
            

PAPER • OPEN ACCESS

Theory and modeling of electron fishbones
To cite this article: G Vlad et al 2016 New J. Phys. 18 105004

 

View the article online for updates and enhancements.

Related content
Electron fishbone simulations in tokamak
equilibria using XHMGC
G. Vlad, S. Briguglio, G. Fogaccia et al.

-

Saturation of single toroidal number Alfvén
modes
X Wang and S Briguglio

-

Single-n versus multiple-n simulations of
Alfvénic modes
G. Vlad, S. Briguglio, G. Fogaccia et al.

-

Recent citations
Transport theory of phase space zonal
structures
Matteo Valerio Falessi and Fulvio Zonca

-

Nonlinear dynamics of shear Alfvén
fluctuations in divertor tokamak test facility
plasmas
T. Wang et al

-

Shear Alfvén fluctuation spectrum in
divertor tokamak test facility plasmas
T. Wang et al

-

This content was downloaded from IP address 103.100.212.131 on 22/08/2019 at 12:46

https://doi.org/10.1088/1367-2630/18/10/105004
http://iopscience.iop.org/article/10.1088/0029-5515/53/8/083008
http://iopscience.iop.org/article/10.1088/0029-5515/53/8/083008
http://iopscience.iop.org/article/10.1088/1367-2630/18/8/085009
http://iopscience.iop.org/article/10.1088/1367-2630/18/8/085009
http://iopscience.iop.org/article/10.1088/1741-4326/aaaed1
http://iopscience.iop.org/article/10.1088/1741-4326/aaaed1
http://dx.doi.org/10.1063/1.5063874
http://dx.doi.org/10.1063/1.5063874
http://dx.doi.org/10.1063/1.5064863
http://dx.doi.org/10.1063/1.5064863
http://dx.doi.org/10.1063/1.5064863
http://dx.doi.org/10.1063/1.5026652
http://dx.doi.org/10.1063/1.5026652
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/901788121/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


New J. Phys. 18 (2016) 105004 doi:10.1088/1367-2630/18/10/105004

PAPER

Theory andmodeling of electron fishbones

GVlad1, V Fusco1, S Briguglio1, G Fogaccia1, F Zonca1,2 andXWang3

1 ENEA,Dipartimento FSN, C. R. Frascati, via E. Fermi 45, I-00044 Frascati (Roma), Italy
2 Institute for FusionTheory and Simulation andDepartment of Physics, ZhejiangUniversity, Hangzhou 310027, Peopleʼs Republic of

China
3 Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2,D-85748Garching, Germany

E-mail: gregorio.vlad@enea.it

Keywords:magnetohydrodynamic, nonlinear phenomena, internal kink, fast particle effects, hybridmethods, gyrokinetics

Abstract
Internal kink instabilities exhibiting fishbone like behavior have been observed in a variety of
experiments where a high energy electron population, generated by strong auxiliary heating and/or
current drive systems, was present. After briefly reviewing the experimental evidences of energetic
electrons driven fishbones, and themain results of linear and nonlinear theory of electron fishbones,
the results of global, self-consistent, nonlinear hybridMHD-Gyrokinetic simulations will be
presented. To this purpose, the extended/hybridMHD-Gyrokinetic codeXHMGCwill be used.
Linear dynamics analysis will enlighten the effect of considering kinetic thermal ion compressibility
and diamagnetic response, and kinetic thermal electrons compressibility, in addition to the energetic
electron contribution. Nonlinear saturation and energetic electron transport will also be addressed,
making extensive use ofHamiltonianmapping techniques, discussing both centrally peaked and off-
axis peaked energetic electron profiles. It will be shown that centrally peaked energetic electron
profiles are characterized by resonant excitation and nonlinear response of deeply trapped energetic
electrons. On the other side, off-axis peaked energetic electron profiles are characterized by resonant
excitation and nonlinear response of barely circulating energetic electrons which experience toroidal
precession reversal of theirmotion.

1. Introduction

Themutual interaction of particle populations, characterized by very disparate kinetic energies, is of great
interest for research on thermonuclear plasmas of fusion relevance, and, in particular, for the so-called ‘ignited’
plasmas, inwhich the 3.52 MeVα-particles, released in deuterium–tritium (D–T) reactions, have to thermalize
byCoulomb collisions with the bulk thermalD–Tplasma in order to self sustain its temperature. The interplay
of fusionα-particles andmagnetohydrodynamics (MHDs), Alfvénic-likemodes has been recognized, since
long time, as a crucial issue for the success of next generation,‘ignited’ devices as, e.g., ITER [1]. Indeed, the
potential enhancement of the radial transport of energetic particles (EPs) toward the edge of the plasma device
while preventing them to fully thermalize could, in turn, degrade the fusion performance on one side, and
damage the plasma facing components on the other. Similar phenomenology could also take place because of
energetic particles accelerated by auxiliary heating systems, as, e.g., neutral beam (NB) injection and a variety of
radio frequency heating and current drive systems, and, indeed, has been observed in a large selection of present
days auxiliary heated toroidal plasma devices (see, e.g., [2, 3]).

One of the ‘case studies’ of EP drivenMHD-likemodes is the ‘fishbone’mode, originally observed in the
PoloidalDivertor eXperiment (PDX) [4] device, owing its name to the characteristic fishbone-like shape of the
perturbedmagnetic field signal evolution. Thefishbone is an internal kink-like instability driven, in PDX, by
energetic ions due toNB injection, which results in anomalous losses of energetic ions themselves. The
theoretical interpretation in terms of resonant wave-particle interaction at the EP toroidal precession frequency
wasfirst proposed in [5] briefly after the experimental observations.
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More recently, internal kink instabilities excited by supra-thermal electrons and exhibiting fishbone like
behavior have been observed in theDoublet III-D (DIII-D) [6] device, where the high-energy electron
populationwas generated by electron cyclotron (EC) current drive. Later on, other devices observed fishbone
oscillations with electron heating only, i.e., electron cyclotron resonant heating (ECRH) and/or lower hybrid
heating (LHH) and lower hybrid (LH) current drive (see next section 2 for a brief review of experimental
evidence of electron fishbones, e-fishbones). Electronfishbones have linear dispersion relation and excitation
mechanisms that are similar to those of energetic ion driven fishbones;moreover, fluctuation induced transport
ofmagnetically trapped resonant particles, due to precession resonance, is expected to depend on energy and not
mass of the energetic particles involved, because of the bounce averaged dynamic response [7]. Electron
fishbones are characterized by a very small ratio between the resonant particle orbit width and the characteristic
fishbone length scale ( xd~ r , the rigid radial kink-type displacement). This is also expected to be the case of ion
fishbones in burning plasmas of fusion interest due to the large plasma current in these devices, while this
condition is not realized for the energetic ions in present-day experiments. These analogies between e-fishbones
in present-day devices and fishbones in burning plasmas provide a practicalmotivation for investigating these
processes, in addition to the general interest of studying e-fishbones ‘per se’.

In this paper, after briefly reviewing the experimental evidences of energetic electrons driven fishbones as
observed in present toroidal devices in section 2, and themain results of linear and nonlinear theory of
e-fishbones in section 3, the results of global, self-consistent, nonlinear hybridMHD-Gyrokinetic simulations
will be presented in section 4 [8]. In particular, the extended/hybridMHD-Girokinetic codeXHMGC,
described in [9], will be used. The effects of considering kinetic thermal ion compressibility and diamagnetic
response (in order to allow for an entirely novel treatment of enhanced inertia response [7, 10, 11] and ion
Landau damping [12]), and kinetic thermal electrons compressibility, in addition to the energetic electron
contribution, will be enlightened in linear dynamics analysis. Nonlinear saturation and energetic electron
transport will also be addressed,making extensive use ofHamiltonianmapping techniques [13, 14]. In order to
illustrate different nonlinear dynamics, both centrally peaked and off-axis peaked energetic electron profiles will
be discussed. In particular, centrally peaked energetic electron profiles are characterized by resonant excitation
and nonlinear response of deeply trapped energetic electrons.Meanwhile, barely circulating energetic electrons
are identified as responsible of driving the e-fishbonemode and causing its nonlinear evolution for off-axis
peaked energetic electron profiles. Final considerations will be given in section 5.

