
Received December 26, 2019, accepted January 7, 2020, date of publication February 7, 2020, date of current version February 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2972265

SHA-2 Acceleration Meeting the Needs of
Emerging Applications: A Comparative Survey
RAFFAELE MARTINO , (Graduate Student Member, IEEE),
AND ALESSANDRO CILARDO , (Senior Member, IEEE)
Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy

Corresponding author: Alessandro Cilardo (acilardo@unina.it)

This work was supported by the SPHERE project under the Italian Ministry of Education, University and Research (MIUR) through the
Research Projects of National Relevance (PRIN) Programme.

ABSTRACT While SHA-2 is a ubiquitous cryptographic hashing primitive, its role in emerging application
domains, e.g. blockchains or trusted IoT components, has made the acceleration of SHA-2 very challenging
due to new stringent classes of requirements, especially implementation cost and energy efficiency. The
survey discusses these emerging applications and their fundamental requirements. Then, the work presents
a comprehensive review of the different design techniques available in the literature for SHA-2 acceleration.
The main focus of the presentation is placed on the impact of each design technique on the area, energy,
power, and performance of the resulting accelerator, guiding the designer through the identification of the
appropriate technique mixes which meet the constraints of any given application.

INDEX TERMS Accelerators, Hash functions, SHA-2.

I. INTRODUCTION
Cryptographic hash functions have been employed for
decades as a fundamental building block of information secu-
rity. Their properties ensure that message integrity as well
as the sender’s identity in a communication can be securely
verified, provided that a secret has been shared between the
communicating parties. Because of serious vulnerabilities
identified in popular hash algorithms used in the past, namely
MD5 and SHA-1, SHA-2 has now become crucial in a range
of applications, being today the most commonly used hash
function in practice. The traditional application domain of
hash functions has been network security, usually over the
Internet. In this context, client devices are usually suffi-
ciently powerful to perform the relatively limited number of
hash computations required by the security protocols, while
servers can possibly benefit from hardware acceleration of
the hash operation [1]. The hardware accelerator is designed
to deliver the maximum possible throughput, usually traded
off for increased area and power consumption.

However, the particular properties of cryptographic hash
functions have paved the way for new application domains,
beyond mere network security, with different sets of
requirements. The most significant example is provided by
blockchain applications, brought to the fore by the explosion

The associate editor coordinating the review of this manuscript and

approving it for publication was Junaid Shuja .

of the Bitcoin cryptocurrency. The Bitcoin mining pro-
cess, which heavily relies on the SHA-2 hash function,
is extremely demanding in terms of energy efficiency, even
making its profitability uncertain from the miner’s stand-
point. The development of new domains such as the Internet-
of-Things (IoT), with its low-cost battery-powered devices
needing secure communication, has also contributed to an
increased demand for area- and energy-efficient accelerators
to be paired with the resource-constrained main processor.

Pushed by the new classes of requirements posed by
emerging applications, a number of different techniques have
been introduced for the design of SHA-2 accelerators, geared
towards the optimisation of area as well as energy or power
consumption. While many of these area- and power-efficient
techniques reach reasonable throughput levels, a few of them
even sacrifice throughput in order to achieve substantial area
or power savings. A designer confronted with the task of
designing a SHA-2 hardware accelerator has therefore several
alternatives to choose from, each with its own strengths and
weaknesses. This paper comprehensively surveys the avail-
able techniques, discussing their impact on the different eval-
uation metrics of relevance for the designer: throughput, area
occupation, and energy or power consumption. The discus-
sion takes also advantage of the authors’ previous work [2],
which presented a SHA-2 evaluation framework used to ana-
lyze the implementation requirements of existing solutions.
This analysis is combined herewith an extensive review of the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 28415

https://orcid.org/0000-0003-3711-8515
https://orcid.org/0000-0002-1685-8736
https://orcid.org/0000-0003-0726-5311

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

state of the art to systematically show how relevant evaluation
metrics are affected by architectural choices. The applications
of SHA-2 are also surveyed in order to identify their key
requirements and hence themost effective techniques adopted
to meet them.

The rest of the paper is organised as follows. Section II
reviews the SHA-2 algorithm family, while Section III
surveys the fields of application for the hash functions.
Section IV presents the spectrum of techniques available for
the acceleration of SHA-2. Section V focuses on the dedi-
cated SHA-2 hardware solutions proposed in the literature. In
Section VI the impact of different implementation techniques
on circuit-level metrics and the needs of end applications are
discussed. Section VII concludes the paper with a few final
remarks.

