
J. Parallel Distrib. Comput. 73 (2013) 1337–1350
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Maximum-throughput mapping of SDFGs on multi-core SoC
platforms
Alessio Bonfietti a,∗, Michele Lombardi a, Michela Milano a, Luca Benini b
a DISI, Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
b DEI, Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

h i g h l i g h t s

• We face Max-Throughput Mapping and Scheduling of streaming applications (SDF) on MPSoC platforms.
• We develop a Constraint-based solver relying on an incremental algorithm to narrow the search space.
• The method is complete, but we devise heuristics to quickly guide search to high quality solutions.
• We perform an extensive evaluation to assess the method effectiveness and scalability.
• Adding incrementality speeds-up tree-search pruning by orders of magnitude.

a r t i c l e i n f o

Article history:
Received 22 December 2011
Received in revised form
15 May 2013
Accepted 23 May 2013
Available online 11 June 2013

Keywords:
Scheduling
Constraint programming
Mapping
Multi-core platforms
Acceleration of parallel execution

a b s t r a c t

Data-Flowmodels are attracting renewed attention because they lend themselves to efficientmapping on
multi-core architectures. The key problemof finding amaximum-throughput allocation and scheduling of
Synchronous Data-Flow graphs (SDFGs) onto amulti-core architecture is NP-hard and has been tradition-
ally solved by means of heuristic (incomplete) algorithms with no guarantee of global optimality. In this
paperwepropose an exact (complete) algorithm for the computation of amaximum-throughputmapping
of applications specified as SDFG onto multi-core architectures. This is, to the best of our knowledge, the
first complete algorithm for generic SDF graphs, including those with loops and a finite iteration bound.
Our approach is based on Constraint Programming, it guarantees optimality and can handle realistic in-
stances in terms of size and complexity. Extensive experiments on a large number of SDFGs demonstrate
that our approach is effective and robust.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

As the number of processors integrated on a single chip in-
creases with the fast pace dictated by Moore’s Law, multi-core
systems-on-chip (MPSoCs) are becoming truly distributed systems
at the micro-scale. A typical MPSoC [9,24] features a number of
computing tiles connected through a network-on-chip (NoC). A
tile hosts a processor and a local memory hierarchy, and com-
municates with other tiles using communication services pro-
vided by the NoC interface. Processors are often highly optimized
for domain-specific computation, with specialized instruction sets
and support for vectorial data-parallel execution. While intra-tile
parallelism is typically expressed through language intrinsics or
automatically discovered by compilers, inter-tile communication
is relatively expensive in time and power and it should be made

∗ Corresponding author.
E-mail address: alessio.bonfietti@unibo.it (A. Bonfietti).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.05.004
explicit by the programmer. Thus, data-flow (streaming) models,
which express computations as collection of processes communi-
cating through explicit channels with precisely defined production
and consumption rules, match very well the nature of the under-
lying execution platforms [29].

From the application viewpoint, requirements for high perfor-
mance and low power have increased at a breakneck speed in
many embedded computing domains like wireless communica-
tion, imaging, audio and video processing and graphics, pushed
by the demand for higher communication bandwidth, multime-
dia quality and realistic rendering. Applications in these areas are
highly parallelizable and feature significant functional parallelism,
which can effectively be expressed through a data-flow model of
computation, where data is processed in (pipelined) sequences of
computing stages with forks and loops to express alternatives and
state.

As discussed above, technology and architectural evolution as
well as application trends are motivating the use of data-flow pro-
gramming in embedded computing. For this reason increased re-
search effort is being focused on developing methods and tools for

http://dx.doi.org/10.1016/j.jpdc.2013.05.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2013.05.004&domain=pdf
mailto:alessio.bonfietti@unibo.it
http://dx.doi.org/10.1016/j.jpdc.2013.05.004

1338 A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350
efficiently mapping data-flow applications onto many-core MP-
SoC platforms [21]. The theoretical foundations of the data-flow
model of computation were studied in the seventies and eight-
ies [30], with the definition of several flavors of graph notations to
formally and precisely express various classes of data-flow com-
putational models, spanning the expressiveness vs. analyzability
trade-off curve [7]. Synchronous data-flow (SDF) is one of themost
widely used models (for details see Section 2), as it is sufficiently
semantically rich to express practical computations, while being
still analyzable with reasonable efficiency [31]. As of today, several
commercial and academic programming environments are avail-
able for SDF application specification, analysis andmapping [21,7].

As most of the data-flow applications are subject to real-time
constraints, a key problem that must be addressed by SDF map-
ping tools is throughput-constrained mapping (and/or throughput
maximization). An informal definition of SDF execution through-
put (see Section 2 for a formal definition) is the number of execu-
tions of an SDF graph in a unit of time. Applications usually come
with throughput constraints, such as decoded frames per second,
or processed polygons per second, and the key objective of a map-
ping tool is to find an allocation and scheduling of SDF nodes on
computing tiles so that application throughput constraints aremet.
This is a NP-hard problem, and it is usually solved by sequential
decomposition and incomplete search [32,43]. Additionally, even
though SDF execution ultimately becomes periodic, the execution
sequence within one period and the aperiodic initial transient can
be very long. This greatly complicates throughput computation
during the search of mapping and scheduling alternatives even for
SDF graphs with a low number of nodes. Hence, complete search
approaches were believed to be computationally intractable even
for the simplest SDF instances.

We propose an algorithmic framework for allocation and
scheduling of synchronous-data flow applications on a target ho-
mogeneous multiprocessor platform; the approach is complete,
namely if a throughput requirement is specified, a feasible solu-
tion is guaranteed to be found if it exists; in general, the solver
always finds the optimal solution if enough time is given. Incom-
plete approaches cannot offer such a guarantee. The method tack-
les the mapping and scheduling problem as a whole, avoiding any
sub-optimality due to decomposition; to the best of the authors’
knowledge this is the first complete approach which can handle
realistic and general SDF Graphs.

Our method is based on Constraint Programming (CP) [38], a
declarative programming paradigm based on constraint propaga-
tion and search (for details see Appendix). The efficiency of the
approach hinges on a global throughput constraint, maintaining
a tight bound on the maximum achievable throughput based on
the current state of the search; search nodes are pruned whenever
such bound becomes lower than an input throughput requirement,
or than the best solution found so far.We propose in the paper two
versions of the throughput constraint: the non-incremental and
the incremental version, the second reaching one order of mag-
nitude speed-up with respect to the former with very significant
benefits on scalability.

The paper is organized as follows. Sections 2 and 3 discuss re-
spectively the background and related works in the area. Section 4
details the Constraint Programming model and search strategy,
while Section 5 illustrates in detail the throughput filtering algo-
rithm. In Section 6 is about the experimental evaluation. Finally,
Section 7 concludes the paper.

2. Background: Synchronous Data-Flow Graphs

Synchronous Dataflow Graphs (SDFGs) [30] are used to model
periodic applications that must be bound to a Multiprocessor
SystemonChip. They allow themodeling of both pipelined stream-
ing and cyclic dependencies between tasks. To assess the perfor-
mances of an application on a platform, one important parameter
is the throughput. In the following we provide some preliminary
notions on synchronous data flow graphs used in this paper.

Definition. ASynchronousData-flowGraphs is a tupleG = ⟨A, D⟩

consisting of a finite set A of actors (nodes) and a finite set D of
dependency edges. A dependency edge d = (a, b, p, q, t) denotes
a dependency of actor b on a, with a, b ∈ A. When a executes, it
produces p tokens on d and when b executes, it consumes q tokens
from d. Edges may contain initial tokens tok(d) = tok(a, b) = t .

Actor execution is defined in terms of firings. An essential prop-
erty of SDFGs is that every time an actor fires it consumes a given
and fixed amount of tokens from its input edges and produces
a known and fixed amount of tokens on its output edges. These
amounts are called rates. The rates determine how often actors
have to fire w.r.t. each other such that the distribution of tokens
over all edges is not changed. This property is captured by the rep-
etition vector. Fig. 1 represents a simple Synchronous Data-Flow
graph with 4 nodes; the execution times are [A = 2, B = 5, C =

2,D = 1]. This graph will be used as an example throughout the
whole paper.

Definition. A repetition vector of an SDFGG is a function γ : A →

N such that for every edge (a, b, p, q, t) ∈ D from a ∈ A to b ∈ A,
p · γ (a) = q · γ (b). A repetition vector q is called non-trivial if
∀a ∈ A, γ (a) > 0.

The smallest non-trivial repetition vector is usually referred to
as the repetition vector. We say the SDFG completes an iteration
whenever each actor a has fired exactly γ (a) times. We refer to
each actor firing within an iteration as repetition. For instance,
the repetition vector of the graph described in Fig. 1 is [1, 2, 2, 3]
(the numbers on the arcs are the rates and the dots represent the
tokens).

SDFGs in which all rates equal 1 are called Homogeneous Syn-
chronous Data Flow Graphs (HSDFGs, [30]). Every SDFG G can be
converted to an equivalent HSDFG G′, by using the conversion al-
gorithm in [7]. The transformation procedure produces an homo-
geneous graph that has a node for any repetition of each actor of
the original SDF graph (i.e. γ (a) nodes for each actor a); as a conse-
quence the homogeneous graph is usually larger than the related
SDF.

In Fig. 2 we report the HSDFG corresponding to the SDFG in
Fig. 1. Note that, for example, actors B1 and B2 of the HSDFG
correspond to the actor B of the SDFG that has a repetition vector
γ (B) = 2. In the figure the (unary) rates are omitted.

2.1. Throughput

Throughput is an important design constraint for embedded
multimedia systems. The throughput of an SDFG refers to how
often an actor produces tokens. To compute throughput, a notion
of time must be associated with the firing of each actor (i.e., each
actor has a duration also called execution time) and an execution
scheme must be defined. We consider as execution scheme the
self-timed execution of actors: each actor fires as soon as all of its
input data are available (see [42] for details). In a real platform self-
timed execution is implemented by assigning to each processor
a sequence of actors to be fired in fixed order: the exact firing
times are determined by synchronizing with other processors at
run time.

Working with Synchronous Data-Flow models of computation,
it becomes natural to adopt a scheduling strategy which defines
only the allocation and let the run-time scheduler to decide the

A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350 1339
Fig. 1. Synchronous data-flow graph.

Fig. 2. Homogeneous SDF.

Fig. 3. Filtered homogeneous SDF.