2. Experimental evidences of energetic electron drivenfishbones

Fishbone oscillation driven by energetic ions have been observed for the first time in PDX [4] discharges heated
by perpendicular NB injection, where a large n=1MHDmodewas observed causing losses of energetic ions.
Deeply trapped ions, in presence of a beamdeposition profile peaked near themagnetic axis, were recognized to
drive themode [4, 5] because of resonant wave-particle interaction at the EP toroidal precession frequency w̄d.
Fishbone oscillations driven by suprathermal ion population have been observed, since then, onmany tokamak
devices [2, 3, 15, 16]. Observations indicate that themode propagates poloidally in the ion diamagnetic drift
direction, and toroidally parallel to the EP precession velocity, thus having w w w  ¯res dh and

* *w w w w > ¯ 0h h dh , consistent with theoretical predictions for unstablemodes [5] (see also section 3).
Here, wres is the resonance frequency, the overbar x̄ on the quantity ‘x’ indicates its bounce average, the
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particle species, n the toroidalmode number,Es the energy of the single particle, ns the density, ps the pressure, es
the electric charge, r theminor radius coordinate,B themagnetic field, q(r) the safety factor, and the subscript ‘h’
refers to energetic (‘hot’) particles. It is worth noting that the ratio *w w̄h dh does not depend on the sign of the
electric charge es: thus, deeply trapped energetic electronswith a density profile peaked on-axis and of energy
similar to that of energetic ions could be expected to drive a similarfishbonemode, propagating poloidally in the
direction of the electron diamagnetic drift, i.e., opposite to the ion fishbone (althoughwith somemore
unfavorable conditions [7], see section 3).

Thefirst observation offishbone oscillations driven by energetic electrons (e-fishbones) is reported almost
two decades later inDIII-D [6]. In that experiment, strongMHDactivity was observed in presence ofNB ion
heating, in conjunctionwith off-axis EC current drive and heating on highfield side (HFS) and negative central
shear equilibria with »q 1min . Thefishbone oscillations were strongerwhen ECwas applied on theHFS
equatorial plane (q p»res , with qres the resonant poloidal angle of the ECwave absorption location), and
decreasedwhile decreasing qres toward q p= 2res . From theDIII-D experiment the following conclusions were
derived: (1) from ray-tracing and Fokker–Planck calculations, it was shown that energetic electronswith hollow
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radial density profile were generated slightly internal to the =q 1min surface, with a substantial fraction of barely
trapped particles (i.e., particles, which spendmost of their time near the tips of their banana orbits, and are
preferentially heatedwhen q p»res ); (2) the diamagnetic drift velocity of the energetic electrons (whose sign
depends on ( )e psign s s, with ( )esign s and ps the sign of the electric charge and pressure of species ‘s’,
respectively) is parallel to that of the on-axis peaked energetic ions produced byNBs; (3) the orbit averaged
toroidal precession velocity (depending on ( )e Esign s s) of trapped energetic electrons, which is opposite to the
one of the energetic ions for deeply trapped particles, reverses its signwhen considering barely trapped particles
[17, 18], thus becoming parallel to that of deeply trapped energetic ions. As a conclusion, barely trapped
energetic electronswith inverted radial density profile couldmeet the instability condition

* *w w w w» >¯ 0Ee Ee dEe and drive afishbone instability, in analogywith deeply trapped energetic ionswith
on-axis peaked radial density profile (here, the subscript ‘Ee’ stands for ‘energetic electron’). Fishbone like
fluctuations at higher frequencywere also observed inCOMPASS-D [19] driven by ECRH andLH.

Electron fishbones driven only byHFS off-axis (near q= 1)ECRHwere observed also inHL-1M tokamak
[20]; applying LHwaveswas found to enhance the fishbone, but only in conjunctionwith ECRH.Meanwhile,
the observation offishbone oscillations driven by only LHwaves has been reported on FTU [7, 21, 22] andTore
Supra [23, 24].

A careful experimental analysis to characterize the direction of propagation of the electronfishbonemode
has been performed onHL-2A tokamak [25–29], wheremode frequency of energetic electron driven fishbones
during off-axis ECRHonbothHFS and lowfield side (LFS)was studied. In particular, in [25] barely circulating
energetic electronswere considered responsible to drive electron fishbones during off-axis ECRHon the LFS,
whereas both barely circulating and barely trapped energetic electronswere considered responsible to drive
electronfishbones duringHFS heating.More recently, an interesting link between nonlinear dynamics of
fishbonefluctuations inNBheated discharges and non-local thermal electron heat transport has been
demonstrated inHL-2A [30].

3. Linear andnonlinear theory of e-fishbones

The theoretical framework for analyzing linear and nonlinear fishbone dynamics has been recently reviewed in
[31]. Here, we briefly summarize the analysis given therein, referring to original works formore in-depth
discussions.

Fishbone linear stability and nonlinear evolution can be described by the generalfishbone like dispersion
relation (GFLDR) [32, 33]

d dL = +∣ ∣ ˆ ˆ ( )s W Wi . 1f k

Here, we have assumedfishbone fluctuationswith toroidalmode number n=1 and s denotesmagnetic shear at
the rational surface =r rs, where the safety factor =( )q r 1s . For convenience, we adopt straightmagnetic field
line toroidal flux coordinates q z( )r, , , with r the radial (magnetic flux) coordinate, while θ and ζ are periodic
angular variables in poloidal and toroidal directions, respectively. In equation (1),Λ accounts for the kinetic/
singular layer response at =r rs, where thefishbonemode structure is sharply varying.When s at =r rs

vanishes, the singular layer responsemust be suitably rewritten into a form similar to equation (1), which can be
found in [31–33] and is assumed to be adopted if necessary. Such explicit form is not given explicitly here, since it
is not needed in the discussion of the formal properties of theGFLDR.Meanwhile, terms on the right-hand side
of equation (1) describe potential energy contributions from the regular region, separating fluid (dŴf ) and
kinetic (dŴk) responses consistently with the original approach in [5]. Explicit expressions forΛ, dŴf and dŴk

are given in [31–33] andwill be omitted here for brevity.
The kinetic/singular layer responseΛ accounts for the structures of the shear Alfvénwave continuous

spectrum including kinetic and geometry effects, e.g., continuumdamping, neoclassical inertia enhancement
and Landau damping [32].Meanwhile, dŴf represents the potential energyfluctuation due to the fluid thermal
plasma response and thefluid/convective behavior of the EP component. Kinetic responses of thermal and
supra-thermal plasma are accounted for by dŴk, which, e.g., describes instability drive by resonantwave particle
interaction at

w w w w= = + ℓ¯ ( )n , 2res d b

formagnetically trapped particles; and

w w w w= = + - + ℓ¯ ( ¯ ) ( )n nq m , 3res d b

for circulating particles. Here, ( )m n are (poloidal/toroidal)mode numbers, w w p z q q qº -∮¯ ( ) (˙ ˙ )( ˙ )q2 dd b

is the definition of the toroidal precession frequency, w p q qº -∮( )2 db
1 is the bounce/transit frequency for

magnetically trapped/circulating particles and q q∮ ˙ ( )d ... is taken along a closed equilibriumparticle orbit.
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Furthermore q qº ∮ ∮q̄ qd d [34] andℓ indicates the ‘bounce’harmonics of the consideredwave-particle
resonance.

In linear theory, equation (1) predicts thatfishbones can be excited bymagnetically trapped EPs at the
precession frequency [5]. Thus, for deeply trapped EPswith pressure profile peaked at themagnetic axis,
fishbones above excitation threshold are expected to rotate in the EP diamagnetic direction, as observed
originally [4]. For e-fishbones, this situation is experimentallymore difficult to achieve as they require a
particularly strong fast-electron source, due to the stronger continuumdamping formodes rotating in the
electron than in the ion diamagnetic direction [7]. In fact,most favorable excitation conditions for e-fishbones
are off-axis peaked EP pressure profiles withmodes rotating in the ion diamagnetic direction, consistent with
equations (2) and (3) and =ℓ 0 for barely trapped/barely circulating EPs affected by precession reversal [6].
The important role offinite -( ¯ )q 1 for barely circulating EPs in equation (3) has been recently emphasized in
[35]. In the following sections, wewill numerically investigate both situations; i.e., the case of pressure profile
peaked on axis and e-fishbone excited by deeply trapped EPs, as well as the off-axis peaked EP pressure profile
case excited by barely trapped/circulating electrons.

