doc/draft-ietf-core-coap/
IBM and Eurotech. MQTT V3.1 Protocol Specification. [Online].
Available: http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/
MQTT_V3.1_Protocol_Specific.pdf, accessed Jun. 10, 2014.

T. Berners-Lee, J. Hendler, and O. Lassila, ‘“The semantic
web,” Sci. Amer, May 2001 [Online]. Available: http://www.
scientificamerican.com/article/the-semantic-web/

R. Cyganiak, D. Wood, and M. Lanthaler, (Feb. 25, 2014) “RDF 1.1
concepts and abstract syntax,” W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/rdf11-concepts/

D. Brickley and R. V. Guha, (Feb. 25, 2014) “RDF schema 1.1,” W3C
Recommendation. [Online]. Available: http://www.w3.org/TR/rdf-schema/
(Dec. 11, 2012) “OWL 2 web ontology language document overview,”’
W3C OWL Working Group. [Online]. Available: http://www.w3.org/
TR/owl2-overview/

P. Liuha, J. Soininen, and R. Otaolea, “SOFIA: Opening embedded infor-
mation for smart applications,” in Proc. Embedded World, Nuremberg,
Germany, 2010, pp. 1-8.

N. Koshizuka and K. Sakamura, “Ubiquitous ID: Standards for ubiquitous
computing and the Internet of Things,” IEEE Pervas. Comput., vol. 9, no. 4,
pp. 98-101, Oct./Dec. 2010.

VOLUME 2, 2014

(18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

[28]

[29]

[30

[31

[34]

[35

[36]

[37]

[38]

[39

[40

[41

S. Harris and A. Seaborne, Eds., (Mar. 21, 2013) “SPARQL 1.1 query
language,” W3C Recommendation. [Online]. Available: http://www.w3.
org/TR/sparql11-query/

P. Gearon, A. Passant, and A. Polleres, Eds., (Mar. 21, 2013)
“SPARQL 1.1 update,” W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/sparql11-update/

J. Kiljander, F. Morandi, and J.-P. Soininen, ‘“Knowledge sharing protocol
for smart spaces,” Int. J. Adv. Comput. Sci. Appl.,vol. 3,n0. 9, pp. 100-110,
2012.

C. Bizer, T. Heath, and T. Berners-Lee, “‘Linked data—The story so far,”
Int. J. Semantic Web Inf. Syst., vol. 5, no. 3, pp. 1-22, 2009.

A. Bassi et al., Enabling Things to Talk: Designing IoT Solutions
With the IoT Architectural Reference Model. Heidelberg, Germany:
Springer-Verlag, 2013.

M. Eisenhauer, P. Rosengren, and P. Antolin, “A development platform
for integrating wireless devices and sensors into ambient intelligence sys-
tems,” in Proc. SECON Workshops, 2009, pp. 1-3.

R. Masuoka, B. Parsia, and Y. Labrou, “Task computing—The Seman-
tic Web meets pervasive computing,” in Proc. 2nd Int. Semantic Web
Conf. (ISWC), vol. 2870. 2003, pp. 866—881.

S. Ben Mokhtar, N. Georgantas, and V. Issarny, “COCOA: Conversation-
based service composition in pervasive computing environments with QoS
support,” J. Syst. Softw., vol. 80, no. 12, pp. 1941-1955, 2007.

G. Thomson, S. Bianco, S. Ben Mokhtar, N. Georgantas, and V. Issarny,
“Amigo aware services,” in Constructing Ambient Intelligence, vol. 11.
Berlin, Germany: Springer-Verlag, 2008, pp. 385-390.

S. Zhexuan, A. A. Cardenas, and R. Masuoka, ‘“Semantic middleware for
the Internet of Things,” in Proc. Internet Things (I0T), Nov./Dec. 2010,
pp. 1-8.