Fig. 4. Single-iteration self-time execution.

start times. Considering the graph in Fig. 1, its single-iteration self-
timed execution can be expressed by the Gantt chart of Fig. 4. First
actor A is executed, it produces two tokens on (A, B) since the out-
rate of actor A on the edge is 2. The in-rate of actor B on the same
edge is 1; then B can fire twice concurrently. After both executions
of B, C can start. Its execution consumes 1 token on (B, C) and 3 on
(D, C) and produces 3 tokens on (C,D). Then only the actorD could
fire, because the actor C is constrained by the presence of only 2
tokens on (D, C). Actor D produces 2 tokens on (D, C) and enables
the firing of C whose execution enables the concurrent execution
of two instances of D that terminate the single-iteration self-timed
execution of the graph.

Note that turning an SDFG into the equivalent homogeneous
graph may produce multiple arcs between pairs of nodes (see
edges from D2 to C1 in Fig. 2). Therefore the homogeneous graph
should be simplified before throughput computation removing
multiple edges between two nodes. Fig. 3 shows the filtered graph
corresponding to the one in Fig. 2.

3. Related work

Data-Flow graphs are an extension of computational graphs, de-
fined, for the first time, in 1966 by Karp and Miller [27]. Their
studies focused on determinacy property and on termination con-
ditions. The problem of mapping and scheduling task graphs has
been widely studied (see, for instance, [34,39,46]), but the limited
descriptive power of task graphs asmodels of computationhas lead
to the development of graph models with a richer execution se-
mantic.

The Synchronous Data-Flow Model of Computation (SDF MoC)
has been proposed by Lee and Messerschmitt [30] to represent
digital signal processing (DSP) applications. This Data-Flow MoC
has been adopted in wide-ranging areas such as networking,
multimedia, high-definition digital TV and wireless base stations;
it can efficiently represent streaming applications such as mp3
playback [47], DAB channel decoding [8] and Software Defined
Radio [33].

Much work has been published on the scheduling of data-flow
graphs with real-time requirements. Researchers have mostly fo-
cused on incomplete (also called heuristic)mapping algorithms for
SDF allocation and scheduling (see [32,43]). The motivation for the
use of incomplete approaches is that both computing an optimal
allocation and an optimal schedule are NP-hard [18]. The inter-
ested reader is referred to [7] for an excellent, in-depth survey of
the topic.

Here we briefly describe state-of-the-art approaches to map-
ping and scheduling synchronous data-flow graphs that are classi-
fiable onto two separate sets: complete and heuristic (incomplete)
methods applied to Homogeneous SDFG, and heuristic methods
applied directly on SDF graphs.
HSDF Scheduling. The first class of approaches, pioneered by the
group lead by E. Lee [42], and extensively explored by other re-
searchers [7], can be summarized as follows. A SDFG specification
is first checked for consistency, and its non-null iteration vector
is computed. The SDFG is then transformed, using the algorithm,
described in [7] into an Homogeneous SDF graph (HSDF). The
HSDFG is then mapped onto the target platform in two phases.
First, an allocation of HSDFG nodes onto processors is computed,
then a static-order schedule is found for each processor. The over-
all goal is to maximize throughput, given platform resource con-
straints. Unfortunately, throughput depends on both allocation and
scheduling. However, the combination of possible mapping and
scheduling decisions leads to an exponential blow-up of the solu-
tion space.

With the widespread diffusion of multi-core processors, sched-
uling and allocation of data-flow applications onto parallel com-
puting platforms has received renewed interest. Kudlur et al.
described in [28] an ILP that unfolds and partitions a stream ap-
plication onto MPSoC architecture. Their approach consists of two
steps: a fission and partitioning step, performed through Integer
Linear Programming (ILP), to ensure work balancing, and then a
stage assignment step wherein each actor is assigned to a pipeline
stage for execution. An enhanced version of the same work was
presented in [14] by Choi et al..

Chatha and co-authors have proposed two methods to support
the compilation of streaming application onmulti-core processors.
The first, described in [12], uses fusion and fission operations to
schedule streams onto (SPM based) multi-core processors while
the second one, in [13], adopts a classic retiming technique. In
both works the method is not complete, therefore the optimality
is not guaranteed. They adopted the StreamIt language from MIT
as the input specification (see [45] for details). StreamIt is an
architecture-independent language with a synchronous data-flow
semantic, suppliedwith an efficient compiler, described in [25] and
in [41].

Ostler et al. devise, in [35], an ILP model for mapping streaming
applications on multi-core platforms; the approach tackles acyclic
applications, takes into account limited local memory capacity and
allows throughput improvement via task fission. Communications
are handled via double buffering, assuming exactly one DMA chan-
nel is dedicated to each processor. Within the specified assump-
tions the approach is optimal; it is important to observe that, since
only acyclic SDFGs are considered, computing a feasible schedule
is trivial once the mapping is specified.

Other approaches combine off-line/on-line scheduling tech-
niques. For instance FlexStream, presented in [22], is a runtime
adaptation system that dynamically re-maps an already parti-
tioned stream graph according to the number of processors avail-
able for heterogeneous multi-core systems.
SDF Scheduling. A different class of approaches [43] works directly
upon SDF graphs using simulation techniques, without an explicit

1340 A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350
HSDFG transformation. This approach has the advantage of avoid-
ing the potential blow-up in the number of nodes, with the dis-
advantage that if problem constraints are tight, incomplete
approaches do not find any feasible solution. These approaches use
a heuristic function to generate a promising allocation, and then
compute the actual throughput by performing state-space explo-
ration on the SDFGwith allocation and scheduling information un-
til a fixed point is reached.

Researchers from ST-Ericsson designed a scheduling strategy
that allows a heterogeneous MPSoC to handle a dynamic mix of
hard-real-time jobswhich can start or stop independently. To solve
this problem, a combination of Time Division-Multiplex (TDM)
schedule and static-order of actors per processor is applied [33].

The incomplete approaches summarized above cannot give any
proof of optimality, nor guarantee to find a feasible solution; ac-
tually, if the throughput requirement of the problem is tight, an
incomplete solver is likely to fail. Our work aims at addressing
this limitation, and proposes a complete search strategy which can
compute max-throughput mappings for realistic-size instances.
Our starting point is a HSDFG, which can be obtained from a SDFG
by a pseudo-polynomial transformation [7]. We develop a CP-
based solver which, given an architecture and an application de-
scribed through a SDF graph, finds either the optimal or a feasible
mapping and scheduling.

4. Problem definition

The problem considered in this paper is the allocation and
scheduling of an HSDFG on a target set of processors subject to
a throughput constraint. Given a HSDFG labeled with actor dura-
tions, given a target platform defined by a set of processors, the
problem is to assign each actor to a processing element and to de-
fine an ordering between actors allocated on the same processor
such that an input throughput constraint is satisfied and the exe-
cution is guaranteed to be resource contention free. Our approach
is complete, meaning that it is guaranteed to find a feasible so-
lution in case it exists. Moreover, the approach can easily handle
the optimization version of the problem, i.e. finding the maximum
throughput allocation and scheduling of an input application on a
target platform. This problem is strongly NP-hard.

The allocation and scheduling algorithm for SDFG we propose
in this paper is based on Constraint Programming. Constraint Pro-
gramming (CP) [17,38] is a programming paradigm used to solve
hard combinatorial problems. A constraint model is defined in
terms of variables and constraints. Each variable Xi has an associ-
ated domainDi containing values that the variable can assume (the
notation for linking variables and domains is Xi :: Di). Constraints
define combinations of consistent assignments. The model might
have an objective function defining a (possibly partial) order in the
solution space. Once the constraintmodel is stated, constraint solv-
ing is started by interleaving propagation (domains filtering proce-
dure) and search (further details in the Appendix).

4.1. Model

We devised a two-layer CP model: on one level the model fea-
tures two sets of decision variables, respectively representing allo-
cation and scheduling/ordering decisions; on the second level we
have a set of graph description variables working directly on the
HSDFG by adding and removing arcs and tokens as a consequence
of the allocation and scheduling decisions. For this reason, the two
models are linked via channeling constraints.

As far as the first level is concerned, let n be the number of actors
in the input HSDFG and let p be the number of processors in the
platform, then the decision variables are:
∀i = 0 . . . n − 1 : Pi ∈ [0 . . . p − 1] (1)
∀i = 0 . . . n − 1 : Ni ∈ [−1 . . . n − 1] (2)
Fig. 5. Concurrent task mapped on the same resource.

where Pi represents the processor allocated to actor i and Ni
represents the actor following actor i if allocated on the same
processor.

Pi and Ni variables are subject to a set of constraints. First
dependencies in the input SDFG cannot be violated: thus i ≺

j ⇒ Nj ≠ i. We say that an activity i precedes j, i ≺ j, if there
exists a path directed from i to j. Less intuitively, assuming that
i and j (allocated on the same unary processor) cannot execute
concurrently, the presence of an arc(j, i) with tok(j, i) = 1 in the
input HSDFG implies i to fire always before j, and therefore, Nj ≠ i.

Moreover, two nodes on the same resource cannot have the
same successor: Pi = Pj ⇒ Ni ≠ Nj. Then, a node i can be next
of j only if they are on the same processor: Pi ≠ Pj ⇒ Ni ≠ j and
Nj ≠ i. The −1 value is given to the last node of each (non empty)
processor:

∀ proc :

n−1
i=0

(Pi = proc) > 0 ⇒

n−1
i=0

[(Pi = proc) × (Ni = −1)]

= 1. (3)

Finally, the transitive closure on the actors running on a single
processor is kept by posting a nocycle constraint [36] on the related
N variables.

Note that we consider the mapping platform as an ideal archi-
tecture without any communication cost or buffer requirement.

The second model, instead, considers the (dynamically chang-
ing) graph structure and defined decision variables on it.We define
a matrix of binary variables ARCij ∈ [0, 1] such that ARCij = 1 iff
an arc from i to j exists. Existing arcs in the input HSDFG result in
some pre-filling of the ARC matrix, such that ARCij = 1 for each arc
(i, j, 1, 1, t) in the original graph. Channeling constraints link the
twomodels, i.e., allocation and scheduling decisions and graph de-
scription variables; first observe that tokenpositioning is implicitly
defined by the Ni variables and is built on-line only at throughput
computation time. As far as the Pi variables are concerned, the rela-
tion with ARC variables depends onwhether a path with no tokens
exists in the original graph between twonodes i, j. Let uswrite i ≺ j
if such path exists; then, if i ≠ j and neither i ≺ j nor j ≺ i hold:

Pi = Pj ⇒ ARCij + ARCji = 2. (4)

Constraint (4) forces two arcs to be added, if two independent
nodes are mapped to the same processor (e.g. nodes B1 and B2 in
Fig. 5).