When nonlinear physics is investigated, equation (1) can be cast as a nonlinear equation for the evolution of
thefishbone amplitude and essentially fixed (linear) radialmode structure [31]. The nonlinear wave–wave and
wave-EP interactions are dominated, respectively, by the nonlinear responses LNL and dŴk

NL
[31–33]. Both

zonalflows and currents, i.e., in general zonal structures (ZSs), contribute to LNL and are generated by the

dominant =( ) ( )m n, 1, 1 component of thefishbonemode [36].Meanwhile, dŴk
NL

is due to phase space ZS
(PSZS), that is self-consistent nonlinear distortions in the EP distribution function having the same symmetry

(spatial structure) of the underlying EP reference equilibrium [34]. In general, dŴk
NL

and nonlinear dynamics of
PSZS dominate over LNL andZS nonlinear response for sufficiently strong EP drive.However, the role of ZS
becomes increasinglymore important approaching the excitation threshold, and LNL has to be considered on

the same footing as dŴk
NL

nearmarginal stability [31]. This transition in the nonlinear behavior is quantitatively
affected by kinetic and geometry effects, such as neoclassical inertia enhancement, whichmust be taken into
account for a proper description of the self-consistent nonlinear fishbone dynamics in toroidal fusion plasmas.
In this work, for simplicity, we consider a sufficiently strong supra-thermal electron source and numerically

investigate only the effect of dŴk
NL

and nonlinear dynamics of PSZS [34].
Following [31, 34], and assuming deeply trapped resonant EPswith negligible orbit width and a rigid plasma

displacement xd r0, the evolution equation for the EPPSZS can be cast as


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Here, ( )F tSt 0 and S(t) denote collision and external source terms; and the PSZS ( )F t0 depends on velocity space
variables m = +^ v B22

0 (themagneticmoment) and  = v 22 (energy per unitmass) as well as r but, for
conciseness of notation, only time dependence is indicated explicitly.Meanwhile,

òw pº w- ¥ˆ ( ) ( ) ( )F F t t2 e dt
0

1
0

i
0 denotes the Laplace transform. Furthermore,B0 is themagnetic field on the

magnetic axis at toroidalmajor radius =R R0 andfishbonefluctuations are assumed to occurwith the time
dependent frequency w t g t+( ) ( )i0 . The τ notation instead of t explicitly refers to sufficiently slow time
variation, such that w gw∣ ˙ ∣ ∣ ∣0 0 [34].

Equation (4) coupledwith equation (1) via dŴk
NL

give the description of the self-consistent nonlinear
evolution of PSZS andfishbone oscillations [31]. This process is generally non-perturbative; that is,fishbone
spatiotemporal structures affect EP transport and vice versa. It is worthwhile noting thatfishbone
spatiotemporal structures are evolving in time even though the radialmode structure remains close to a rigid
plasma displacement. In fact,mode amplitude and frequency are changing in time, and influence the phase
space structure of ( )F t0 due to the radial and velocity space dependence of the resonance conditions,
equations (2) and(3).With non-perturbative EP response, nonlinear evolution is dictated bymaximization of
wave-particle power transfer, as discussed in [31, 34]. In particular, equation (4) suggests that PSZS evolution
tries to preserve the resonance condition; i.e., that g tQ ~ -∣ ∣¨ 2

NL
2 , withΘ thewave-particle phase and tNL the

characteristic nonlinear time [31, 34]. The ensuing frequency chirping is typically non-adiabatic; that is
w g t~ ~ -∣ ˙ ∣0

2
NL

2 and, thus, resonant EP continuously enter and leave the resonance region sincewave-particle
trapping is suppressed, consistently withmaximization of wave-particle power transfer. A given group of
particles remains in resonance for afinite interaction time, tI , given by the condition
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ò w t w t p-
t

( ( ) ) ( )d . 5
0

0 res

I

Due to phase locking ( g tQ ~ -∣ ∣¨ 2
NL

2 ), resonant interaction is preserved during effectivemode amplification
and is rapidly lost after residual resonance detuning has shifted thewave-particle phase by p~ , similar to the
slippage of resonant electronswith respect to a short free electron laser pulse [31, 34]. In this way,mode
amplification can continue as resonant EPs continuously enter (and leave) the resonance region. Equation (5)
corresponds to a finite interaction length,DrI , set by the distance traveled by the PSZS group velocity ( xw d~ r0 0)
over tI [31, 34].

Strong fishbone excitation occurs whenD ~r r ;I s i.e., when resonant particles are convectively pumped out
fromwithin the =( )q r 1s magnetic flux surface as discussed in the original work byWhite et al [37]. In such a
case, saturation corresponds to balancing the convective power loss with thewave-particle power transfer,
yielding xd g w~∣ ∣ ∣ ∣rr s0 0 [31]. This behavior is demonstrated by present numerical simulation results with on
axis peaked supra-thermal electron pressure profile, resonantly driven by deeply trapped particle at the
precession resonance. Forweaker EP drive andD <r rI s, after a group of particles looses the resonance
condition according to equation (5), a new group of particles can enter the resonance region because of non-
adiabatic frequency chirping (w g t~ ~ -∣ ˙ ∣0

2
NL

2 ) andmode amplification can continue until it is suppressed by
equilibriumnon-uniformity [31, 34]. This behavior has been recently observed by numerical simulations based
on a reduced description of thefishbone burst cycle that can be obtained from equations (1) and (4)with some
additional simplifying assumptions [38].

When EPdrive is further reduced, the effect of ZS should be considered on the same footing of PSZS
nonlinear dynamics, as anticipated above. This is beyond the scope of the present work, wherewe focus on

nonlinear wave-EP interaction and the effect of dŴk
NL

only. Application of equations (1) and (4) in such a case,
approachingmarginal stability andwith perturbative EP drive, yields the prediction fishbone saturation by local
EP redistribution. In the case of supra-thermal electron pressure profile peaked off-axis, numerically analyzed in
this work as illustration of e-fishbones driven by barely trapped/circulating EPs, wres radial profile has a local
maximumat rs, corresponding to slowly evolving (adiabatic)PSZS of xw w dD ~ ∣ ∣ ∣ ∣r 2B r0 res0

1 3
0

1 3 radial
extension, with wres0 the second radial derivative of wres at rs. It is then possible to show that fishbone saturation
due to local EP relaxation occurs at xd g w w w w~ D - -∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣2r0

3
0

3 2 3 2
0 res0

1 2, with w w wD = -res0 0.

4.Numerical simulations

4.1.Description ofXHMGC
In the following sectionswewill present the results of numerical simulations performed using theHMGC code
[39–41], which is a hybrid [42]MHDgyrokinetic code originally developed at the Frascati Laboratories. In
HMGC, the thermal plasma is described by ( )O 3 nonlinear reducedMHDequations [43], which describe
circular shiftedmagnetic surface equilibria;moreover, the limit of zero bulk plasma pressure is also assumed; the
energetic particles are described by nonlinear Vlasov equation in the drift-kinetic limit, solved using particle-in-
cell technique, the two components (thermal and energetic particles) being coupled [42] via the pressure tensor
termof the EP species entering in the extendedmomentum equation of the bulk plasma. The hybrid scheme
allows to consider the effect of the energetic particles on the electromagnetic fields self-consistently, i.e., they are
retained non-perturbatively: thus, themutual effect of energetic particles andMHD-likemodes (as, e.g., toroidal
Alfvénmodes, TAEs and internal kinkmodes), as well asmodes which do not have theirMHDcounterpart (as,
e.g., energetic particle drivenmodes, EPMs), can be studied properly; in particular, energetic particles will
contribute to both time evolution of themode (i.e., to the growth rate and frequency) and to its spatial structure
(i.e., to the eigenfunction). HMGChas been extensively used to study TAEs andEPMs [41, 44, 45], as well as in
the analysis ofmodes observed in existing devices (JT-60U [46], DIII-D [47]) or expected in forthcoming
burning plasmas (ITER [48, 49]) and proposed experiments (FAST [50, 51]). The original version ofHMGChas
been recently extended to include newphysics (XHMGC [9]): diamagnetic effects and thermal ion
compressibility are retained in the extendedmomentum equation of the bulk plasma through the divergence of
the thermal ion pressure tensor, obtained by solving the nonlinear Vlasov equation for that population, in order
to account for enhanced inertia response [7, 10, 11] and ion Landau damping [12].Moreover, XHMGC is able to
treat simultaneously, using the kinetic formalism, up to three independent particle populations, assuming
different equilibriumdistribution functions (as, e.g., bulk ions and electrons, energetic ions and/or electrons
accelerated byNB, ICRH, ECRH, fusion alphas, etc). TheXHMGCcode has been also used to simulate fishbone
modes driven by energetic electrons [8].With respect to energetic ion drivenmodes (as, e.g., TAEs and EPMs),
the simulation of e-fishbones poses the challenge of properly follow the extremely fast parallel electronmotion
along equilibriummagnetic field lines, in order to correctly evaluate the effective bounce averaging during both
linear and nonlinear dynamics. To this purpose, a suited sub-cycling scheme has been introduced and solved in
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the particle-in-cell scheme. As synthetic diagnostic tool, XHMGCallows to follow, in a self-consistent
simulation, a set of test particles; the phase-space coordinates of such particles are stored in time, and can be used
to compute a variety of single particle physical quantities as , e.g., the single particle frequencies of the supra-
thermal electrons, namely, the precession and bounce frequencies. The resonances underlying the linear
instability can be clearly identified in this way. Furthermore, the use of EP phase-space diagnostics, based on
Hamiltonianmapping techniques [13] generating kinetic Poincaré plots, allow us to isolate the physics processes
underlying fishbonemode saturation, frequency chirping and secular (versus diffusive)EP redistribution.