D. Martin et al, (Nov. 22, 2004) “OWL-S: Semantic markup
for web services,” W3C Member Submission. [Online]. Available:
http://www.w3.org/Submission/OWL-S/

J. Soldatos, N. Dimakis, K. Stamatis, and L. Polymenakos, “A bread-
board architecture for pervasive context-aware services in smart spaces:
Middleware components and prototype applications,” Personal Ubiquitous
Comput., vol. 11, no. 3, pp. 193-212, 2007.

L. Rosenthall and V. Stanford, “NIST smart space: Pervasive computing
initiative,” in Proc. IEEE 9th Int. Workshops Enabling Technol.: Infras-
truct. Collaborat. Enterprises (WET ICE), Jun. 2000, pp. 6-11.

H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, and D. Chakraborty,
“Intelligent agents meet the Semantic Web in smart spaces,” IEEE Internet
Comput., vol. 8, no. 6, pp. 69-79, Nov./Dec. 2004.

X. Wang, J. S. Dong, C. Y. Chin, S. R. Hettiarachchi, and D. Zhang,
“Semantic space: An infrastructure for smart spaces,” IEEE Pervas. Com-
put., vol. 3, no. 3, pp. 32-39, Jul./Sep. 2004.

D. Pfisterer et al., “SPITFIRE: Toward a semantic web of things,” IEEE
Commun. Mag., vol. 49, no. 11, pp. 4048, Nov. 2011.

P. Charlton, R. Cattoni, A. Potrich, and E. Mamdani, “Evaluating the FIPA
standards and their role in achieving cooperation in multi-agent systems,”
in Proc. 33rd Annu. Hawaii Int. Conf. Syst. Sci., vol. 2. 2000, p. 10.

J. Takalo-Mattila, J. Kiljander, M. Eteldperd, and J.-P. Soininen, “Ubig-
uitous computing by utilizing semantic interoperability with item-level
object identification,” in Mobile Networks and Management, vol. 68.
Berlin, Germany: Springer-Verlag, 2011, pp. 198-209.

J. Ziegler, M. Graube, and L. Urbas, “RFID as universal entry point to
linked data clouds,” in Proc. IEEE Int. Conf. RFID-Technol. Appl. (RFID-
TA), Nov. 2012, pp. 281-286.

A. Ylisaukko-Oja, P. Hyttinen, J. Kiljander, J.-P. Soininen, and
E. Viljamaa, “Semantic interface for resource constrained wireless
sensors,” in Proc. Int. Conf. Knowl. Eng. Ontology Develop. (KEOD),
2011, pp. 505-511.

C. Ishikawa, (Apr. 2012) “A URN namespace for ucode,” IETF Network
Working Group. [Online]. Available: https://tools.ietf.org/html/rfc6588

T. Berners-Lee, R. Fielding, and L. Masinter, (Jan. 2005) “Uniform
resource identifier (URI): Generic syntax,” IETF Network Working Group.
[Online]. Available: http://www.ietf.org/rfc/rfc3986.txt

R. Battle and D. Kolas, “Enabling the geospatial semantic web with
parliament and GeoSPARQL,” Semantic Web, vol. 3, no. 4, pp. 355-370,
2012.

D. Brickley and L. Miller, (Jan. 14, 2014) “FOAF vocabulary specifica-
tion 0.99,” Namespace Document. [Online]. Available: http://xmlns.com/
foaf/spec/

871

IEEE Access

i The journal for rapid open access publishing

J. Kiljander et al.: Semantic Interoperability Architecture

[42] J. Honkola, H. Laine, R. Brown, and O. Tyrkko, “Smart-M3 informa-
tion sharing platform,” in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jun. 2010, pp. 1041-1046.

[43] O. Lassila, “Programming Semantic Web applications: A synthesis of
knowledge representation and semi-structured data,” Ph.D. dissertation,
Dept. Comput. Sci. Eng., Helsinki Univ. Technology, Espoo, Finland,
Oct. 2007.

[44] O. Lassila, “Generating rewrite rules by browsing RDF data,” in Proc. 2nd
Int. Conf. Rules Rule Markup Lang. Semantic Web, 2006, pp. 51-57.