If instead there is a path from i to j (i ≺ j), then the following
constraint is posted:

(Pi = Pj) ∧

k≺i

(Pk = Pi) = 0 ∧

j≺k

(Pk = Pj) = 0

⇒ ARCji = 1. (5)

The above constraint completes dependency cycles: considering
only tasks on the same processor (first element in the constraint
condition), if there is no task before i in the original graph (second
element) and there is no task after j in the original graph (third ele-
ment), then close the loop, by adding an arc from j to i. Fig. 6 shows
that, assuming an allocation of A, B1, C1 on the same resource, an

A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350 1341
Fig. 6. Pipelined task mapped on the same resource.

edge with a token is added from C1 to A. Finally, auto-cycles can
be added to each node in a pre-processing step and are not consid-
ered here. Since we are dealing with a throughput bounded appli-
cation, we need a constraint computing the throughput depending
on decisions taken during search. For this purposewe have defined
a novel Throughput Constraint (for details see Section 5) which is
satisfied if and only if an allocation of P andN exists that defines an
augmented graph with a throughput value higher than the current
bound. The constraint is global and has the following signature:

thcst(TPUT , [P0...n−1], [N0...n−1], [ARC(0,0)···(n−1,n−1)],W0...n−1)

where TPUT is a real valued variable representing the throughput,
[P0...n−1], [N0...n−1] and [ARC(0,0)···(n−1,n−1)] are defined as above,W
is a vector such thatWi is the computation time of actor i.

Note that with this constraint, we can easily find also through-
put maximal solutions (objective function z = max(TPUT)), by
iteratively solving a set of throughput bounded problems with in-
creasing values of throughput.

4.1.1. Communication buffers and latency
For the sake of simplicity, the model presented in this work is

based on an ideal MPSoC architecture, where communication is
considered as ideal (zero cost). However communication buffers
and latencies can be modeled in different ways, depending on the
target architecture. In this section we describe two approaches
to model buffers and latencies for two widely adopted MPSoC
architectural templates.

Tightly-Coupled Shared-Memory Cluster Architecture (e.g. P2012
Platform [5]): in this architecture all the processing units within
a cluster share a fast multi-banked on-chip L1 data memory.
The memory stores the buffers and the access and transfer cost
(i.e. communication latency) is the same for each processor. In this
case latencies’ time lags can be merged within the task execution
times.
Let now ω be the bandwidth of the communication channel,L be
the latency of a single token communication. The latency L of a
communication depends on the bandwidth ω and the size of the
transmission: i.e. the number of tokens tok the task produces

L =L ·
tok
ω

(6)

whereω has been normalized considering the size of a single token
(e.g. when ω = 2 the channel transmits two tokens concurrently).
Hence the final execution time Wi of a node i should be Wi =

Wi + Lin + Lout where Lin and Lout are the sum of the latencies of the
ingoing and outgoing communications, respectively. Furthermore,
the memory capacity (L1 size) and the buffer requirements can
be modeled1 through a global cumulative constraint [2]. The
constraint is satisfied iff, for each time instant, the sumof the buffer
allocated does not exceed the total capacity of the memory.

1 One of the advantages that the use of constraint programming (see Appendix)
has is that the definition of the model is loosely coupled with the search strategy
adopted. Hence adding further constraints to existing models, not only is easily
feasible but it could even help in making, with the constraint propagation, the
search for a solution more efficient and more effective.
Non-Uniform Memory Access (NUMA) Architecture: the tem-
plate in this scenario is based on a tile-based multiprocessor ar-
chitecture (widely described in [16]) in which multiple tiles are
connected by an interconnection network. Each tile contains a pro-
cessor and a memory containing the communication buffers. The
system has a Global Address Space, therefore the tasks and their
communication buffers should be allocated as near as possible.
Hence themodel presented in thiswork had to be drasticallymodi-
fied. In fact it should consider the buffer allocation problem and the
impact of the allocation choices on the communication latencies.
In this case latencies should be modeled through additional nodes
with variable durations depending on the allocation of the buffers
(e.g. see the approach in [40]) and each local memory capacity
should be modeled though a cumulative constraint [2] (avoiding
resource over-usage).

A trivial solution in these scenarios could be to force the al-
location of all the HSDFG nodes corresponding to repetitions of
the original SDFG nodes on the same processor (thus in NUMA ar-
chitectures, buffers could be allocated locally). However the ex-
periments show that without this constrained hypothesis forcing
the allocation, the search found much better solutions (see Sec-
tion 7.3).

5. Throughput constraint

The relation between decision variables and the throughput
value is captured in the proposedmodel bymeans of a novel global
throughput constraint, whose signature is:

thcst(TPUT , [P0...n−1], [N0...n−1], [ARC(0,0)···(n−1,n−1)],W0...n−1)

where TPUT is a real valued variable representing the throughput,
[P0...n−1], [N0...n−1] and [ARC(0,0)...(n−1,n−1)] are stated in Section 4.1,
W is a vector such thatWi is the computation time of actor i.

We devised a filtering algorithm consistently updating an upper
bound on TPUT (this is sufficient for a throughput maximization
problem).

Each time the graph is modified, by fixing an ARC variable or
taking an ordering decision, the constraint receives a new descrip-
tion of the graph, and computes the throughput value over it.

During search the throughput variable is constrained to be
within a lower and an upper bound. Initially the upper bound is
set to the intrinsic iteration bound of the starting graph. This value
always decreases during search. In fact, the application throughput
depends on the inverse of the longest cycle whose value increases
as search decisions are taken. On the other hand, the lower bound
is set to the throughput requirement of the application, if any; in
case we want to maximize the throughput value, the lower bound
is updated with the best solution found so far. Since the optimal
solution is found by iteratively improving feasible solutions, the
lower bound increases during search.

At any time during the solution process, if the upper bound be-
comes lower than the lower bound, the search fails and backtrack-
ing is forced.

5.1. Throughput algorithm

As stated in the Appendix, global constraints comprise efficient
filtering algorithms.

The filtering algorithm we propose extends the Maximum Cy-
cle Mean (MCM) algorithm [23] and [15], which in turn is based
on Karp’s algorithm [26]. The MCM algorithm is based on a re-
cursive formula which computes, starting from a source node, the
weight of each path (execution times of the considered nodes) of

1342 A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350
the graph. As soon as a cycle c is found, the throughput Thc is com-
puted. The final throughput value is the lowest found, that is the
weightiest cycle.

Th = min
c∈Cycles

Thc . (7)

The algorithm is based on two three-dimensional matrices:

• D(k,i,t) that stores the weight of the path. In particular each
element (k, i, t) is the maximum weight of a path of length k
from a node source s to i; the number of tokens in the path is
described with t . If D(3,2,1) = 13.4 means that at level k = 3
(i.e., three nodes far from the source s) there exists a path that
connects s to i = 2 with one token over its edges; if no such
path exists, then D(k,i,t) = −∞.

• Π(k,i,t) that saves the location of the predecessor of task i at
level k. In particular, such location consists of two coordinates:
the index of the task and its token number; note that the
predecessor level is k − 1. For instance Π(k,i,t) = (3, 2) means
that the actor i at level k has node 3 as predecessor (referred
to as idx(Π(k,i,t))); the number of tokens on the path from the
source (referred to as tok(Π(k,i,t))) is 2.

If n is the number of the tasks and Γ the number of tokens of the
original graph, both D and Π are (n + 1) × n × (Γ + n) matrices.

The algorithm is divided in three phases:

Step 1: Building the input graph
The input for the throughput algorithm is a ‘‘minimal’’ graph

built by adding arcs to the original HSDFG based on the current
state of the model. More precisely, an arc is assumed to exist
between actors i and j iff ARCij = 1; unbound ARC variables are
therefore treated as if theywere set to 0. Note that the computation
of a lower bound for the throughput would require to fix values for
unbound ARC variables as well. Let Vi,j[0, 1] (Vertex matrix) be a
matrix which defines for each couple of actors the presence of an
arc (Vi,j = 1 if ARCij = 1 exists, 0 otherwise).

Step 2: Token positioning
Nextwe construct a dependency graphDGwith the same nodes

as the original HSDF graph G, and such that an arc (i, j) exists in DG
iff either an arc (i, j, 1, 1, 0) exists in G (detected since ARCij = 1
and tok(i, j) = 0) or Ni = j. Note that a DG graph is a Direct Acyclic
Graph (DAG) augmented with the scheduling information of the
partial solution.

A tokenmatrix TK is then built, according to the following rules:

ARCij = 0 ⇒ TKij = 0 (8)

ARCij = 1 ⇒

TKij = 0 if i≺DG j
TKij = 1 otherwise (9)

where we write i≺DG j if there is path from i to j in DG. The rules
above ensure the number of tokens is over-estimated, until all N
and P are fixed. In the actual implementation, the dependency
check is performed without building any graph, while the token
matrix is actually stored in the constraint. By considering the graph
described in Fig. 3 and a hypothetical allocation of actors B1, B2
on the same processor, the modified graph is shown in Fig. 5.
Assuming that in the DG graph both nodes are independent the
resulting associated values of the Token Matrix are TKB1,B2 =

TKB2,B1 = 1. This is clearly an over-estimation of the number of
tokens. Whenever an ordering decision is taken, for example B1
≺ B2, the token matrix is changed with the following values:
TKB1,B2 = 0, TKB2,B1 = 1. Finally note that the token positioned
are only used in the throughput computation. They could be
considered as fake tokens as they do not represent real packets of
data.
Step 3: Throughput computation
For a HSDFG, the throughput equals the inverse of a quantity

known as the iteration period of the graph and is denoted as
λ(HSDFG); formally:
1
th

= λ(HSDFG) = max
C∈HSDFG

W (C)

T (C)

where C is a cycle in the HSDFG,W (C) =

i∈C Wi is the sumof the
execution time of all actors in C and T (C) =

(i,j)∈C TKij is the total

number of tokens on the arcs of C . The quantity maxC∈HSDFG
W (C)

T (C)
is

also called maximum cycle ratio (strictly related to maximum cycle
mean, see [23,15,26]) of the graph.