The energetic electrons (‘Ee’) distribution function used in the following simulations is:
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2

ce is the single particle energy, with v the parallel (to the equilibriummagnetic field)
velocity,M the conservedmagneticmoment (here defined as wº ^ ( )M m v 2e

2
ce , and w = ( )eB m cce e the

cyclotron frequencywith e andme being the (absolute value of) charge andmass of electrons, respectively, andB
the local equilibriummagnetic field.Moreover, y( )nEe and y( )TEe are the radial density and temperature
profiles, respectively,ψ being the (normalized) poloidalflux (y = 0 on themagnetic axis and y = 1 at the
plasma edge). The function a aX D( ); ,0 models the anisotropy in velocity space of the distribution function,
with a º v E mcos 2 e , a wº M Esin2

ce , andα is the pitch angle of the energetic electrons.Within the
code, the parallel velocity is normalized to the on-axis energetic electron thermal velocity ºû v vth,Ee,0, with

=v T mth,Ee,0 Ee0 e , and themagneticmoment is normalized as wºM̂ M Tce0 Ee0, with the subscript ‘0’
indicating on-axis values.

In the following simulations performedwithXHMGC, the contribution to Landau damping, enhanced
plasma inertia (mostly due to trapped particles),finite compressibility of thermal ions, as well as Landau
damping andfinite compressibility of thermal electronswill be all treated kinetically by considering isotropic
Maxwellian distribution functionswith y( )n jth, , y( )T jth, being the corresponding density and temperature
profiles, with =j i e, .Wewill neglectmode-mode coupling nonlinearities, thus considering single n toroidal
mode number simulations, while particles nonlinearities will be fully retained.

4.2. Energetic electronswith density profile peaked on-axis
As afirst example of e-fishbonewewill consider an energetic electron populationwith on axis peaked density
profile. Similarly to the conventional energetic ion driven fishbones, deeply trapped energetic particles are
expected to drive themode. The same FTU-like equilibrium and scenario of [8]will be considered in this
section, namely a torus of circular cross sectionwith inverse aspect ratio  = »a R 0.30 (with a andR0 the
minor andmajor radius, respectively). The safety factor profile is slightly reversed, with »q 1.250 , »q 1.05min
at the surface »r a 0.35qmin

and »q 6a (see figure 1, left). Reference on-axismagnetic field =B 5.40 T,

deuteriumbulk plasmawith on-axis density = ´ -n m1 10i0
20 3 and profile y y= -( ) ( )n n 1i i0

1 2, on-axis
ion temperature =T 2 keVi0 and radial profile y y= -( ) ( )T T 1i i0 have been assumed aswell (see figure 1,
right); thus, » ´ -v v 3.72 10Ath,i,0 0

2 (with pºv B n m4A0 0 i0 i being the on-axis Alfvén velocity), while the
on-axis bulk ion Larmor radius is r » ´ -a 4.27 10i

3. Bulk electrons have been assumed to have the same
radial density and temperature profiles, with =n ne0 i0 and =T 7 keV;e0 thus, »v v 4.22th,e,0 A0 , while the on-
axis bulk electron Larmor radius is r » ´ -a 1.32 10e

4. Energetic electrons described by a distribution
functionwith perpendicular temperaturemuch higher than the parallel one are considered in the simulations by
assuming a =cos 00 andD = 0.1, see equation (7), in order tomaximize the fraction of trapped particles,
which are expected to contribute to the resonant excitation of electron fishbonemode; the energetic electron
density radial profile is y y= -( ) ( )n n exp 10Ee Ee0 , whereas the energetic electron temperature is assumed to be
uniform = =T T 50 keVEe Ee0 (see figure 1, right); thus, »v v 12.27th,Ee,0 A0 , while the on-axis energetic
electrons Larmor radius is r » ´ -a 3.52 10Ee

4. This equilibriumhas been already analyzed in [8], were it was
shown that the electron fishbonemodewas destabilized above a certain threshold energetic electron density,
propagating poloidally in the direction of the energetic electron diamagnetic velocity (which is, for this
equilibrium, also parallel to the bulk electron diamagnetic velocity), and excited by resonance with deeply
trapped energetic electrons. Here, wewill reconsider the linear results presented in [8], where the kinetic
contribution of the energetic electrons and bulk ionwas considered, by also adding the kinetic contribution of
bulk electrons.Moreover, a novel nonlinear analysis using test particles Hamiltonianmapping (TPHM)
techniques [13, 14]will allowus to illuminate the nonlinear saturation and radial transport associatedwith
suchmode.
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4.2.1. Linear dynamics
In this sectionwewill investigate the relative importance of different driving and damping processes accounted
for in themodel, i.e., energetic electrons compressibility, thermal ion compressibility and diamagnetic effects,
and thermal electron compressibility. Following [9], where themodel implemented inXHMGChas been
described in detail, let us consider the perpendicular component of the extendedMHDmomentum equation:
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where dvb is the perturbed velocity ( dµ ´E B) of the bulk ions, ri is the bulk ion Larmor radius, wci is the ion
cyclotron frequency and rb is themass density r = m nb i i of the bulk ions. In equation (8) the diamagnetic bulk
ion contribution, and the different kinetic contributions coming from the energetic electrons, bulk ions and
bulk electrons have been explicitly indicated. In the following simulations the toroidalmode number is n=1,
the poloidal Fourier components retained are = ¼m 1, , 6, normalized resistivity = ´-S 3 101 5 and viscosity
nt = ´ -a 3 10A0

2 8 have been considered to ensure numerical stability (here S is the Lundquist number
p h tº ( )S a c4 A

2 2
0 , t = R vA A0 0 0 being the on axis Alfvén time, η the resistivity, and w tº -

A A0 0
1 the on axis

Alfvén frequency). Infigure 2 the results of a scan inwhich the strength of the energetic electrons driving term
 ^( · )PEe (which isµn nEe0 i0) is varied are presented, showing the dependence of the growth rate and the
frequency of the electron fishbonemode on the strength of the drive. Several curves are shown infigure 2,
corresponding to switching on, one after the other, the contributions isolated in equation (8). First, only the
divergence of the energetic electron pressure tensor  ^( · )PEe is retained, then also the diamagnetic bulk ion
term r w´  ^( ) ( )Pb i i ci0 is added and, subsequently, the divergence of the thermal ion pressure tensor
 ^( · )Pi , which account for the thermal ion Landau damping and generalized inertia, retaining consistently the
actual dynamic response of trapped and circulating thermal ions (see also section 2.2 and appendix A of [7]).
Finally, the divergence of the thermal electron pressure tensor  ^( · )Pe is also included. The contribution of
energetic electrons drives themode, which has a clear internal kink characteristic with a dominantm=1
component localized, in radius, approximately inside the qmin surface »r a 0.35qmin

(see figure 3 left); the
poloidal structure (seefigure 3 center) rotates in counter clockwise direction, which corresponds to amode
propagating in the (bulk and energetic) electron diamagnetic velocity direction resulting in a negative real
frequency (seefigure 3 right), considering the standard fast Fourier conventions used for extracting the
frequency spectra from the time dependent solution of the unknownfields (the e.s. potentialf and the parallel
component of the vector potential A ) as obtained by the initial value codeXHMGC. Referring to the results
shown infigure 2, we observe that the growth rate increases almost linearly with the strength of the drive,
µn nEe0 i0, and the frequency (in absolute value) slightly decreases.When considering also the diamagnetic bulk

Figure 1.Profile of the safety factor q versus r (left) andnormalized profiles of y( )ni , y( )Ti , y( )nEe , y( )TEe versus the normalized flux
functionψ (right).
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ion term, very little variation is observed, both in growth rate and frequency: indeed, the absolute value of this
term, evaluated at itsmaximum radial position ( »r a 0.35) ismuch less (by a factor»30) than the absolute
value of the frequency of themode.When adding the term  ^( · )Pi , on the contrary, the growth rate of the
mode is notably reduced, showing as the effect of considering the thermal ion Landau damping and enhanced
inertia increases the threshold in n nEe0 i0 required to destabilize themode; also the absolute value of the
frequency of themode increases. Finally, when adding the term  ^( · )Pe which accounts for the bulk electrons,
an increase of the growth rate is observed, which diminishes its importance as n nEe0 i0 is increased. Note that the
positive contribution to the growth rate of the bulk electrons appears only if the electron fishbone is already
driven unstable, indeed in absence of the energetic electrons the system is still stable.