II. THE SECURE HASH ALGORITHM 2 (SHA-2)
The Secure Hash Algorithm (SHA) is a family of cryp-
tographic hash functions defined by the National Institute
of Standards and Technology (NIST) and published as the
Federal Information Processing Standard (FIPS) 180, Secure
Hash Standard (SHS) [3]. In the first version of the SHS,
FIPS 180-0, published in 1993, only one hash function was
described. This algorithm, now known as SHA-0, has been
soon after replaced by SHA-1 in the revised version of the
standard, FIPS 180-1, published in 1995. While the only
difference between SHA-0 and SHA-1 is a single bitwise
rotation, SHA-0 turns out to be considerably weaker than
SHA-1 [4].

SHA-2 was firstly introduced in 2001, when FIPS
180-2 defined its two main variants, SHA-256 and SHA-512,
respectively the 32- and 64-bit versions of the same hash algo-
rithm. Additionally, the same revision described a truncated
variant of SHA-512, SHA-384. Subsequent updates to the
SHS added other truncated variants to the family. Namely,
FIPS 180-3 in 2004 added SHA-224, which is a variant of
SHA-256, whilst FIPS 180-4 added in 2012 two variants
of SHA-512, SHA-512/224 and SHA-512/256, along with
the general specification of a t-wide hash function called
SHA-512/t .

In summary, SHA-2 is the set of the cryptographic hash
algorithms defined in the SHS, excluding SHA-1. The follow-
ing description will focus on SHA-256, while Section II-B5
will provide the detail of the other variants. Despite the recent
introduction of SHA-3, which has been published separately
as FIPS 202 [5], SHA-2 variants are currently widely in use
as secure hash algorithms [6] and their relevance for a large
variety of applications remains crucial.

A. PROPERTIES OF CRYPTOGRAPHIC HASH ALGORITHMS
A hash algorithm can be used for providing security services
only if it ensures a set of properties, which are not neces-
sarily guaranteed by general-purpose hash functions. These
properties make algorithms like SHA-2 what we define a
cryptographic hash function.

The one-way or preimage resistance property of cryp-
tographic hash functions implies that it is computation-
ally infeasible to compute the message M given its hash
DM (M).1 The second preimage resistance property means
that, given a hash value DM (M), it is computationally infea-
sible to find a different messageM ′ 6= M that yields the same
hash value. The pseudo-randomness property means that the
hash value of a message must expose statistical randomness.
Finally, the collision resistance property means that it is
computationally infeasible to find a pair of messagesM1 and
M2 which produce the same hash value.

Each application has different requirements in terms of
these properties for its underlying hash function [7]. In
Section III a wide range of applications of SHA-2 are pre-
sented, not limited to security services, and their specific
requirements in terms of cryptographic hash properties are
discussed.

The security of a hash algorithm is a measure of the com-
putational infeasibility of breaking its properties, especially
its collision resistance. It is measured in terms of the number
of operations required to break the algorithm, expressed as
a power of 2. More specifically, a hash function is said to
have x security bits if 2x operations are required to break
it. The name stems from the fact that, for an unbroken hash
algorithm, the only feasible attack relies on brute force, which
implies a mean number of attempts exponential in the length
of the hash value L (DM (M)). However, due to the birth-
day paradox, the number of attempts required on average to
find two different messages hashing to the same value, i.e.
to break the collision resistance property in its broadest sense,
is 2L(DM(M))/2, making the number of security bits a half of
the hash size.

The hash sizes of the members of the SHA-2 family have
been chosen to match the security bits provided by sym-
metric encryption algorithms. For these cryptographic algo-
rithms, the number of security bits coincides with the key
length, hence SHA-2 hash sizes are twice the key length of
a symmetric encryption algorithm. Specifically, a hash size
of 224 implies the same number of security bits of Triple
DES [8], while 256, 384, and 512 are twice the key sizes
supported by AES [9].

B. ALGORITHM STRUCTURE
SHA-2 is a block-based hash algorithm, meaning that it
operates on blocks of fixed size l to produce a fixed-size
hash value DM (M) for a given input message M . For SHA-
256, l = 512 bit and the hash size is 256 bit. Nevertheless,
they are capable to process messages of practically any arbi-
trary length, up to a limit fixed by the padding. Padding is
performed to ensure that the variable length L (M) of the
messageM to be hashed is always a multiple of l.