In [23] it is shown how to compute the iteration period as
the maximum cycle mean of an opportunely derived delay graph;
Karp’s algorithm [26] is used for the computation. In general
cycle mean algorithms cannot be used to compute the throughput
directly on a Homogeneous SDF. In fact, it is necessary to transform
the graph into a weighted directed graph. Unfortunately it has
been experimentally proven that this transformation is very time
consuming [19]. Here, we show that the transformation can be
avoided by using proper data structure; this enables a maximum
cycle mean algorithm to be used to compute the iteration period
directly on a HSDFG. This is done by exploiting the third dimension
(token dimension) of the matrices D and Π of the data structure,
in the sense that they can store paths with different numbers
of tokens. Karp’s algorithm works on a set of two-dimensional
matrices; in fact, the mcm algorithm considers a single token on
each edge. We introduce a third matrix dimension to keep track of
the number of tokens on the paths.

The basic idea is that, according to Karp’s theorem, the critical
loop constraining the iteration period can be found by analyzing
cycles on the worst case k-length paths starting from an arbitrary
source. Since no cycle can involve more than n nodes, considering
k-length paths with k up to n is sufficient. Starting from a source
node, we traverse the graph, storing for each node the critical
path in the Matrices D and Π . The critical path is the path with
maximum cycle ratio; namely, assuming the same number of
tokens, the path with greater execution time. Each time a cycle is
detected, the throughput bound is updated.

Algorithm 1: Throughput computation - build D table
Data: Let s be the source node
Data: Let all D(k,i,t) = −∞, Π(k,i,t) = NIL

1 begin
2 Q+

0 = {(s, 0)};
3 Q−

= ∅;
4 D(0,s,0) = 0;
5 Π(0,s,0) = −1;
6 for k = 0 to n do
7 forall the (i, t) ∈ Q+ do
8 forall the j ∈ A+(i) do
9 cycle = false;

10 tnx = t + TKij;
11 currPos = (k, i, t);
12 nextPos = (k + 1, j, tnx);
13 WPj = DnextPos;
14 WPi = DcurrPos + Wj;
15 ifWPi > WPj then
16 Q−

= Q−
∪ {i};

17 DnextPos = WPi;
18 ΠnextPos = (i, t);
19 if WPi > Bnd then
20 Find loops on level k;

21 if not cycle then
22 Q+

k+1 = Q+

k+1 ∪ {(j, tnx)};

non-trivial. The pseudo code for the throughput computation is
reported in Algorithm 1, where A+(i) denotes the set of direct

A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350 1343
successors of i. Q− is the set of nodes visited while Q+

k store,
for each level k the set of nodes to visit and their token level.
Once the table is initialized, a source node s is chosen. The choice
has no influence on the correctness of the method, but a strong
impact on its performance, hence choosing an arbitrary node is
not recommended. We face the problem by reordering the actors
with a heuristic function. The function is based on scores computed
using the following expression:

scorei =

0≤j≤task

Depj,i (10)

where Depj,i is 1 if there exists a path without tokens that connects
i to j, 0 otherwise. This structure can be easily computed from
matrices V and T .

Next, the procedure is initialized by settingD(0,s,0) to 0 (line 4, 5)
and adding s to the list of nodes to visit Q+

0 (line 2). For each node i
in Q each successor j is considered (lines 7, 8), and, if necessary,
the corresponding cells in D and Π are updated to store the
k-length path from s to j (lines 15 to 18). Once a cell is updated, if
the weight of the path is higher than the current bound Bnd, loops
are detected as described inAlgorithm2. If the node jdoes not close
a cycle (line 21), it is added to the Q+

k+1 queue and thenwemove to
the next k value. A single iteration of the algorithm is sufficient to
compute the throughput of a strictly connected graph; otherwise,
the process is repeated starting from the first never touched node,
until no such node exists.

The loop finding procedure (Algorithm 2) is started when a cell
in D at a specific level (let this be k) is updated. The algorithm
moves backward along the predecessor chain (Π(k + 1, j, tnx) is
the predecessor of current node) until a second occurrence of the
starting node j is detected (a′

= j in line 5) and a cycle is found.
If this loop constrains the iteration period more than the last one
found so far (line 11), this is set as a critical cycle. The algorithm
also stops when the start of D is reached (in line 4).

Algorithm 2: Throughput computation - finding loops
Data: Let i be the node considered and t its tokens lvl
Data: Let j be the successor and tnx = t + TKij its tokens lvl
Data: Let DnextPos be the cell updated, nextPos = (k + 1, j, tnx)

1 begin
2 define a′

= i;
3 define t ′ = tnx;;
4 for z = k to 1 do
5 if j == Πz,a′,t′ then
6 define Π ′

= Πz,a′,t′ ;
7 define backPos = (z − 1, idx(Π ′), tok(Π ′));
8 defineWThp = DnextPos − DbackPos;
9 define TThp = tnx − tok(Π ′);

10 cycle = true;

11 if
WThp
TThp

> Bnd then

12 Bnd =
WThp
TThp

;

13 return;;

14 define temp = a′;
15 a′

= idx(Πz,temp,t′);
16 t ′ = tok(Πz,temp,t′);

Example. Fig. 8 presents matrices D and Π with regard to the
subgraph composed by actors C and D (5 nodes) of Fig. 3 with
execution time respectively 2 and 1. The subgraph is reported in
Fig. 7A. Assuming the source node is C1, Fig. 8 reports the sub-
matrices Di,j,0, Πi,j,0, Di,j,1 and Πi,j,1.

Node C1 has two outgoing edges: (C1,D1) and (C1,D2) stored in
the matrix in cell D1,2,0 and D1,3,0. Let us now consider level k = 1:
the only non-negative entries are the ones for D1 and D2. D1 has
Fig. 7. Sub-graphs of Fig. 2.

Fig. 8. Matrices Di,j,0, Πi,j,0,Di,j,1 and Πi,j,1 .

an outgoing edge that enters in C1, that is stored in the cell D2,0,1;
at run-time when C1 entry is processed, the ‘‘find loop’’ procedure
detects the cycle C1 → D1 → C1. The path is deduced by using the
information stored in matrix Π : the cell Π2,0,1 = 2, 0 (actor C1)
refers to cell D1,2,0 = 0, 0 (actor D1) that points to cell D0,0,0 (actor
C1 again). By finding a loop, the algorithm infers a new bound over
the throughput, namely one over the sum of the execution times:
1

2+1 = 0, 333; the value is computed based on the starting and

ending cell: tok(D2,0,1)−tok(D0,0,0)

D2,0,1−D0,0,0
.

Then the algorithm can proceed by considering edges (D1, C2)
and (D2, C1): the former updates the cellD2,1,0 = 3while the latter
updates the cell D2,0,1 with value 3. However, since the current
value of the same cell is 3, no change is performed. This means
that there exist two different paths (namely C1 → D1 → C1 and
C1 → D2 → C1) with the same length (2 steps) that connect
the source actor with the same end node; since they have the
sameweight (computation time), they are equivalent, and only one
is stored. The algorithm, then, computes all the remaining paths
of the subgraph considered and finds, as expected, the iteration
bound; this corresponds to the cycle (C1 → D1 → C2 →

D2 → C1) that refers to the throughput of the graph, that is 1
6

tok(D4,0,1)−tok(D0,0,0)

D4,0,1−D0,0,0

. Note that by finding new longer loops, the

upper bound always decreases; hence, if at any step a cycle is found
such that the resulting throughput is lower than the minimum
value of the TPUT variable, then the constraint fails. Moreover, it
is easy to prove that no more than 1 token can be collected by
traversing a sequence of nodes on a single processor: the filtering
algorithm exploits this property to improve the computed bound
at early stages of the search,where thenumber of tokens is strongly
overestimated (see Section 5.4).

Although the throughput computation is rather efficient, exper-
imental tests show that its computational time takes more than
the 70% of the total search time. In fact, every time the constraint
is considered, it has to re-compute the throughput on the entire
modified graph. Therefore, we propose an incremental version of
the constraint that avoids the re-computation of the throughput
starting from scratch.

1344 A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350
5.2. Incremental algorithm

In this section we describe an incremental filtering algorithm
that enables to achieve over one order ofmagnitude speed upw.r.t.
the non-incremental version, therefore increasing scalability and
enabling the solution of harder and larger problems.

Note that the state of the constraint, referred to as Υ , is defined
by the data structures Υ ≡ ⟨D, Π, V , TK⟩. During search such
data structures are modified at each search node and restored on
backtracking. In detail, the data structure contains:

• Matrix Dk,i,t : it stores the maximum weight of the k-arc path
with t tokens from a source node s to actor i.

• Matrix Πk,i,t : it stores the predecessor of the corresponding
element of D.

• Matrix Vi,j[0, 1] (Vertex matrix) which defines for each couple
of actors the presence of an arc (Vi,j = 1 if i → j exists, 0
otherwise)

• Matrix TKi,j[0, inf] (Token matrix) which defines the number of
tokens on the edge between nodes i and j.
Clearly, TKi,j > 0 only if Vi,j = 1, that is one or more tokens can
exist between two nodes if and only if there is a corresponding
edge.

• Throughput value of the longest cycle.

At the root node, the data structures are initialized from the
original graph, getting state Υ0. The iteration bound of the graph
is computed and used to shrink the throughput variable domain.
At every search node, the state Υ and the throughput value are
updated on the basis of graph modifications.

In particular, during search the graph is modified either by

• Adding arcs (arc append operation)
• Adding tokens (token append operation)
• Removing tokens (token remove operation).

Edges are removed only in backtracking. Therefore they are not
considered as possible graph modifications. Edges and tokens are
added (tokens are also removed) in the graph for ordering the ex-
ecution between actors allocated on the same processing element,
as explained in Section 4.1.

At each invocation of the constraint, a new state Υnew is com-
puted starting from the previous one Υold; the procedure requires
one to know the current (modified) graph G, described by its Ver-
tex and Token matrices. The update procedure consists of twomain
phases:

• Gathering changes: in this phase the current graph structure is
compared to the previous one. Differences are stored in a proper
data structure called UPDATES consisting of a set of dynamic
queues UPDATES(k) (one for each level in the D matrix but the
last one). Each queue stores triples (i, j, t), where i and j are
respectively the source and the destination nodes of the arc (i, j)
to be re-computed and t is the number of tokens collected along
the path to i. Note that, joining triples (i, j, t) and the index k of
the structure UPDATES, we compute the coordinates, in D and
Π , of the source and destination cells: in fact, (k, i, t) refers to
the starting node while (k + 1, j, t + TKi,j) is the destination
node.