Somemore insight on the linear dynamics of the electron fishbone driven by energetic electronswith density
profile peaked on-axis can be gained considering the power exchange between the various particle species and
thewave. Infigure 4 the power exchange in the (v M, ) space is shown, for several radial shells, in a simulation in
which the kinetic contributions of all the particle species are retained. The dominant drive contribution comes
from the deeply trapped energetic electrons (the solid and dashed curves in each plot refer to the approximative
boundary between trapped and circulating region in the phase space, for the inner (solid curve) and outer
(dashed curve) radii of the radial shell considered, respectively). Note that in the plots shown infigure 4 the
normalized parallel velocity u refers to the parallel velocity the simulationmarkers (‘macro-particles’) havewhen
crossing the equatorial plane at the poloidal angle q = 0; in particular, for trapped particles, the external ‘leg’ of
the ‘banana’ orbit is chosen. Let usfirst consider the power exchange relative to the energetic electrons: as already
stated in [8], the drive is given by the deeply trapped electrons, figure 4, upper-left plot.Making use of the test
particleHamiltonianmapping techniques [14], we can gain some insight on the characteristic resonances of the
energetic electrons. As stated in section 4.1, the codeHMGCcan be used to evolve a set of test particles in the

Figure 2.Growth rate (left) and frequency (right) of the electron fishbonemode versus n nEe0 i0. The results of considering only the
energetic electron contribution (redfilled cirlces), and adding, one ofter the other, the diamagnetic bulk ion contribution (black filled
triangles), the complete bulk ion contribution (bluefilled squares) and the bulk electron one (green filled diamonds) are shown.

Figure 3.The Fourier components (left), the poloidal structure (center) and the power spectrum (right) of the electrostatic potential
are shown, for =n n 0.13Ee0 i0 andwith the contribution of all the species treated kinetically included. In the power spectrumplot
(right) the solid lines are the upper and lowerAlfvén continua.
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time dependent e.m.fields computed by a self-consistent simulation [14]. A suitable choicewill be to choose the
set of test particles as the oneswith strongest resonancewith thewave during linear growth phase. This can be
done by choosing the particles which belong to the phase space regionwhere themaximumpower exchange
between energetic particles andwave occurs (see, e.g.,figure 4). Once the coordinates of such a region have been
selected (i.e., =r r0, =M M0, = v v ,0), we can define, following [13, 14], the quantity wº -fC P nE0 , with

y yº + -f ( )P m R B v B e R cs s0 0 0 0 being the canonical toroidal angularmomentum. The quantityC is a
constant of the (perturbed)motion, provided that the perturbed field is characterized by a single toroidalmode
number n and a constant frequency. At the leading order [14], we can approximate

y y q+ - ºf f ( ) ( )P m Rv e R c P r v, ,s s 0 eq eq,0 , and w w qº - + ºf ( ) ( )C P n m v M C r M v2 , , ,s cs0
2

(here, yeq is the equilibriumpoloidalflux function). Thus, the initial (t= 0) coordinates of the test particles can
be chosen by varying (r v, ) under the condition that =M M0 and =C C ;0 moreover, q = 0 and equispaced
values off in the interval p[ [0, 2 are also assumed. Figure 5 shows the results obtained during the linear growth
phase of the simulation for a set of particles with =C C0 and =M M0, withC0 andM0 which corresponds to
themaximumpower exchange between energetic electrons andwave (q = 0, =r a 0.195, =M̂ 3,
= -û 0.328, and w w » -0.1A0 0 , see figure 4): indeed, the resonant condition for trapped particles

w w w w= = + ℓ( ) ¯ ( ) ( )r n r r0 res d b , for n= 1, =ℓ 0 (withℓdenoting the ‘bounce harmonics’), is satisfied in
correspondence of the peak of the power exchange between the (test) energetic electrons andwave, confirming

Figure 4.Power exchanges between particles andwave (red to green colors refer to power from the particles to thewave, light blue to
purple refer to power from thewave to the particles; color scale is relative to each frame) in the normalized
( wº ºˆ ˆu v v M M T,th,s,0 cs0 s0, with s=Ee, i, e) space are shown for the energetic electrons (top row), bulk ions (center row) and
bulk electrons (bottom row); three radial shells are considered:  r a0.17 0.22 (left),  r a0.23 0.28 (center),

 r a0.442 0.47 (right).
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that the precession frequency w̄d of deeply trapped energetic electrons is driving themode.Note also that the
radial profile of the test particles resonant frequency w ( )rres , after a strong variationwith radius for r a 0.15,
is quiteflat and close the value of the (linear phase)mode frequency w0: this featurewill be relevant for the
evolution of themode during nonlinear saturation (see section 4.2.2).

From figure 4 the bulk ions are shown to contribute to the damping of themode,mainly with co- and
counter-passing particles, whereas the bulk electrons, depending on the radial shell considered, contribute to
damping themodewith both passing and trapped particles in the internal radial shells, but strengthen the drive
somewhere outside the qmin radius. Indeed, applying the sameTPHM technique used above, it is possible to
show that, in correspondencewith the positive contribution of the bulk electrons in the radial shell »r a 0.46,
which exhibit amaximum for the power exchange at »M̂ 0 and »û 2.375, it exists a radial double resonance
with co-passing bulk electrons w w w s w= = + + -ℓ¯ [ ( ) ]n nq m0 res d b, for n=1,m=1, =ℓ 0,
s = ( )vsign and q the average of the safety factor over the particle orbit (seefigure 6). Similarly, for the bulk
ions, in the radial locationwhere the damping ismaximized ( »r a 0.28, =M̂ 0. and -û 2.5), a resonance
can be foundwith counter-passing particles w w w s w= = + + -ℓ¯ [ ( ) ]n nq m0 res d b, for n=1,
m=1, = -ℓ 2.

4.2.2. Nonlinear dynamics
In the present sectionwewill consider the nonlinear dynamics of the electron fishbone driven by energetic
electronswith density profile peaked on-axis.Wewill refer, in this section, to a set of simulations inwhich only
the contribution of the thermal ions treated kinetically will be considered beside the one of the energetic
electrons, neglecting thus the kinetic response by thermal electrons, as in the case of the simulations presented in

Figure 5.Radial dependence of the resonant frequency w w=( ) ¯ ( )r n rres d of the energetic electron test particles (solid red curve)
comparedwith themode frequency w0(dashed black line). Over imposed is the radial dependence of the test particle power exchange,
(blue dotted–dashed curve).

Figure 6.Radial dependence of the co-passing resonant frequency w w w= + -( ) ¯ ( ) ( )r n r q 1res d b of the bulk electron test particles
(solid red curve) comparedwith themode frequency w0(dashed black line). Over-imposed is the radial dependence of the test particle
power exchange, (blue dotted–dashed curve).
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[8]. Infigure 7 the time evolution of the total (kinetic plusmagnetic) volume integratedMHDenergiesW m ntot; ,

for the various Fourier components considered in the simulation are shown, for the case of =n n 0.12Ee0 i0 (the
weakest simulation shown infigure 2).

As already discussed in [8], the saturation is characterized by a pronounced downward (in absolute value)
frequency chirping, as it is shown infigure 8, where the frequency spectra of the electrostatic potentialj w( )r,
are shown at several times of the simulation (during linear phase ( w »t 400A0 ), end of the earlier phase of
saturation ( w »t 800A0 ), late saturation ( w »t 1000A0 )). Infigure 8, superimposed on the frequency spectra, the
instantaneous resonant frequency w w= ( )r t C M, ; ,res res 0 0 is also reported: it is worthwhile noting that the
instantaneous resonant frequency w ( )r t,res changes in time, being always close to the local lower Alfvén
continuum, and that the radial extension of the power spectrum j w∣ ( )∣r, 2 is almost unchanged during the
downward (in absolute value) chirping, as a consequence of the stiffness of radial shape of the internal kink
eigenfunction. Furthermore, themode, although chirping down, is always superimposed to the instantaneous
w ( )r t,res curve, thus suggesting phase-locking with the energetic particles identified by = =C C M M,0 0.

Infigure 9 the spectrogramof themode is shown at the radial locationwhere the electrostatic potential has
its peak: the frequency chirps down (in absolute value) as the simulation leaves the exponential growth of the
linear phase (for wt 600A0 , see figure 7). In the subsequent strongly nonlinear regime ( wt 1000A0 ) a second
dominant frequency appears (w w »∣ ∣ 0.15A0 ), in correspondence to bursts observed in the totalMHDenergy.