[45] J. Suomalainen, P. Hyttinen, and P. Tarvainen, *‘Secure information sharing
between heterogeneous embedded devices,” in Proc. 4th ECSA, 2010,
pp. 205-212.

[46] D.Manzaroli et al., “‘Smart-M3 and OSGi: The interoperability platform,”
in Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2010, pp. 1053-1058.

[47] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A practical OWL-DL reasoner,” Web Semantics: Sci., Services and Agents
World Wide Web, vol. 5, no. 2, pp. 51-53, 2007.

[48] I. Horrocks, O. Kutz, and U. Sattler, “The even more irresistible SROIQ,”
in Proc. 10th Int. Conf. Principles Knowl. Represent. Reason. (KR), 2006,
pp. 57-67.

[49] F. Morandi, L. Roffia, A. D’Elia, F. Vergari, and T. S. Cinotti, ‘‘RedSib:
A smart-M3 semantic information broker implementation,” in Proc. 12th
Conf. FRUCT Assoc., 2012, pp. 86-98.

[50] M. Eteldperi et al., “Open-M3: Smart space with COTS devices,” in Proc.
12th Int. Conf. Ubiquitous Comput. (UbiComp), 2010, pp. 363-364.

[51] J. Kiljander, M. Eteldperd, J. Takalo-Mattila, and J.-P. Soininen, “Opening
information of low capacity embedded systems for smart spaces,” in Proc.
8th Workshop Intell. Solutions Embedded Syst. (WISES), 2010, pp. 23-28.

[52] A.D’Eliaetal., “Smart applications for the maintenance of large buildings:
How to achieve ontology-based interoperability at the information level,”
in Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2010, pp. 1077-1082.

[53] S. Pantsar-Syvaniemi et al., “Case study: Context-aware supervision of
a smart maintenance process,” in Proc. IEEE/IPSJ 11th Int. Symp. Appl.
Internet (SAINT), Jul. 2011, pp. 309-314.

[54] J. Kiljander, M. Etelédperd, J. Takalo-Mattila, J.-P. Soininen, and K. Keini-
nen, “‘Autonomous file sharing for smart environments,” in Proc. Ist Int.
Conf. Pervasive Embedded Comput. Commun. Syst., 2011, pp. 191-196.

[55] F. Vergari et al., “A smart space application to dynamically relate medical
and environmental information,” in Proc. Design, Autom. Test Eur. Conf.
Exhibition (DATE), 2010, pp. 1542-1547.

JUSSI KILJANDER is currently a Research Sci-
entist with the VTT Technical Research Centre of
Finland, Espoo, Finland. He received the M.Sc.
(Tech.) degree from the University of Oulu, Oulu,
Finland, in 2010. His current research and the
Ph.D. studies are focused on ubiquitous comput-
ing, Internet of things, and device interoperability
with semantic web technologies. He has authored
over 10 scientific papers, and contributed to several
research projects related to semantic interoperabil-
ity and pervasive computing. Before his graduation studies, he was a Seasonal
Trainee in Nokia, Finland.

ALFREDO D’ELIA was born in Catanzaro, Italy,
in 1981. He received the master’s (summa cum
laude) degree from the University of Bologna,
Bologna, Italy, in 2006, and the Ph.D. degree
in information technology from the University
of Bologna in 2012, where he was a Research
Assistant. He worked in several European projects,
such as SOFIA, CHIRON, Internet of Energy, and
Arrowhead. He also collaborated with important
industries, like Telecom Italia, Rome, Italy, and
was an Intern in Nokia, Finland, for six months, where he was a co-inventor
of a patent. He also teaches with the University of Bologna and Cesena as an
Assistant Professor, where he is responsible for didactic modules. His main
topics of interest in research are semantic web, interoperability, information
representation techniques, software architecture, and system characterization
and optimization.

872

FRANCESCO MORANDI was born in Lugo, Italy,
in 1984. He received the degree in electronic engi-
neering and the Specialist degree in telecommuni-
cation engineering from the University of Bologna,
Bologna, Italy, in 2006 and 2009, respectively.
In 2010, he was with Fondazione Ugo Bordoni,
Bologna, as a Consultant for the digital television
transition. Since 2011, he has been a Researcher
with the Advanced Research Center on Elec-
tronic Systems, University of Bologna. His current
research is focused on semantic technology for interoperable platforms
applied on Internet of things.