• Updating the values: in this phase, arcs in the UPDATES(k)
queues are processed and the corresponding elements of
matrices D and Π are re-computed, possibly identifying new
cycles.

In the following, we describe in detail the algorithmic steps
performed in each phase for the three possible types of graph
modifications (arc append, token append, token remove) and the
update phase.
Algorithm 3: Arc Append Operation
Data: Let e = (i, j) be an arc appended from node i to j
Data: Let n be the number of the graph nodes
Data: Let Γ be the sum of the original graph tokens

1 begin
2 for level k in 1..n and level t in 1..Γ + n do
3 if D(k,i,t) ≥ 0 then
4 UPDATES(k) → push(i, j, t);;

5.2.1. Gathering changes for an arc append operation
Let e = (i, j) be an arc added from node i to j (see Algorithm

3). Intuitively, adding an arc creates new paths containing node i;
such paths may possibly cover (in terms of weight) existing ones
and thus update the D matrix cells referring to i. In this step we
want to collect all matrix cells that need to be modified.

We remind that a path crossing node i at level (k, i, t), necessar-
ily has D(k,i,t) ≥ 0, since D(k,i,t) is the maximum weight of a path
of length k from a source node s to i. Therefore, we should iden-
tify in the matrix D all the elements with Dk,i,t ≥ 0 (line 3) and
insert the triple (i, j, t) into UPDATES(k) (line 4); this will trigger a
re-computation of cells D(k+1),j,t+TKi,j in the update phase.

5.2.2. Gathering changes for a token append operation

Algorithm 4: Token Append Operation
Data: Let e = (i, j) be an arc appended from node i to j
Data: Let n be the number of the graph nodes
Data: Let Γ be the sum of the original graph tokens

1 begin
2 for level k in 1..n and level t in 1..Γ + n do
3 if Dk,i,t ≥ 0 then
4 UPDATES(k) → push(i, j, t);;
5 if idx(Πk+1,j,t) == i then
6 for level u′ in n do
7 if (u′

! = i) && (u′
! = j) && (Vu′,j == 1) then

8 for level k′ ≤ k do
9 if (Dk,u′,k′ ≥ 0) && (k′ + TKu′,j == t) then

10 UPDATES(k) → push(u′, j, k′);;

Let e = (i, j) be the arc where we add a token. If the modifica-
tion involves the insertion of both one arc and one token, the token
modification is not considered and the only procedure run is that
for the arc append. Otherwise, if the edge already exists (see Algo-
rithm 4), the added token results in the modification of an existent
path; the modified path may (a) cover other paths in D and (b) un-
cover previously covered ones.

Detecting situation (a) requires to process the arc e in exactly
the same fashion as Section 5.2.1. The only difference is that, for
each cell Dk,i,t ≥ 0 (line 3) the triple (i, j, t) (line 4) will trigger a
re-computation of D(k+1),j,(t+1) in the update phase.

Detecting whether the modified path uncovers existing ones
(b) deserves a more detailed explanation. In particular, each cell
in Dk,i,t ≥ 0 corresponds to a path with k accumulated tokens
and including node i. The addition of the new token uncovers other
paths in D if, at the next level k + 1:

1. there is a node j having i as predecessor
2. the node i is the predecessor of j on a path with t accumulated

tokens, as the arc e = (i, j) previously had no token.

Formally, a re-computation of the cell D(k+1),j,t (referring to the j
node) is required if Π(k+1),j,t = i (line 5). Since node j has lost its
former predecessor i, performing the update requires to consider
all paths ending in j at level k + 1. In practice this is done by
reconsidering all arcs from nodes u′ to j (lines 6–8), such that at

A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350 1345
level k it holds Dk,u′,t ′ ≥ 0 (i.e. they are part of a path at level k).
Hence,we have to append intoUPDATES(k) all triples (u′, j, t ′) such
that Dk,u′,t ′ > 0 (for every t ′ ≤ t) (lines 9, 10); this will trigger the
re-computation of D(k+1),j,t in the update phase.

5.2.3. Gathering changes for a token remove operation

Algorithm 5: Token Remove Operation
Data: Let n be the number of the nodes
Data: Let Γ be the sum of the original tokens
Data: Let TK(i,j) be the number of tokens of the arc (i, j)
Data: Let e = (i, j) be an arc appended from node i to j

1 begin
2 for level k in 1..n do
3 if Dk,i,t ≥ 0 then
4 UPDATES(k) → push(i, j, t);;
5 if Π(k+1),j,(t+1) == i then
6 for level u′ in n do
7 if (u′

! = i) && (u′
! = j) && (Vu′,j == 1) then

8 for level k′ ≤ t do
9 if (Dk,u′,k′ ≥ 0) && (k′ + TK(u′,j) == t) then

10 UPDATES(k) → push(u′, j, k′);;

This is the dual of the previous case (see Algorithm 5). Simply
at point (a) one has to re-compute cell D(k+1),j,t instead of
D(k+1),j,(t+1). At point (b), if Π(k+1),j,(t+1) = i (note the t + 1
index), then cellD(k+1),j,(t+1) needs to be re-computed (line 9); this
requires to reconsider arcs (u′, j) for each Dk,u′,t ′ ≥ 0 (with t ′ ≤ t)
(lines 10–14).

5.3. Updating the values of Di,j,k

In this phase the algorithm processes the D matrix, by increas-
ing values of the k index. At each level k, all triples in UPDATES(k)
are extracted; based on the (i, j, t) values in the triple, the proper
cell of the D matrix is reconsidered (namely D(k+1),j,(t+TKi,j)). If the
computed value is higher than the current value of the cell, the D
and Π matrices are updated if

D(k+1),j,(t+TKi,j) < Dk,i,t + Wj (11)

whereWj is the execution time of actor j and TKi,j is the number of
tokens of the arc (i, j).

Next, the performed update has to be propagated recursively:
this is done by inserting into UPDATES(k+1) a triple (j, j′, t+TKi,j)
for each outgoing arc having j as source (successors).

During this phase, new and weightier cycles can be found. The
weightiest one is the critical path that impacts the throughput
value of the graph.

Example. Let us consider again the subgraph shown in Fig. 9A. The
current state of thematrices D andΠ is described in Fig. 8. Assume
now that the solver modifies the graph adding the edge (D3, D2)
as reported in Fig. 9B. When gathering changes, the incremental
algorithm detects that the actorD3 (the source of themodification)
has been considered only in the cell D(3,4,0): as consequence the
triple (4, 3, 0), that stands for (D3,D2, 0), is pushed inUPDATES(3).

Next, the triple is extracted and evaluated in the updating phase:
note that the edge (D3, D2) now ‘‘points’’ to the cell D(4,3,0) = −∞.
Then, Inequality (11) is checked (−∞ < D(3,4,0) +WD3 = 5+ 1 =

6, withWD3 execution time of D3) and the cells D(4,3,0), Π(4,3,0) are
updated with values D(4,3,0) = 6 and Π(4,3,0) = (4, 0). Since some
cell has been updated, the algorithm has to propagate the changes.
This is done by pushing intoUPDATES(4) the triple that refers to the
successor C1 of the node D2: the triple is (3, 0, 0). When this triple
Fig. 9. Sub-graphs of Fig. 2.

Fig. 10. Matrices Di,j,0, Πi,j,0,Di,j,1 and Πi,j,1 .

is pulled from the vector UPDATES(4), Inequality (11) is evaluated
and the cells D(5,0,1) = 7, Π(5,0,1) = (3, 0) are updated.

Moreover, the ‘‘loop find’’ procedure finds a new critical cycle
that impact on the throughput upper bound. The new cycle is
C1 → D1 → C2 → D3 → D2 → C1) that refers to the
throughput of the graph that corresponds to throughput value 1

7
tok(D5,0,1)−tok(D0,0,0)

D5,0,1−D0,0,0

. The modified matrices D and Π are reported

in Fig. 10.
The theoretical worst-case complexity of the incremental

algorithm is O(n4), the same as the non-incremental version.
However, in practice the number of performed operations is much
lower, as pointed out by the experimental results (see Section 7). In
fact, the average complexity of the incremental algorithm depends
on the number of graphmodifications, and this value is rarely high.

5.4. Further optimizations

In this section we describe several improvements to the global
throughput constraint described in Section 5 that speed up the
throughput computation. Optimization concerns three aspects:
first, the non-strictly connected components are removed as they
do not contribute to the throughput computation, the cycles are
partitioned into multiprocessor and single processor cycles and
considered separately. In the followingwedetail the optimization’s
performance:

5.4.1. Removing the non-strictly connected components
Since the throughput value is cycle dependent, nodes not be-

longing to any cycle are useless. A filtering algorithm has been
implemented to recursively remove the non-strictly connected
components from the graph. The result is a graph composed by a
set of strictly connected sub-parts.

5.4.2. Single-processor execution time bound
A first very trivial bound on the throughput value can be

computed by considering cycles on each processor. During search,
as actors are allocated, edges and tokens are added to the graph
to guarantee the non overlapping execution of the nodes over the

1346 A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350
Fig. 11. An HSDFG allocation example.

Fig. 12. An HSDFG allocated and optimized.

processors. This is done by setting a cyclic path that orders the actor
execution over each processor.

Let us call Ωp the sum of the execution times of each actor
allocated on processor p. Ωp is the inverse of the maximal
throughput (Tpp) that the processor p can achieve: Ωp =

1
Tpp

=
i∈Ip Wi , where Ip is the set of actors allocated on p and Wi is the

execution time of the actor i.
Tpmin =

1
maxp∈Proc Ωp

is a throughput upper bound that must
be higher than the current lower bound otherwise the search is
stopped and the solver backtracks.

5.4.3. Single-processor cycle pruning
The key idea is that a processor p can be part of amultiprocessor

cycle if and only if its actors have at least one input and one
output edge that connect them to actors onto other processors.
We can now remove every remaining single-processor cycle, since
its impact over the throughput has been considered by computing
TPmin. The result is a reduced graph which consists of actors
allocated on processors that communicate with each other.

These optimizations filter the graph by removing nodes that do
not contribute to the throughput computation.

Consider for example the HSDFG reported in Fig. 11; it has
eight actors allocated onto four different processors (I. . . IV). It
is composed only by strictly connected components, so the first
optimization (Section 5.4.1) is not employed. Then, assuming that
the computation of Ωmax

p does not force a backtrack on the search
process (see Section 5.4.2), the latter optimization is executed (see
Section 5.4.3).