By following the same set of test particles considered in section 4.2.1 also in the nonlinear phase of the
simulation, we can further investigate the saturationmechanismof themode and the associated radial transport
of resonant particles. Infigure 10 (left) the radial density profiles of the test particles are shown, for several times
during the simulation ( w =t 400A0 , during the linear growth phase, and w =t 700, 800, 900, 996A0 , during the
saturation phase). Radialflattening is strongly evident in these resonant particles, starting at the radial position

Figure 7.Total (kinetic plusmagnetic) volume integratedMHDenergies W m ntot; , for the various Fourier components considered in
the simulation are shown, for the case of =n n 0.12Ee0 i0 .

Figure 8. Frequency spectra of the electrostatic potential j w( )r, at several times (during linear phase, end of the earlier phase of
saturation, late saturation); over imposed is the resonant frequency w ( )r C M; ,res 0 0 of the test particles.
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where the power exchange between energetic particles andwave is stronger ( »r a 0.185, see figure 5). It is
worthwhile noting that this strong radial transport of the energetic particles can becomemuch less evident after
averaging (summing) over the total (resonant plus non-resonant)EP radial density profile. Fromfigure 10 (left)
it can also be observed that theflattening of the radial profile, that starts at time w »t 600A0 around »r a 0.185,
propagates inward, up to »r a 0.1, and outward, up to »r a 0.3. Infigure 10 (right) the curves
w w-( ) ( )t r t,0 res , as computed from the test particle evolution are shown, at several times during the
simulation: the intersections of the curves with the reference zero line identify the resonance radial location.
Until w =t 700A0 the radial location of the resonance is almost unchanged ( »r a 0.185), as is the shape of the
curve w w-( ) ( )t r t,0 res , which just begin toflatten around the resonant radius. At later times
( w =t 800, 900, 996A0 ), the instantaneous resonance frequency profile w w-( ) ( )t r t,0 res , as computed from
the test particles evolution, continues toflatten in radiuswith respect to the linear phase and extends outward,
but also, because of the frequency chirping of themode, it shifts up: as a consequence, the resonant radiusmoves
outward, i.e., toward higher values of the canonical toroidal angularmomentum fP . Infigure 11 the kinetic
Poincaré plots are shown for the same times of simulation offigure 10with test particles colored accordingly to
their initial fP value: here, whenever a test particle completes a full banana or transit orbit in the poloidal plane at

= ˆt t , by crossing the outer equatorial plane (q = 0), the corresponding values of the canonical toroidal angular

momentum f (ˆ)P t and thewave-particle phaseQ(ˆ)t are computed, with ò w fQ = -(ˆ) ( ) (ˆ)
ˆ

t t t n td
t

0 andf
being the toroidal angle. Each test particle position in the plane (Q fP, ) is then updated bymoving themarker in
the ‘kinetic Poincaré’ plot [13]. The extremes of the vertical axis = -f [ ]P 0.13, 50 correspond to,

Figure 9. Frequency spectrogram, =r a 0.3; note that the color scale is logarithmic.

Figure 10.Density profile (left), and w w-( ) ( )t r t,0 res (right) from test particles evolution at several times of the simulation.
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approximately, » [ ]r a 0.1, 0.3 . Resonant particles during linear phase have their normalized

º = »f f fˆ ( ) ˆP P m av P 7e th,e,0 ,res (violet/dark blue color), which corresponds, approximately, to
»r a 0.185res . During the linear phase of the simulation, when the perturbed e.m. fields are small, these

resonant particles arefixed points in time in the space Q f( )P, , while particles with different values of their fP

just drift toward higher or lowerΘ, according to w wQ » -˙
0 res, while keeping fP constant (see the arrows in

thefirst frame offigure 11, indicating the drift direction alongΘ in the two regions of fP ). Once the e.m.fields
have reached a sufficient high level, particles begin to be displaced in fP (due to ´E B drift) also drifting alongΘ
(see figure 11, w =t 700A0 ).When the sign of the perturbed field is inverted, ¶ ¶fP t changes its direction and if
particles cross the =f fP P ,res line, they invert their drift alongΘ, beginning to roll in thewave (being eventually
trapped in thewave itself). Particles that instead do not cross the =f fP P ,res line, only oscillate in fP without
inverting their drift alongΘ (passing particles in the kinetic Poincaré plots nomenclature). In our simulation,
because of the chirpingmode, i.e., w w= ( )t0 0 and of the dynamicmodification of the radial profile of the
resonant frequency w w= ( )r t,res res , the resonant particles that are displaced at larger fP (because of ´E B
drift), will, in turn, continue to drift outward (instead of drifting horizontally inΘ, and reversing theirmotion
toward the resonant layer when feeling a change of sign of the ´E B drift). This outward drift gives rise (see
figure 11, w =t 700, 800, 900, 996A0 ) to vertical elongated structures, i.e., to a large radial transport of energetic
resonant particles (see also the almost flat test particle density profiles for the same times infigure 10 (left)),
consistent with the theoretical analysis given in section 3 [31, 34]. This process ends when theflattening of the
test particle density profile approaches the qmin radius, where the internal kink eigenfunction sharply decreases
(‘radial decoupling’, see [14]); it has to be noted that very little variation is observed in time on the shape of the
eigenfunction, being the internal kink type eigenfunction quite stiff.

Evidence of phase locking is shown infigure 12, where the average of the precession frequency w̄ ( )td of the
linearly resonant particles, weightedwith their power transfer during linear phase is shown, together with the
width of its distribution (see [8]), and comparedwith the time varying (chirping) frequency of themode (see
figure 9). Also, themode adjusts its frequency (thus keeping Q »∣ ˙ ∣ 0, the ‘phase-locking’ condition) in order to
remain ‘tuned’with the resonant particles which,meanwhile, experience their outward displacement.

Finally, we plot infigure 13 the saturation amplitude of the = =m n1, 1Fourier component of the
electrostatic potentialjsat 1,1 as the strength of the EP linear drive varies. For the saturation amplitude, we took

Figure 11.Kinetic Poincaré plots with test particles colored corresponding to their birth value of fP . Note that the extension of theΘ
axis has been doubled and test particlemarkers has been replicated in the domain p pQ <2 4 to enhance the readability of the
plots. The arrows in thefirst plot indicate the direction of the particle drift alongΘ above and below the resonant layer

º »f fˆ ( )P P m av 7e,res ,res th,e,0 .
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themaximumvalue ofj1,1 at the first plateau in time (see, e.g., figure 7, where thefirst plateau occurs at
w »t 720A0 ). From the simulationswe can infer that j g wµ a∣ ∣ ( ∣ ∣)sat 1,1 L 0 , with a » 2 for g w∣ ∣ 0.15L 0 , and
a 1 for g w >∣ ∣ 0.15L 0 . These results compare favorably, for weak drive, with thefindings of [52], whereas,

for sufficiently strong drive, are in fair agreementwith that given in [31] and already anticipated in section 3
( xd g w~∣ ∣ ∣ ∣rr s L 0 ), noting that xd w j~ ~d ´∣ ∣∣ ∣ ∣ ∣ rvr r sE B0 , 1,1 .

4.3. Energetic electronswith density profile peaked off-axis
In this section thefirst global hybridMHD-Gyrokinetic simulations of electron fishbones driven by energetic
particles with density profile peaked off-axis [53]will be presented. This kind of equilibria is closely related to the
experimental configuration inwhich electron fishbones have been observed in current devices. In these
experiments, HFS off-axis heating is applied close to the qmin flux surface in the equatorial plane, using ECRH;
thus, an inverted (positive) gradient of the energetic electron density profile is generated in the radial region of
the dischargewhich is internal to the qmin flux surface and inwhich the internal kink can develop.Moreover,
because of theHFS deposition, a selective heating on barely trapped/circulating particles will be obtained [6].
Recalling the stability condition, *w w > 0Ee [5], and noting that *w Ee depends on the sign of the radial gradient
of the energetic electron pressure profile, instability can occur only by resonance with energetic electrons
characterized by precession reversal; i.e., barely trapped/circulating energetic particles [17, 18].

The equilibrium considered here has the same bulk density and temperature profiles and plasma parameters
of the peaked on-axis one (see section 4.2 andfigure 14 right), except for the inverse aspect ratio,  = 0.1, and the

Figure 12.Comparison between w̄ ( )td (solid black line) and w ( )t0 (dashed blue line) for the linearly resonant particles (a). Thewidth
of the wd distribution is also reported by plotting the quantities w dw¯ d d (dotted red lines). Average (solid black line) and distribution
width (dotted red lines) for the quantity Q( )t td d (b).