Message blocks are processed sequentially, as the output
of each block is combined with the current partial hash value
to produce the new partial hash value, that is also fed as input

1If DM (M) is the hash value ofM ,M is called the preimage of DM (M).

28416 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

to the hashing of the next message block. This inherently
sequential structure prevents aggressive parallelization of the
single computation.

1) PADDING STEP
The message is padded with a single 1 bit, followed by
as many 0 bits as needed to reach a length congruent to
448 mod 512, so as to leave the last 64 bits for encoding
a representation of the original length L (M). This means
that the length of the message to be hashed must not exceed
264 bit. Padding is always performed, even when the length of
themessage does not strictly require it. Therefore, the number
of message blocks required to hash a message can be written
as bL (M) /lc + 1, which can also be written as a function
of the padded message M∗ in the form L (M∗) /l. Moreover,
the actual maximum length of a message to be hashed is
limited to 264 − 65 bit.
To recall that padding has to be performed prior to any hash

computation, each message block is usually referred to as the
padded data block (PDB).

2) DEFINITION OF VARIABLES
The current hash value is used for the hashing of the j-th
PDB Mj, and is stored in eight 32-bit accumulator variables
DM k , k ∈ [0, 7]. Their initial values are the first 32 bits
of the fractional parts of the square root of the first eight
prime numbers, although they are also hard-coded in the
standard [3] as follows:

DM0 (0) = 0x6a09e667 DM4 (0) = 0x510e527f

DM1 (0) = 0xbb67ae85 DM5 (0) = 0x9b05688c

DM2 (0) = 0x3c6ef372 DM6 (0) = 0x1f83d9ab

DM3 (0) = 0xa54ff53a DM7 (0) = 0x5be0cd19

(II.1)

For each PDB, the algorithm performs R = 64 iterations.
At each iteration t , the value of the internal state variable Z
is updated. The internal state variable is constituted by eight
32-bit working variables called A to H . To refer to the state
variables as a whole, the following definition is used in this
paper:

Z (0)t = At Z (4)t = Et
Z (1)t = Bt Z (5)t = Ft
Z (2)t = Ct Z (6)t = Gt
Z (3)t = Dt Z (7)t = Ht (II.2)

At the beginning of the processing of each PDB, the value of
the working variables matches the value of the accumulators:

A0 = DM0 (j) E0 = DM4 (j)

B0 = DM1 (j) F0 = DM5 (j)

C0 = DM2 (j) G0 = DM6 (j)

D0 = DM3 (j) H0 = DM7 (j) (II.3)

Themessage to be hashed determines the value of the variable
Wt . Namely, this is a 32-bit variable whose value changes at
every iteration as follows:

Wt =

Mj [32 · t + 31 : 32 · t]

t < 16
σ1 (Wt−2)+Wt−7+σ0 (Wt−15)+Wt−16

t ≥ 16

(II.4)

In other words, for the first 16 iterations, Wt is simply the
t-th 32-bit word of Mj. Note also that all the additions
involved in the SHA-2 family are performed modulo the
variable size, which is 32 for SHA-256. Whenever needed,
the + symbol will denote the appropriate modular addition
throughout the text. The two functions σ0 (x) and σ1 (x) are
defined as follows.

σ0 (x) = x ≫r 7⊕ x ≫r 18⊕ x ≫ 3

σ1 (x) = x ≫r 17⊕ x ≫r 19⊕ x ≫ 10 (II.5)

where x ≫r n denotes the circular right shift of n bits and
x ≫ n denotes the logical right shift of n bits.

Last, the algorithm employs R constants Kt , whose values
are hard-coded in the standard [3] as the first 32 bits of the
fractional parts of the cube root of the first 64 prime numbers.

3) MESSAGE BLOCK PROCESSING
At each iteration, the following step functions are computed:

T 1
t = Ht +61 (Et)+ Ch (Et ,Ft ,Gt)+ Kt +Wt

∀t ∈ [0,R− 1] (II.6)

T 2
t = 60 (At)+Maj (At ,Bt ,Ct)

∀t ∈ [0,R− 1] (II.7)

where the Choose2 and Majority functions are defined as

Ch (x, y, z) = (x ∧ z)⊕ (¬x ∧ y) (II.8)

Maj (x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) (II.9)

whilst the60 (x) and61 (x) functions are defined as follows.