Since the actor A, allocated on processor I, has only outgoing
arcs, it cannot be part of a multiprocessor cycle. Thus it is removed
from the graph. As a consequence, actors allocated on II (B1 and
B2) ‘‘lose’’ their ingoing edges. For this reason they are recursively
removed.

The algorithm, in this example, computes the bound over
the subgraph composed by actors C1, C2,D1,D2,D3 reducing the
overall computation timeof the throughput constraint (see Fig. 12).

6. Search

CP problems are generally solved via tree search. Constraint
propagation is used to narrow the search space, but many branch-
ing choices still have to be explored during search. Hence, the
efficiency of CP solvers heavily depends on good heuristics to pri-
oritize branching decisions. Themain purpose of a search heuristic
is to quickly find a solution that ensures a tight bound to drastically
reduce the search space.
Search Heuristics. Experimental tests evidenced that branching
over resource allocation variables has far-reaching implications
over the throughput values, therefore our heuristic function
evaluates these variables first. Focusing on the more ‘‘decisive
variables’’ first is more likely to lead to good solutions.

The heuristic function we propose is divided into two compo-
nents:

• the variable selection heuristic intuitively gives priority to
actors whose execution has more impact on the throughput
value. This is achieved by giving higher rank (low value) to
tasks with longer execution time and also giving priority to
actors whose execution enables the execution of other nodes.
The node i chosen by the heuristic is the onewithminimal value
of the following expression:

α · Tmax
τi

+
β · depi
Dmax

(12)

where Tmax corresponds to the maximal node execution time,
τi is the execution time of the node i. depi corresponds to
the number of nodes which precede actor i, and Dmax the
maximum over these values (a node with a low depi

Dmax means
that it is execution depends on few other nodes, therefore it
could execute earlier than a node with a higher depi

Dmax , i.e. whose
execution depends on more nodes). The heuristic function
combines two distinct components, with relative weight set by
two coefficients. The coefficients α and β have been defined
experimentally, and their values are respectively 0.68 and
0.32 (α = 1 − β).

• The value (resource) selection heuristic beside balancing the
load, tends to allocate on the same processor actors that are
tightly linked by precedence constraints. This function tries to
reduce the number of dependencies between tasks on different
processors. This is achieved by selecting first the processor p
that minimizes the following expression:

δ · WLp
WLmax

+
θ · conp

Cmax
(13)

where WLp corresponds to the actual processor workload,
i.e., the total execution time of the actors allocated on it.WLmax
is the highest workload over all processors. The value conp is
the total duration of the nodes that are non-dependent on p, and
Cmax is the highest of these numbers. The coefficients δ and θ
are 0.79 and 0.21 respectively.

Note that the coefficients of the heuristic functions have been
experimentally tuned: 1000 heterogeneous instances were solved
with 20 different combination of coefficient values. The values of
the best average solution quality were chosen.

The experimental results show (see Section 7) that the de-
scribed heuristics obtain one order of magnitude speed up w.r.t.
search using lexicographic ordering. Finally, symmetry due to ho-
mogeneous processors are broken at search time; namely, when-
ever an allocation decision has to be taken, if there is more than
one free processor, the one with the lowest index is chosen.

7. Experimental results

Wehave extensively evaluated our approach for assessing three
aspects: (1) the performance of the incremental throughput al-
gorithm in comparison with the non-incremental version, (2) the
scalability of the allocation and scheduling SDFG framework and
(3) the quality of the solution found. The synthetic instances were

A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350 1347
Table 1
Search and constraint execution times and speed-up.

Type Node SrcNInc SrcInc SrcSpUP CstNInc CstInc CstSpUP

Cyclic
10 2.022 0.64 2.174 1.443 0.11 11.88
12 35.86 2.72 12.18 27.86 0.88 30.66
15 3504.43 37.64 92.11 2980.28 9.43 315.04

Strictly connected
10 3.063 0.89 2.421 2.264 0.15 14.12
12 58.29 4.32 12.49 46.99 1.3 35.15
15 4231.02 52.64 79.18 3546.98 10.92 323.81

Acyclic
10 3.88 1.213 2.19 2.77 0.16 16.31
12 105.48 14.23 6.41 82.87 1.94 41.72
15 5968.58 143.58 40.57 5106.05 18.89 269.31
Fig. 13. Graphical representation of the speed-UP.

built by means of the sdf3 (see [44]) task-graph generator, de-
signed to produce graphs with realistic structure and parameters.2
The instances were solved using a workstation with a 3.3 GHz Core
2 Duo processor and 8 GB of RAM. The system described so far was
implemented on top of ILOG Solver 6.3.

7.1. Incremental algorithm evaluation

The following section proves the effectiveness of the proposed
incremental algorithm (see Section 5) by comparing its computa-
tional time with respect to its non-incremental version on a set of
4500 instances.Wehave generated three sets of realistic task graph
instances featuring 10, 12 and 15 nodes. Each set includes cyclic,
acyclic and strictly connected graphs. For these experiments we
assume that two homogeneous processors are available.

In Table 1 the first two columns (SrcNInc, SrcInc) refer to the To-
tal Search Time for finding the solutionwithmaximum throughput
with the non-incremental and incremental algorithm version. We
can see that the solver with the incremental algorithm runs up to
90 times faster (see the speed-up column, SrcSpUP). The values in
Table 1 represent the average over 500 instances. The remaining
three columns (CstNInc, CstInc, CstSpUP) report respectively the
computational times of the throughput filtering algorithm and the
corresponding speed-up. The speed-up column shows that the in-
cremental filtering algorithm gains over one order of magnitude
speed-up w.r.t. its non-incremental version. Moreover the speed-
up tends to increase with the dimension of the problem instance.
The acyclic graphs are the most tough to solve, as they feature rel-
atively fewer arcs compared to the cyclic and to the strictly con-
nected ones; this results in a higher number of possible scheduling
choices and a larger search tree.

2 The generator tends to produce tasks with high execution time variance
(therefore representing the difference between the loading/storing task w.r.t. the
faster executing ones) and with an average number of outgoing arcs that ranges
from 1.1 to 1.3. These coefficients produce SDF graphs that, transformed into
HSDFG, will resemble to applications with high data-parallelism.
Table 2
Search execution times.

Node CMedian CMax AMedian AMax

10 0.12 11.84 0.53 13.44
12 0.96 36.84 1.98 47.77
14 12.67 146.75 27.15 275.56
16 63.33 446.24 96.08 659.32
18 187.64 837.32 269.43 1134.37

Fig. 14. Relative algorithms computation time.

The problem faced is NP-hard and clearly the computational
time grows exponentially in the instance dimension. However,
the reduced time for constraint computations in the incremental
solver increases scalability and enables the solution of harder and
larger problems.

This is clear in Fig. 13, where the two reported lines represent
the total time for the throughput constraint; the x axis has
an entry for each instance. The dotted line refers to the non-
incremental solver, the solid line to the incremental one. Instances
are sorted according to the number of nodes.We cannotice that the
throughput computation time for the new incremental algorithm
grows much more slowly.

The table in Fig. 14 shows the relative amount of time that the
algorithm computation absorbs during the search. It is evident that
the new algorithm is definitely faster and lighter. Its impact on
the search time is lower than 20% of the total time while the non-
incremental version time exceeds 70%. Further experiments show
the average impact on the search time using the non-incremental
algorithm with the optimization described in Section 5.4 is 57.3%.

7.2. Overall solver experimental evaluation

We have evaluated the scalability of our approach on vari-
ous sets of synthetic instances, designed to match structure and
features of realistic applications. We considered both cyclic and
acyclic Homogeneous Synchronous Data-Flow Graphs. In partic-
ular our approach tends to be more effective on cyclic graphs; in
fact, if a graph contains cycles, it has an implicit throughput upper
bound defined by the longest loop in the graph. In contrast, acyclic
graphs have no implicit bound and expose the highest parallelism:
this makes them the most challenging instances.

For this experiments we assume that four homogeneous pro-
cessors are available. The generated graph have been divided ac-
cording to the number of nodes (from 10 to 18). Table 2 presents
the median and maximum computing time for cyclic (2nd and 3rd
column) and acyclic (4th and 5th) instances. A time limit of 1200 s
was set on all the experiments. As expected, the average running
time grows exponentially with the size of the instances. However,

1348 A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350
Table 3
Experiments on real benchmarks.

Name Nodes Arcs OPT SMS (%) SDF 3 (%) 5 s (%) 10 s (%) 30 s (%) 60 s (%) 300 s (%)

Sobel 5 15 0.001 0 0.62 0 – – – –
JPEG2000 8 10 0.07 0 5.29 0 – – – –
Motion JPEG 12 15 105.56 8.12 0 0 0 0 0 0
MPEG 12 14 75.91 6.45 7 10.84 10.84 10.84 10.84 0
MPEG-2 12 14 53.31 9.46 47.7 10.34 10.34 0 0 –
the solution time is reasonable for graphs up to 20 nodes which is
a realistic size for many real world applications.

To the best of the authors knowledge, this is the first com-
plete approach that handles cyclic/acyclic synchronous data-flow
graphs; this makes any comparison with existing methods more
difficult, as they are all incomplete. Incomplete approaches feature
higher scalability, but provide sub-optimal solutions.

We compare our method on five real benchmark with two
state-of-the-art incomplete approaches: (1) the Swing Modulo
Scheduling (SMS) approach, used by the GCC compiler [20] and
(2) the ‘‘SDF 3’’ tool, presented in [44]. In order to have a fair
comparison, both approaches have been slightly modified. In
particular (1) SMS has been re-implemented considering CPU
registers as MPSoC cores while (2) ‘‘SDF 3’’ has beenmodified along
with the authors by disregarding memories/latencies constraints.
The focus of these experiments is to assess the effectiveness on
practically significant embedded multimedia applications, such
as Sobel, JPEG2000, Motion JPEG, MPEG and MPEG-2. These
instances were developed as benchmarking work for the Mapping
Applications to MPSoCs 2009workshop [4].