Figure 13. Saturation amplitude of jsat1,1 versus g wL 0 for the peaked on-axis energetic electron density profile.
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safety factor profile q, which also in this case is slightly reversedwith »q 1.30 , but with a qmin much closer to
unity (D º - =q q1 0.0002min ) at the surface »r a 0.33qmin

and »q 5.3a (see figure 14 left). Note that
»q 1min has been used in order tominimize the continuumdamping and facilitate the occurrence of the

energetic electron driven fishbone [7, 35].Moreover, safety factor profiles with a reversed shear is known to
enhance the reversal of precessional drift [17, 18, 54].

The energetic electrons radial density profile, peaked off-axis, has been chosen as
y = y- -( ) ( )n n e12.1825Ee Ee0

10 0.5 2
, with temperature radial profile

y y
=

- + - -( ) ( ) ( )
( )

T

T

arctan 30 15 arctan 15

2 arctan 15
,Ee

Ee0

and =T 50 keVEe0 (see figure 14 right). ThewidthΔ of the energetic electrons distribution function in the
velocity space isD = 0.5, whereas a =cos 00 as for the energetic electron density profile peaked on-axis, see
equation (7), and thus the distribution function is still symmetric in velocity space, and no net current is driven
by energetic particles. The choice ofD = 0.5 is such to ensure the presence in the energetic electrons
distribution function of a sufficient fraction of barely trapped/circulating particles (seefigure 15). In the
following simulations the toroidalmode number is n=1, and the poloidal Fourier components retained are

= ¼m 1, , 6, normalized resistivity = ´-S 3 101 5 and viscosity nt = ´ -a 3 10A0
2 8, as before. Besides the

kinetic contribution of the energetic electrons  ^( · )PEe , both the diamagnetic bulk ion term, and the thermal
ion compressibility  ^( · )Pi treated kinetically are retained, whereas the contribution  ^( · )Pe of the bulk
electronswill be neglected for simplicity, see equation (8).Moreover, the choice of a shaped energetic electron

Figure 14.Radial profile of the safety factor q versus r (left) and normalized profiles of y( )ni , y( )Ti , y( )nEe , y( )TEe versus the
normalized flux functionψ (right).

Figure 15.Energetic electrons distribution function in the plane ( ˆ ˆu M, ),D = 0.5, a =cos 0;0 solid lines refer to the trapped/
untrapped boundary at =r rqmin

.
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temperature profile, which strongly decreases outside the »q 1 surface, has the beneficial effect of inhibiting the
growth ofmodeswith dominant poloidalmode numbers higher than unity, which can be driven unstable by
deeply trapped energetic electrons outside the q=1 surface, where the energetic electron density gradient
becomes negative.

4.3.1. Linear dynamics
In this sectionwe present linear dynamics results for the electron fishbone driven by energetic electronwith off-
axis peaked density profile. Infigure 16 the radial profiles of the Fourier components, the poloidal structure and
the power spectrumof the electrostatic potential are shown, for =n n 0.0095Ee0 i0 : the radial structure of the
poloidal Fourier components is dominated by them, n=1,1 component, which is localized in the region
q qmin , showing the characteristic shape of the internal kink radial displacement (x jµ rr ). The structure of

themode in the poloidal plane rotates in time in the clockwise direction, i.e., opposite to the direction observed
in the peaked on-axis EP radial profile (see section 4.2), which corresponds to amode propagating in the
direction of the diamagnetic velocity of the energetic electrons (which is parallel, for a peaked off-axis energetic
electrons density profile, to the direction of the bulk ion diamagnetic velocity). The frequency of themode is
quite low, see figure 16 (right), as expected for equilibria with low values ofDq (see, e.g., [35]). Infigure 17 the
growth rate and frequency of the electron fishbone driven by energetic electronswith radial density profile
peaked off-axis is shown: a linear dependence on nEe0 is observed, above the threshold »n n 0.007Ee0 i0 , with a
real frequencyweakly dependent on nEe0.

From the power exchange between the energetic electrons andwave, as shown infigure 18, it is possible to
infer which fraction of energetic particles is driving themode. Infigure 18 (left) the power exchange in the radial
shell  r a0.33 0.41 is shown, with the curves approximating the trapped/untrapped boundary (solid
black) and the barely/well circulating boundary (solid red) superimposed.Here, we follow the definition given
in [7] for the barely circulating particles, defined as  k( )r R 11 2 2 , with:

Figure 16.The Fourier components (left), the poloidal structure (center) and the power spectrum (right) of the of the electrostatic
potential is shown, for =n n 0.0095Ee0 i0 . In the power spectrumplot (right) the solid lines are the upper and lowerAlfvén continua.

Figure 17.Growth rate (left) and frequency (right) versus n nEe0 i0 for the off-axis peaked energetic electron density profile.
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Indeed, themaximumpower exchange occurs for particles in the region of velocity space belonging to that of
barely circulating ones (in particular the counter-circulating ones, red pattern), with someminor contributions
coming from thewell circulating particles, both co- and counter-circulating (outside the solid red curve, green
pattern); trapped particles, on the contrary, give a damping contribution (light blue to dark blue patterns) to the
mode, as expected (seefigure 18 (right), where only the power exchange due to trapped particles (k > 12 ) is
shown in order to enhance the relative size of their contribution).

An analysis, similar to the one shown for the peaked on-axis energetic electrons density profile case, has been
done for this simulation, in order to identify the characteristic resonance responsible for driving themode. In
particular, theHamiltonianmapping technique has been applied to a set of test particles defined by the C M,0 0

values corresponding to the regionwhere the power exchange between energetic electrons and thewave is
maximum in linear phase. This happens, for this simulation, for counter-passing barely circulating energetic
particles at »r a 0.36, » -û 0.73, »M̂ 1.55 (see figure 18 left), with a frequency of themode w w » 0.04A0 .
Infigure 19 the radial dependence of the resonant frequency of the circulating test particles
w w s w= + + -ℓ¯ [ ( ) ]n nq mres d b, with =ℓ 0,m, n= 1, 1 and s = -1 (counter-passing particles) is
comparedwith the observed frequency of themode w ;0 also the radial profile of the power exchange between the
test particles and thewave is presented, showing how themaximumpower exchange correspond closely to the
radii where the test particles are in resonancewith thewave. In this case, the resonant condition is satisfied at two

Figure 18.Power exchange between energetic electrons andwave, for =n n 0.0095Ee0 i0 . Contribution from the full population in
the radial shell  r a0.33 0.41 (left), and only trapped particles (right), same radial shell; black lines refer to the boundary between
trapped/untrapped particles, whereas solid red curve refers to the boundary between barely circulating andwell circulating ones (for

r a 0.41).

Figure 19.Radial dependence of the resonant frequency of the counter-passing barely circulating test particles (solid red curve)
comparedwith themode frequency w w » 0.04A0 0 (dashed black line), for =n n 0.0095Ee0 i0 . Over-imposed is the radial
dependence of the test particle power exchange, (blue dotted–dashed curve).
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radial locations (‘double resonance’), as a consequence of the -( )q 1 term in the resonant condition for
circulating particles. Note that the variation of w ( )rres around the resonant positions is stronger than the one
observed in the peaked on-axis EP density profile (being, for the two cases considered,
w w¶ ¶ ¶ ¶ »∣ ∣ ∣ ∣‐ ‐r r 4res,off axis res,on axis ); the effects of this difference will bemanifest during the nonlinear

saturation phase w.r.t. the peaked on-axis case.

4.3.2. Nonlinear dynamics
The evolution of the simulationwith =n n 0.0095Ee0 i0 is shown infigure 20, where the time evolution of the
total (kinetic plusmagnetic) volume integratedMHDenergies,Wtot;m,n, for the m n, Fourier components
considered in the simulation are shown.