60 (x) = x ≫r 2⊕ x ≫r 13⊕ x ≫r 22

61 (x) = x ≫r 6⊕ x ≫r 11⊕ x ≫r 25 (II.10)

The working variables are updated according to the following
scheme:

At+1 = T 1
t + T 2

t ∀t ∈ [0,R− 1]

Bt+1 = At ∀t ∈ [0,R− 1]

Ct+1 = Bt ∀t ∈ [0,R− 1]

Dt+1 = Ct ∀t ∈ [0,R− 1]

Et+1 = Dt + T 1
t ∀t ∈ [0,R− 1]

Ft+1 = Et ∀t ∈ [0,R− 1]

Gt+1 = Ft ∀t ∈ [0,R− 1]

Ht+1 = Gt ∀t ∈ [0,R− 1] (II.11)

2The value of x chooses whether y or z is propagated to the output.

VOLUME 8, 2020 28417

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

It is worth noting that only two working variables out of
eight are actually updated at each iteration, whereas the other
six take on the value of the preceding variables. In fact, for all
variables but At+1 and Et+1, Equation (II.11) can be rewritten
as:

Z (k)t+1 = Z (k − 1)t ∀k ∈ [1, 3] ∪ [5, 7] (II.12)

4) MESSAGE BLOCK CHAINING
At the end of the 64 iterations, the current hash value is
updated as follows:

DM0 (j+ 1) = DM0 (j)+ AR
DM1 (j+ 1) = DM1 (j)+ BR
DM2 (j+ 1) = DM2 (j)+ CR
DM3 (j+ 1) = DM3 (j)+ DR
DM4 (j+ 1) = DM4 (j)+ ER
DM5 (j+ 1) = DM5 (j)+ FR
DM6 (j+ 1) = DM6 (j)+ GR
DM7 (j+ 1) = DM7 (j)+ HR (II.13)

If j < L (M∗) /l, the algorithm continues with the processing
of Mj+1; otherwise, there are no message blocks left and the
message digest is DM0 || DM1 || DM2 || DM3 || DM4 ||

DM5 || DM6 || DM7, where the || symbol denotes the
concatenation operator.

5) SHA-2 VARIANTS
SHA-512 is the 64-bit variant of SHA-256. All the sizes are
therefore doubled, namely the hash size is 512 bit, the block
length l is 1024 bit, and the accumulator variables are 64-bit
wise. Similarly to SHA-256, their initial values are the first
64 bits of the fractional parts of the square root of the first
eight prime numbers, and are hard-coded in the standard [3].

SHA-512 performsR = 80 iterations to hash a single PDB.
This means that 80 values for the Kt constants are required.
These values, which are hard-coded in the standard, have
been determined analogously to SHA-256, as the first 64 bits
of the fractional parts of the cube root of the first 80 prime
numbers.

The padding step reflects the doubled size, since the mes-
sage is padded with a single 1 followed by as many 0 bits as
needed to reach a length congruent to 896 mod 1024, so as to
leave the last 128 bits for encoding the original length L (M).
This implies that the limit on the length of the message to be
hashed is increased up to 2128 − 129 bit.
The only remaining difference between SHA-512 and

SHA-256 involves Equations (II.5) and (II.10), which
become

σ0 (x) = x ≫r 1⊕ x ≫r 8⊕ x ≫ 7

σ1 (x) = x ≫r 19⊕ x ≫r 61⊕ x ≫ 6

60 (x) = x ≫r 28⊕ x ≫r 34⊕ x ≫r 39

61 (x) = x ≫r 14⊕ x ≫r 18⊕ x ≫r 41 (II.14)

The other four hash functions are in fact variants of
SHA-256 and SHA-512. The specifications of these variants
are exactly the same as their base algorithms, but the output
is truncated to a lower number of bytes and different initial
values DM0 (0) to DM7 (0) are employed. Namely:

• SHA-224 is the same function as SHA-256, except that
the output is truncated to 224 bit and different initial
values DM0 (0) to DM7 (0) are used;

• SHA-384 is the same function as SHA-512, except that
the output is truncated to 384 bit and different initial
values DM0 (0) to DM7 (0) are used;

• SHA-512/224 is the same function as SHA-512, except
that the output is truncated to 224 bit and different initial
values DM0 (0) to DM7 (0) are used;

• SHA-512/256 is the same function as SHA-512, except
that the output is truncated to 256 bit and different initial
values DM0 (0) to DM7 (0) are used.