Results are presented in Table 3. The first three columns report
the name of the application, the number of tasks and the number
of arcs, respectively. The following three columns (4–6) refer
to the optimal solution computation time (solver runs until the
optimality was proved) and optimality gap of the solution found
by both approaches. The optimality gap represents the distance
of the solution Sol from the optimal one Opt and it is computed
in the following mode: Gap(%) = 100 ∗

Opt−Sol
Opt . Note that the

SMSmethod found all the solutions within 5 s while SDF 3 within a
second. Each following column (7–11) refers to a different search
time limit (5, 10, 30, 60, 300 s respectively) and presents the
optimal gap of our approach. All the instances were optimally
solvedwithin 106 s. The easiest instances, Sobel and JPEG2000were
solved within a second. TheMotion JPEG solution computed within
the first five seconds is the optimal solution (it is proved after
105.56 s) while the SMS solution features a 8.12% gap. For both
MPEG and MPEG-2 applications, the SMS approach initially found
a better solution; however note that our approach computes the
optimal within 75.91 and 53.31 s respectively. The ‘‘SDF 3’’ tool is
the fastest approach, however its solutions present an average gap
of 12.1% (with a peak of 47.7% in theMPEG-2 benchmark) w.r.t. the
4.8% of the SMS. This experimentation shows that in real contexts
the proposed solver can compute good quality solutions in terms
of seconds (and the optimal solution within a few minutes).

Then we performed a further comparison with the simulation
based procedure described in [43] on synthetic graphs with
a manageable size for our approach. Despite the incomplete
approach being much faster then our tree search procedure, the
solution provided by the incomplete method was found to be on
average 20% worse than the optimal one.

Note thatwhen the number of nodes becomes larger, the search
could be stopped after a certain time limit (or a given number of
feasible solutions), thus obtaining an incomplete approach. Differ-
ently from other incomplete approaches, our use of tree search
and constraint propagation enables to find feasible solutions of
tightly-constrained problems. We can compute a feasible solution
of thousand-node graphs in terms of seconds.
Table 4
Optimality gaps of incomplete searches.

Instance size Const. sol. (%) First sol. (%) First Const. sol. (%)

10 Nodes 82.66 78.48 75.86
12–15 Nodes 77.44 78.18 66.72

7.3. Solution quality evaluation

We finally designed a third set of experiments, to evaluate
the search heuristics; tests were performed on a new large
(1000 graphs) set of synthetic instances (see also [10]). Given
an initial SDF graph, we perform mapping under two different
assumptions: one allocates and schedules the derived HSDFG
actors independently, while the second forces the allocation of all
the HSDFG nodes corresponding to repetitions of the original SDFG
nodes on the same processor.We refer to the first type of allocation
as unconstrained and to the second type as constrained; the latter
is typically obtained by approaches working directly on the SDFG,
without a preliminary transformation into HSDFG [32,43,44].In
Table 4we provide comparisons among the throughput achievable
by complete search with the unconstrained and constrained
approaches. This allows to assess the solution quality loss due to
the use of a more restrictive assumption. We give the optimality
gap of the constrained solution (Const. sol.), the first feasible
unconstrained solution (First sol.) and the first feasible constrained
solution (First Const. sol.). The optimality gap widens as the
number of nodes increases: on medium-size instances the optimal
unconstrained throughput is about 20% higher than the constrained
solution. This clearly demonstrates that the additional degrees of
freedom enabled bymappingmultiple actor iterations on different
processors help in finding higher throughput solutions.

The second and third column in the table refer to incomplete
versions of the search procedure, which could be used to find
fast, but sub-optimal solutions. In the second column we report
the optimality gap obtained by stopping the search after the first
solution found by tree search driven by our heuristic functions
described in Section 6. The optimality gap is around 22%, which
is significant but not enormous. This implies that the solver finds
a reasonably good solution in a very short time, regardless of the
exponential search effort required to reach the actual optimum.
Thus, our strategy is quite effective even when used as a fast,
incomplete search.

The first feasible constrained solution provides an estimate of
the quality one could expect from the solution provided by an
incomplete algorithm which map directly the SDFG. As expected,
it has the largest optimality gap, with a 30% loss in throughput.
This result gives a clear indication that our algorithm provides
a significant quality improvement with respect to previously
presented incomplete algorithms.

8. Conclusions

The widespread use of multi-core processors is pushing ex-
plicitly parallel high-level programming models to the forefront.
Streamcomputing based on a data-flowmodel of computation [29]
is viewed by many as one of the most promising programming

A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350 1349
paradigms for embedded multi-core computing. Our work
addresses one of the key challenges in the development of pro-
gramming tool-flow for stream computing, namely, the efficient
mapping of synchronous data-flow graphs onto multi-core plat-
forms.

We presented a CP-based method for allocating and scheduling
HSDFGs onmultiprocessor platforms; to the best of our knowledge
this is the first CP-Based complete approach for the target problem.
The core of the system is a global throughput constraint embedding
an incremental extension of the computation procedure described
in [11], which proved to be crucial for the performance. Our
method obtains promising results on realistic size graphs.

We are developing an environment to support the design flow
of streaming application for multi-core platforms, from the early
programming stages to the actual validation on real architectures.
This will require us to take in account communication costs and
buffer size limits.

Acknowledgment

The work described in this publication was supported by the
SMECY Project, JTI ARTEMIS, Grant agreement no.: 100230.

Appendix. Constraint programming

The allocation and scheduling algorithm for SDFG we propose
in this paper is based on Constraint Programming. Constraint Pro-
gramming (CP) [17,38] is a programming paradigm used to solve
hard combinatorial problems. It is currently applied with success
to many domains such as planning, vehicle routing, configuration,
scheduling and bioinformatics [1–3,6].

The key concept of constraint programming is the clear separa-
tion between constraint modeling and constraint solving.

A constraint model is defined in terms of variables and con-
straints. Each variable Xi has an associated domain Di containing
values that the variable can assume (the notation for linking vari-
ables and domains is Xi :: Di). Constraints define combinations of
consistent assignments (i.e., a subset of the Cartesian product of
the variable domains). Themodelmight have an objective function
defining a (possibly partial) order in the solution space.

Once the constraintmodel is stated, constraint solving is started
by interleaving propagation and search. The search process enu-
merates all possible variable-value assignments (possibly guided
by a proper variable and value selection heuristics), until we find
a solution or we prove that none exists. To reduce the exponential
number of variable-value pairs in the search tree, domain filtering
and constraint propagation are applied at each node of the search
tree. Domain filtering operates on individual constraints and re-
moves provably inconsistent domain values. Since variables are in-
volved in several constraints, domain updates are propagated to
the other constraints whose filtering algorithms are triggered and
possibly remove other domain values.

As domain filtering is local to each constraint, it is a common
practice in Constraint Programming to define the so called global
constraints,3 that compactly represent combination of elementary

3 As an example consider theAllDiff ([X1 . . . Xn]) constraint [37]. Declaratively it is
equivalent to a set of pairwise inequalities (Xi ≠ Xj, ∀i ≠ j). However, by reasoning
globally, it infers more deletions in general. Consider the following variables and
their domain: X :: [1, 2, 3] Y :: [1, 2] Z :: [1, 2] and the following constraint:
AllDiff (X, Y , Z). By considering the set of elementary constraints (X ≠ Y , Z ≠

Y , X ≠ Z) the propagation cannot remove any value, while the AllDiff global
constraint removes values [1, 2] from X as they should be assigned (nomatter how)
to Y and Z . The AllDiff constraint leverages network flow algorithms to perform the
described filtering in polynomial time [37].
constraints, but embedmore powerful filtering algorithms exploit-
ing a global view.

Constraint propagation is not complete. This means that if
a value is removed by a filtering algorithm it is proved to be
infeasible. Instead, if a value is left in the domain of a variable, it
can happen that it does not belong to any consistent solution. For
this reason, tree search is employed to explore the values left in the
domain. At each node of the search tree, constraint propagation is
triggered thus interleaving propagation and search. As far as search
is concerned twomain factors affect the solution process: the early
evaluation of a partial solution and the variable-value selection
strategy. The former is usually performed via an (upper/lower)
bound computation, the latter is a heuristic function that guides
the search.

References

[1] D. Baatar, N. Boland, S. Brand, P.J. Stuckey, Minimum cardinality matrix
decomposition into consecutive-onesmatrices: CP and IP approaches, in: Proc.
of CPAIOR ’07, pp. 1–15.

[2] P. Baptiste, C. Le Pape, W. Nuijten, Constraint-Based Scheduling, Springer,
2001.

[3] R. Bartak, M. Salido, Constraint satisfaction for planning and scheduling
problems, Constraints 16 (2011) 223–227. 10.1007/s10601-011-9109-4.

[4] http://www.artist-embedded.org/artist/benchmarks.html, 2009.
[5] L. Benini, E. Flamand, D. Fuin, D. Melpignano, P2012: building an ecosystem

for a scalable, modular and high-efficiency embedded computing accelerator,
in: Proc of. DATE 2012, pp. 983–987.

[6] R. Bent, P.V. Hentenryck, Randomized adaptive spatial decoupling for large-
scale vehicle routing with time windows, in: Proc. of AAAI ’07, pp. 173–178.

[7] S.S. Bhattacharyya, S. Sriram, Embedded Multiprocessors—Scheduling and
Synchronization (Signal Processing and Communications), second ed., CRC
Press, 2009.

[8] T. Bijlsma, M. Bekooij, P. Jansen, G. Smit, Communication between nested
loop programs via circular buffers in an embedded multiprocessor system, in:
Proceedings of the 11th International Workshop on Software Compilers for
Embedded Systems, SCOPES ’08, pp. 33–42.

[9] G. Blake, R. Dreslinski, T. Mudge, A survey of multicore processors, IEEE Signal
Process. Mag. 26 (2009) 26–37.

[10] A. Bonfietti, L. Benini, M. Lombardi, M. Milano, An efficient and complete
approach for throughput-maximal SDF allocation and scheduling on multi-
core platforms, in: Proc. of DATE ’10, pp. 897–902.

[11] A. Bonfietti, M. Lombardi, M. Milano, L. Benini, Throughput constraint for
synchronous data flow graphs, in: Proc. of CPAIOR ’09, pp. 26–40.

[12] W. Che, K.S. Chatha, Compilation of stream programs for multicore processors
that incorporate scratchpad memories, in: Design, Automation and Test in
Europe Conference, DATE, DATE ’10.

[13] W. Che, K.S. Chatha, Compilation of stream programs onto scratchpad
memory based embedded multicore processors through retiming, in: Design
Automation Conference, DAC, DAC ’11.