Infigure 21 kinetic Poincaré plots are shown, for the test particles belonging to the subset ( )C M,0 0 as
described in the previous section, with the test particles colored according to their initial fP value: red color for

the particles with < »f fˆ ˆP P 125,res1 (corresponding to  »r a r a 0.35res1 ), blue color for particles with
  »f f fˆ ˆ ˆP P P 162,res1 ,res2 (i.e.,   »r a r a r a 0.39res1 res2 ), and yellow color for particles with

>f fˆ ˆP P ,res2 (i.e., r a r ares2 ). Note that the double resonance structure, which has the sign of w¶ ¶rres at one
resonant radius the opposite of that at the other resonant radius,makes particles in resonance at the inner radius
rotating in the opposite directionw.r.t. the ones in resonance at the outer radius (see figure 21, second frame
from left).While entering the fully nonlinear phase ( wt 670A0 , see figure 21, third frame from left), we note
that the two island structures tend to insinuate oneself into the other, having a fP extension (or, equivalently, a
radial extension) of the order of the distance between the two resonance layers -f f∣ ∣P P,res2 ,res1 . As the test
particles are displaced outside the resonant layer (toward <r rres1, or >r rres2), where the characteristic
resonant frequency changes rapidly with radius (see figure 19), even changing its sign and, thus, not satisfying
anymore the instability condition *w w > 0Ee , themode has no ‘convenience’ in adjusting its frequency to that
of the linearly resonant particles. Indeed, little variation of the frequency during the saturation phase is observed,

Figure 20.Total (kinetic plusmagnetic) volume integratedMHDenergies W m ntot; , for the various Fourier components considered in
the simulation are shown, for the case of =n n 0.0095Ee0 i0 .

Figure 21.Kinetic Poincaré plots for the case of =n n 0.0095Ee0 i0 , in the plane Qf( )P , . Test particles are colored according to their
initial fP values. The arrows in thefirst plot indicate the direction of the particle drift alongΘ above, in between, and below the
resonant layers »fP 7,res .
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and the saturation of this simulation can be ascribed to ‘resonance detuning’ (see, e.g., [14, 31, 34, 55]). The
result of saturation on the radial density profile of the energetic particles is shown infigure 22: a flattening of the
profile in a region somewhat larger than the one between the two resonant surfaces »r a 0.35res1 and

»r a 0.39res2 is observed, thewidth of the flattened region being, nevertheless, quite small w.r.t. the rqmin
region.

Note that the radial density profiles, as obtained by the test particles, flatten around the two resonant radii at
different times (in the case shown, at w »t 670A0 for »r a 0.35res1 , and w »t 740A0 for »r a 0.39res1 , see also
the Poincaré plots, figure 21, third and fourth frame from left).

Infigure 23 the scaling of the saturation amplitude of the electrostatic potential versus the ratio of the linear
growth rate to the frequency of themode g wL 0 is shown, in a scan inwhich the EP density is varied: a stronger
scaling,j g w» ( )sat1,1 L 0

3 is observed for values of g w 0.3L 0 , whereas for larger g wL 0 the scaling approaches

j g w» ( )sat1,1 L 0
3 2. These simulation results compare favorably with the analyticfindings given at the end of

section 3, where the scaling for the saturated displacement xd g w w w w~ D - -∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣2r0 L
3

0
3 2 3 2

0 res0
1 2 was

introduced, whennoting that, in the case of w gD >∣ ∣ L (corresponding to the low g w values infigure 23) that
scaling gives xj d w gµ ~∣ ∣ ∣ ∣∣ ∣rr s1,1 sat 0 0 L

3 , whereas for w gD ~∣ ∣ L one gets xj d w gµ ~∣ ∣ ∣ ∣∣ ∣rr s1,1 sat 0 0 L
3 2.

5. Conclusions

In present days, e-fishbones have been observed on a variety of devices: they are internal kink-type instabilities
driven by energetic electrons generated by, e.g., EC and/or LHH/current drive. A brief summary of
experimental evidences have been given in section 2. Similarly to thewell known ionfishbones, e-fishbones are

Figure 22.Density profile from test particles evolution: solid black curve corresponds to linear phase profile ( w =t 400A0 ), red and
blue curves to nonlinear saturation phase profiles ( w =t 670A0 and w =t 740A0 ).

Figure 23. Saturation amplitude of jsat1,1 versus g wL 0 for the peaked off-axis energetic electron density profile.
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driven bywave-particle interaction atmagnetic toroidal precession frequency of energetic electrons: they are
characterized by linear dispersion relation similar to that of ion-fishbones (see section 3 for a brief summary of
the theory of linear and nonlinear dynamics of e-fishbones). The large interest raised about the e-fishbones is
also related to the fact that the radial transport, induced by fluctuations driven bymagnetically trapped resonant
particles, due to precession resonance, depends on energy and notmass of the particles themselves. Also, the
energetic electrons on present devices are characterized by havingmuch smaller resonant particle orbit widthw.
r.t. the characteristic scale length of the fishbone instability (which is of the order of the rigid radial displacement
of the internal kink-like eigenfunction) similarly towhat is expected for energetic ions (e.g., fusionα-particles)
in burning plasmas, because of large plasma current, and differently fromwhat can be obtained for energetic
ions in present experiments. Thus, e-fishbones offer the opportunity to study both experimentally and
numerically linear and nonlinear dynamics of wave-particles interactions relevant for fusion plasmas also on
present, not ignited devices, and to comparewith theory.

In the present paper, linear and nonlinear numerical simulations offishbones driven by energetic electrons
have been presented, using the hybridMHD-Gyrokinetic codeXHMGC [9]. Equilibria with both on-axis [8]
and off-axis [53]peaked energetic electron radial density profile have been considered. For the on-axis peaked
energetic electron radial density profile case, it has been enlightened the effects of considering the kinetic
thermal ion compressibility and diamagnetic effects (in order to allow for an entirely novel treatment of
enhanced inertia response and ion Landau damping) and the kinetic thermal electrons compressibility effects.
Themost important effect comes from the thermal ion compressibility treated kinetically, resulting in a
considerable enhancing of the instability threshold energetic electron density. Resonances betweenwave and
energetic electrons and thermal species have been analyzed using TPHM techniques [13, 14], clearly identifying
the precession frequency w̄d of deeply trapped energetic electrons in driving themode [8]. Nonlinearly, the
mode experiences a strong downward frequency chirping, adjusting its frequency in order to remain tunedwith
the resonant particles which are displaced outwardly; this results in keeping Q »∣ ˙ ∣ 0, the phase-locking
condition, and induces the simultaneous flattening of the radial density profile of the resonant energetic particles
togetherwith the outward displacement of the resonance radial location. The process endswhen theflattening of
the resonant particles density profile approaches the qmin radius, where the internal kink eigenfunction, that
remains almost unchanged in its shape during nonlinear phase, sharply decreases in amplitude (‘radial
decoupling’, see [14]). Note that some of these features (chirping frequency, ejection of resonant particles) are
consistent with previous findings of ion fishbone simulations [56]. The nonlinear saturation of the dominant
Fourier component ( =m n 1 1) of the electrostatic potential,jsat1,1, has been shown to scale almost

proportional to the strength of the ratio of the linear growth rate to themode frequency,j g wµsat1,1 L 0, for

sufficiently strong drive ( g w 0.15L 0 , for this particular simulation case), whereas stronger dependence is
obtained in theweaker drive regime. The scaling obtained for strong drive, when the finite interaction length of
the phase space zonal structures is of the order of the qmin radius, rs, is consistent with the analyticalfindings
[31], as reported in section 3.

In this paperwe have also presented thefirst global hybridMHD-Gyrokinetic simulations of electron
fishbones driven by energetic particles with density profile peaked off-axis. Equilibria with off-axis peaked
energetic electrons radial density profile aremore closely related to the experimental conditions inwhich
e-fishbones have been observed in current devices, whereHFS off-axis heating using, e.g., ECRH forms barely
trapped and/or barely circulating energetic electrons. These particles, because of the the toroidal precession
reversal of theirmotion, can fulfill the instability condition *w w > 0;Ee themode is observed to rotate
poloidally in the direction of the diamagnetic velocity of the energetic electrons (which is parallel, for a peaked
off-axis energetic electrons density profile, to the direction of the bulk ion diamagnetic velocity). In this
equilibrium the radial structure of the resonance for the energetic electrons driving themode is dominated by
the -( )q 1 term entering in the expression of the resonance of circulating particles, see equation (3), thus
having a double resonance in the vicinity of the qmin radial location rs. Nonlinearly, kinetic Poincaré plots show a
double island structure, one rotating in the opposite direction of the other, and shifted byπ along thewave-
particle phaseΘ. Localflattening of the radial density profile of the resonant particles is observed in the radial
positions of the double resonance, and nomajor frequency chirping is observed during saturation, which can be
attributed to resonance detuning [14, 55]. The scaling of the saturated amplitude, for this equilibrium, is in good
agreementwith the predictions given in section 3:j g w» ( )sat1,1 L 0

3 for weak drive, andj g w» ( )sat1,1 L 0
3 2

when w w w gD º - ~∣ ∣ res0 0 L.
It is worth noting that in this paperwe have neglected the role ofMHDnonlinearities, which are known to

increase their importance nearmarginal stability [16, 36]. Thus, amore complete simulation studywill be
required to explore in detail the nonlinear dynamics also in these regimes of weak energetic electron drive.
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