The reader is referred to the standard [3] for the selection of
the initial values specific to each variant. The different hash
functions of the SHA-2 family are compared in Table 1. The
first part of the table presents some functional characteristics
of the hash algorithms. The comparison highlights that the
different variants of SHA-2 offer different combinations of
security levels and block size. A symmetric encryption algo-
rithm with equivalent security level is also listed. The second
part of the table compares some internal parameters, which
depend on the algorithm being derived from the SHA-256 or
SHA-512 main variant.

III. APPLICATIONS OF SHA-2
The properties of cryptographic hash functions make them
one of the most versatile cryptographic tools, used in a variety
of security services [7].
Digital signature schemes based on asymmetric encryp-

tion, such asDigital Signature Algorithm (DSA) [10], employ
hash functions to reduce their computational complexity
while retaining the nonrepudiation property. Due to the
processing time of asymmetric cryptography, it would be
impractical to directly process a large file to obtain its digital
signature, so only the hash of the file is signed. Due to the
collision resistance property, it is computationally infeasible
to find a second file with the same hash, and hence the
same signature, of the original file, thereby preserving the
nonrepudiation property.
Hash-Based Message Authentication Codes (HMACs)

[11], [12] exploit the collision resistance property to provide
message authentication, which ensures the integrity of the
transmitted data. The message to be transmitted, along with a
shared secret, is hashed to produce a message authentication
code (MAC) which can be used at the receiver side to verify
that the message has not been altered. The inclusion of the
shared secret, in fact, prevents an attacker from simply replac-
ing the whole message-MAC pair, since the latter cannot be
computed without knowing the shared secret. It has been
proved that HMAC is directly and formally related with the

28418 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

TABLE 1. Characteristics of the members of the SHA-2 family of algorithms.

security of the hash function employed [11]. HMACs are
employed by the IPSec protocol [13], both in the Authenti-
cation Header (AH) [14] and in the Encapsulated Security
Payload (ESP) [15] modes.
Pseudo-Random Number Generators (PRNGs) based on

Deterministic Random Bit Generation (DRBG) [16] produce
pseudo-random sequences by hashing a linearly increasing
seed. In addition to cryptographic hash functions, PRNGs can
also be built from HMACs [16].

Most of the security protocols listed above are standard-
ized by NIST [10], [12], [16], which requires the underly-
ing hash function to be one of its approved hash functions.
However, vulnerabilities have been found in SHA-1 [17],
leading eventually to its breaking [18]. Given that alternative
hash functions such as MD5 [19] were already known to be
broken [20], [21], SHA-2 has been the only viable alternative
for many years. Although a new hash function, SHA-3, has
been standardised by NIST in 2015 [5], it has not reached
widespread diffusion yet. Considering the slow process that
has taken place for SHA-2 to fully replace SHA-1 [22], along
with the fact that there are no significant vulnerabilities to
SHA-2, the new SHA-3 function is not expected to replace
SHA-2 in the near future. Moreover, SHA-3 is based on a
completely different mathematical construction than SHA-2.
While the different nature of the function makes it diffi-
cult to re-use the body of knowledge in SHA-2 and SHA-1
cryptanalysis, more study is still required to increase confi-
dence in the cryptographic strength of the new SHA-3 func-
tion [23]. On the other hand, SHA-2 has undergone intense
cryptanalysis [24] for more than 15 years, and no weak-
nesses have been found yet, making SHA-2 attractive for
emerging applications where long-term collision resistance is
required.

A. BLOCKCHAINS
The blockchain technology employs hash functions to ensure
the integrity of a distributed ledger. In essence, a blockchain
is a distributed database growing in time within a peer-to-
peer network. Transactions are grouped into blocks, which
are concatenated by including the hash of the last block into
the header of the next block. New blocks are added to the
blockchain by running a distributed consensus algorithm,

ensuring a consistent view of the database. Once the block
sequence is agreed upon, the collision resistance property of
the hash functions implies that it is infeasible to modify a
transaction without being detected, since any change in the
block would result in a different hash.

A critical role in ensuring the integrity of the distributed
database is played by the distributed consensus algorithm. In
fact, if attackers are able to subvert the consensus protocol,
they may force the network to agree on their own version of
the blockchain, with a content of their own choice. Specifi-
cally, consensus protocols running on peer-to-peer networks
must avoid Sybil attacks [25], i.e. attacks based on the capa-
bility of the attacker to present multiple identities, gaining an
apparent majority which can drive the consensus. The Bitcoin
cryptocurrency [26], which has introduced the blockchain
technology, bases its own distributed consensus protocol on
SHA-256. It avoids Sybil attacks by forcing peers to perform
a computationally-intensive task in order to participate in the
consensus algorithm [23], [27].