[14] Y. Choi, Y. Lin, N. Chong, S. Mahlke, T. Mudge, Stream compilation for real-time
embedded multicore systems, in: Proceedings of the 7th Annual IEEE/ACM
International Symposiumon Code Generation andOptimization, CGO ’09, IEEE
Computer Society, Washington, DC, USA, 2009, pp. 210–220.

[15] A. Dasdan, R. Gupta, Fastermaximumandminimummean cycle algorithms for
system-performance analysis, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 17 (1998) 889–899.

[16] A.G. David, E. Culler, Jaswinder Pal Singh, Parallel Computer Architecture: A
Hardware/Software Approach, Gulf Professional Publishing, 1999.

[17] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.
[18] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.
[19] A.H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B.D. Theelen, M.R. Mousavi,

A.J.M. Moonen, M.J. Bekooij, Throughput analysis of synchronous data flow
graphs, in: Proc. of ACSD ’06, pp. 25–36.

[20] M. Hagog, A. Zaks, Swing Modulo Scheduling for GCC, Technical Report, 2004.
[21] W. Haid, K. Huang, I. Bacivarov, L. Thiele, Multiprocessor SoC software design

flows, IEEE Signal Process. Mag. 26 (2009) 64–71.
[22] A.H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, S. Mahlke,

Flextream: adaptive compilation of streaming applications for heterogeneous
architectures, in: Proceedings of the 2009 18th International Conference on
Parallel Architectures and Compilation Techniques, pp. 214–223.

[23] K. Ito, K.K. Parhi, Determining the minimum iteration period of an algorithm,
J. VLSI Signal Process. 11 (1995) 229–244.

[24] L. Karam, I. Alkamal, A. Gatherer, G. Frantz, D. Anderson, B. Evans, Trends in
multicore DSP platforms, IEEE Signal Process. Mag. 26 (2009) 38–49.

[25] M. Karczmarek, W. Thies, S. Amarasinghe, Phased scheduling of stream
programs, in: Proceedings of the 2003 ACM SIGPLAN Conference on Language,
Compiler, and Tool for Embedded Systems, in: LCTES ’03, ACM, 2003,
pp. 103–112.

http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref2
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref3
http://www.artist-embedded.org/artist/benchmarks.html
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref7
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref9
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref14
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref15
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref16
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref17
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref18
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref20
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref21
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref23
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref24
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref25

1350 A. Bonfietti et al. / J. Parallel Distrib. Comput. 73 (2013) 1337–1350
[26] R. Karp, A characterization of the minimum cycle mean in a digraph, Discrete
Math. 23 (1978) 309–311.

[27] R.M. Karp, R.E. Miller, Properties of a model for parallel computations:
determinancy, termination, queueing, SIAM J. Appl. Math. 14 (1966)
1390–1411.

[28] M. Kudlur, S. Mahlke, Orchestrating the execution of stream programs on
multicore platforms, in: Proc. of PLDI ’08, vol. 43, pp. 114–124.

[29] E.A. Lee, S.S. Bhattacharyya, P.K. Murthy, Software Synthesis from Data Flow
Graphs, Kluwer Academic Press, 1996.

[30] E.A. Lee, D.G. Messerschmitt, Synchronous data flow, Proc. IEEE 75 (1987)
1235–1245.

[31] E.A. Lee, D.G. Messerschmitt, Static scheduling of synchronous data flow
programs for digital signal processing, IEEE Trans. Comput. 36 (1987) 24–35.

[32] O. Moreira, J.D. Mol, M.J. Bekooij, J. van Meerbergen, Multiprocessor resource
allocation for hard–real-time streamingwith a dynamic job-mix, in: 11th IEEE
Real Time and Embedded Technology and Applications Symposium, RTAS’05,
IEEE, 2005, pp. 332–341.

[33] O.Moreira, F. Valente,M. Bekooij, Schedulingmultiple independent hard-real-
time jobs on a heterogeneous multiprocessor, in: Proceedings of the 7th ACM
& IEEE International Conference on Embedded Software, in: EMSOFT ’07, ACM,
New York, NY, USA, 2007, pp. 57–66.

[34] F.A. Omara, M.M. Arafa, Genetic algorithms for task scheduling problem,
J. Parallel Distrib. Comput. 70 (2010) 13–22.

[35] C. Ostler, K.S. Chatha, V. Ramamurthi, K. Srinivasan, ILP and heuristic
techniques for system-level design on network processor architectures, ACM
Trans. Des. Autom. Electron. Syst. 12 (2007) 48-es.

[36] G. Pesant, M. Gendreau, J.y. Potvin, J.m Rousseau, An exact constraint
logic programming algorithm for the traveling salesman problem with time
windows, Transp. Sci. 32 (1996) 12–29.

[37] J.C. Régin, A filtering algorithm for constraints of difference in CSPs, in: Proc.
of AAAI ’94, pp. 362–367.

[38] F. Rossi, P. Van Beek, T.Walsh, Handbook of Constraint Programming, Elsevier,
2006.

[39] M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, L. Benini, A fast and accurate
technique for mapping parallel applications on stream-oriented mpsoc
platforms with communication awareness, Int. J. Parallel Program. 36 (2008)
3–36.

[40] M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, L. Benini, A fast and accurate
technique for mapping parallel applications on stream-oriented mpsoc
platforms with communication awareness, Int. J. Parallel Program. 36 (2008)
3–36. 10.1007/s10766-007-0032-7.

[41] J. Sermulins, W. Thies, R. Rabbah, S. Amarasinghe, Cache aware optimization
of stream programs, in: Proceedings of the 2005 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES
’05, ACM, 2005, pp. 115–126.

[42] S. Sriram, E.A. Lee, Determining the order of processor transactions in statically
scheduled multiprocessors, J. VLSI Signal Process. 15 (1997) 207–220.

[43] S. Stuijk, T. Basten, M. Geilen, H. Corporaal, Multiprocessor resource allocation
for throughput-constrained synchronous dataflow graphs, in: Proc. of DAC ’07,
IEEE, 2007, pp. 777–782.

[44] S. Stuijk, M. Geilen, T. Basten, SDF3̂: SDF For Free, in: Proc. of ACSD ’06, IEEE,
2006, pp. 276–278.

[45] W. Thies,M. Karczmarek, S.P. Amarasinghe, Streamit: a language for streaming
applications, in: Proceedings of the 11th International Conference on Compiler
Construction, in: CC’02, Springer-Verlag, London, UK, 2002, pp. 179–196.

[46] B. Ucar, C. Aykanat, K. Kaya, M. Ikinci, Task assignment in heterogeneous
computing systems, J. Parallel Distrib. Comput. 66 (2006) 32–46.

[47] M.H. Wiggers, M.J.G. Bekooij, G.J.M. Smit, Efficient computation of buffer
capacities for cyclo-static dataflow graphs, in: Proceedings of the 44th Annual
Design Automation Conference, DAC ’07, pp. 658–663.
Alessio Bonfietti is currently a Ph.D. candidate working
at the Department of Electrical Engineering and Computer
Science (DEIS), University of Bologna, Italy. He received
his Bachelors Degree in 2005 and his Masters Degree
in 2007, both in Computer Science from the University
of Bologna. Since his graduation, his research interests
are in the areas of mapping and scheduling of periodic
applications on multi-core architectures and Constraint
Programming. He has published papers and performed
reviews for international conferences and journals.

Michele Lombardi is a Post-Doctoral Fellow at DEIS,
University of Bologna; his research activity is related to
Constraint Programming and its integration with Integer
Programming and Artificial Intelligence techniques; in
particular, his focus is on resource allocation and schedul-
ing problems. Michele Lombardi obtained a Ph.D. in
Computer Engineering at the University of Bologna, per-
forming internships at EPFL Lausanne (CH) and Cornell
University (NY). He has published papers and performed
reviews for international conferences and journals and he
is in the program committees of IJCAI 2011 and CPAIOR

2011.

Michela Milano has a Ph.D. in Computer Science and is
an Associate Professor at the University of Bologna since
2001. Her research interest is in the area of Constraint
Programming and its integration with Integer Linear Pro-
gramming. In this field Michela Milano has achieved in-
ternational visibility. She is Program Chair of CPAIOR 2005
and CPAIOR 2010. She has published more than 100 pa-
pers on peer reviewed international journals and confer-
ences and edited two books on Hybrid Optimization. She
is Area Editor of the INFORMS Journal on Computing, Con-
straint Programming Letters and aMember of the Editorial

Board of the Constraint International Journal. She is Project Coordinator of the EU-
FP7 project e-POLICY: Engineering the Policy Making life cycle, that fosters the use
of optimization and decision support techniques for aiding political decision mak-
ing and impact assessment.

Luca Benini is Full Professor at the Department of
Electrical Engineering and Computer Science (DEIS) of the
University of Bologna. He also holds a visiting faculty
position at the Ecole Polytechnique Federale de Lausanne
(EPFL) and he is currently serving as Chief Architect for
the Platform2012project at STmicroelectronics, Grenoble.
He received a Ph.D. degree in Electrical Engineering from
Stanford University in 1997. Dr. Benini’s research interests
are in energy-efficient system design and Multi-Core SoC
design. He is also active in the area of energy-efficient
smart sensors and sensor networks for biomedical and

ambient intelligence applications. He has published more than 500 papers in peer-
reviewed international journals and conferences, four books and several book
chapters. He is a Fellow of the IEEE and a Member of Academia Europea, and of
the steering board of the ARTEMISIA European Association on Advanced Research
& Technology for Embedded Intelligence and Systems.

http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref26
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref27
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref29
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref30
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref31
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref32
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref33
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref34
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref35
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref36
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref38
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref39
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref40
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref41
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref42
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref43
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref44
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref45
http://refhub.elsevier.com/S0743-7315(13)00109-3/sbref46

	Maximum-throughput mapping of SDFGs on multi-core SoC platforms
	Introduction
	Background: Synchronous Data-Flow Graphs
	Throughput

	Related work
	Problem definition
	Model
	Communication buffers and latency

	Throughput constraint
	Throughput algorithm
	Incremental algorithm
	Gathering changes for an arc append operation
	Gathering changes for a token append operation
	Gathering changes for a token remove operation

	Updating the values of Di, j, k
	Further optimizations
	Removing the non-strictly connected components
	Single-processor execution time bound
	Single-processor cycle pruning

	Search
	Experimental results
	Incremental algorithm evaluation
	Overall solver experimental evaluation
	Solution quality evaluation

	Conclusions
	Acknowledgment
	Constraint programming
	References