PASI HYTTINEN is currently a Senior Scientist
with the VTT Technical Research Centre of Fin-
land (VTT), Espoo, Finland. His research topics
are programming and management of complex
computer systems, such as smart spaces, Inter-
net of things, and clouds. During his nine years
at VTT, he was involved in three EU research
projects iCore (2012-2014), IoT-A (2012-2013),
and SOFIA (2009-2011), and the Customer RF
Front-End Processor Project (2006-2008). Before
his research career at VTT, he had 10 years experience in indus-
trial research and development. He was with Flextronix (2001-2005),
Medikro (2000-2001), Honeywell (1995-2000), and the University of Oulu,
Oulu, Finland (1993-1994), where he received the M.Sc. (Tech.) degree in
1994. Before his graduation studies, he was an Entrepreneur and a Freelance
Programmer.

JANNE TAKALO-MATTILA is currently a
researcher with the VTT Technical Research Cen-
tre of Finland (VTT), Espoo, Finland. He received
the M.Sc. (Tech.) degree from the University of
Oulu, Oulu, Finland, in 2009. His current research
is focused on smart environments, networked
embedded devices, and Internet of things. From
2008 to 2014 at VTT, he has been a technical
expert and project manager in various projects,
including the European Union research projects,
joint research projects, and contract research projects.

ARTO YLISAUKKO-OJA received the M.Sc.
degree in electrical engineering. He has been
a Research Scientist with the VTT Technical
Research Centre of Finland, Espoo, Finland, since
1999. His research topics include low-power elec-
tronics, wireless sensor networks, semantic sensor
interfaces for resource constrained devices, near-
field communications, and wireless charging.

VOLUME 2, 2014

J. Kiljander et al.: Semantic Interoperability Architecture

IEEE Access

i The journal for rapid open access publishing

JUHA-PEKKA SOININEN (M’99) is currently a
Research Professor of Computing and Computer
Architectures with the VTT Technical Research
Centre of Finland (VTT), Espoo, Finland. He
received the M.Sc., Lic.Tech., and D.Sc. (Tech.)
degrees from the University of Oulu, Oulu,
Finland, in 1987, 1997, and 2004, respectively.
He has been a Research Scientist with VTT since
1988, Senior Research Scientist since 1996, and
Research Professor since 2007. He was the leading
expert in various large research projects with VTT, from 1993 to 2011,
including contract research projects, joint research projects, and the European
Union research projects. His current research deals with ubiquitous and
distributed computing, system architectures, platform-based design method-
ologies, system architecture evaluation methods, and system-level design
methods. He has been a reviewer of several international conferences, jour-
nals, and books. He has authored over 70 scientific publications.

VOLUME 2, 2014

TULLIO SALMON CINOTTI was born in
Bologna, Italy, in 1950. He received the degree
in electrical engineering from the University of
Bologna, Bologna, in 1974. He is currently an
Associate Professor with the School of Engi-
neering and Architecture, University of Bologna,
where he is also in charge of courses on computer
architecture, logic design, and interoperability of
embedded systems. He has a long-standing expe-
rience on joint research with primary Italian and
international academic, research, and industrial institutions. He has co-
authored papers written with researchers from Intel Labs, Hillsboro, OR,
USA, Nokia Research Center, Sunnyvale, CA, USA, Siemens Corporate
Technology, Princeton, NJ, USA, Telecom Italia Laboratory, Turin, Italy,
VTT, the Polytechnic of Milano, Milan, Italy, and the University of Kent,
Canterbury, U.K. His research interest is focused on embedded systems
and semantics-based data distribution architectures for environment-driven
multidomain ecosystems. He is the Coordinator of the University of Bologna
participation to the European research initiatives in the areas of open cultural
heritage, smart environments, and electric mobility.

873