The Bitcoin consensus protocol is also called Nakamoto
consensus [28]. It mandates that a new block can be added to
the network only if its hash, computed by applying twice the
SHA-256 hash function, is below a specific threshold, called
target. To this end, the header contains a nonce which can be
changed by peers in order to alter the hash value of the block.
The Nakamoto consensus relies on the one-way property
of SHA-256: were the SHA-256 function to be invertible,
it would be possible to compute the value of the nonce leading
to the required hash value by simply inverting the SHA-256
function [27]. Instead, a brute-force approach is required,
with minor possible improvements stemming from details of
the Nakamoto consensus protocol [29], [30].

The first node in the network capable of finding a new
valid block announces it to the network, and gets the reward
associated to the block, which consists of the sum of the
fees of the transaction included in the new block, plus a
pre-defined quantity of newly mined coins, hence the name
‘‘mining’’ given to the process. The increased interest in
the Bitcoin cryptocurrency, especially during the specula-
tive bubble of late 2017 and early 2018, during which
the value of a Bitcoin almost topped 20 000 $, has made
the mining process extremely competitive, paving the way

VOLUME 8, 2020 28419

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

for an entire industry of dedicated miner accelerators [31],
[32] with extremely high demands on the underlying
SHA-256 circuitry. Not only must such circuits be fast
enough to compete profitably within the peer-to-peer net-
work, but they must also be power efficient, in order not to
have energy costs exceed mining revenues [33], [34].

But, even more importantly, the success of Bitcoin has
raised interest in the potential of the underlying blockchain
technology and its applications beyond digital cryptocurren-
cies. In fact, investigating new blockchain applications is cur-
rently a flourishing research and development field [27]. The
Bitcoin blockchain itself is rather limited in its applications,
mainly because of its transaction script language which is by
design Turing-incomplete [23]. Furthermore, the Nakamoto
consensus protocol has raised criticism for the large amount
of energy it dissipates in a computation yielding no actual
result [35]. Therefore, several alternative blockchains have
been proposed, and most of them have been implemented.
However, only a few of these alternatives are actually com-
pletely independent blockchains, or altchains, the best known
of which being Ethereum [36]. On the contrary, most of
the so-called second-generation blockchains actually rely on
the Bitcoin blockchain itself in some way, mainly in order
to avoid destructive attacks from the powerful network of
Bitcoin miners [28]. This means that the Bitcoin blockchain,
with its reliance on hardware implementations of the SHA-
256 algorithm, is today fundamental for the blockchain indus-
try as a whole.

B. IoT
The Internet of Things (IoT) field requires carefully designed
hardware accelerators for SHA-2 in order to meet security
requirements within itsmanifold constraints. The IoT is based
on infrastructures of low-end devices able to autonomously
communicate across the Internet. It is an enabling paradigm
for a number of innovative applications across different fields,
each with its own security requirements [27]. Some cases,
such as the biomedical sector [37], present strict security
requirements due to the involvement of sensitive data, but
almost any IoT application must face the threat of external
attacks [27].

For instance, SHA-2 has been used in different ways
to secure IoT devices and infrastructures for biomedical
applications. One example is given in [38], where the
pseudo-randomness of SHA-256 is exploited to produce
a strong cryptographic key for the encryption of medical
images which are to be sent over the cloud. It is worth
mentioning that SHA-1 is still approved for use as PRNG [6];
however, authors of [38] opt for SHA-256 in order to obtain
a longer, hence more secure, key. Another application is
presented in [39], where the issue of black-hole routing
attacks [40] is considered. The work includes source node
authentication with an HMAC based on the SHA-256 hash
function in the routing algorithm, based on the ideas pre-
sented in [41], in order to prevent unauthorized nodes from
sending malicious routing packets.

An example of IoT application where sensitive data are
not necessarily involved, but security is relevant anyway,
is provided by Radio Frequency Identification (RFID) sys-
tems, which are increasingly used in supply chain manage-
ment to intelligently track parts along the supply chains
and manage inventories [42]. A small transponder called
tag is attached to an item, storing a unique serial number
for the item which can be sent to an RFID reader to track
the object, or to start more complex interactions between
the reader and the tag. The reading of RFID tags must be
secured in order to preserve the privacy of both customers
and companies [43]. Hence, a number of proposals for RFID
access control have been put forward, mainly relying on hash
functions and their one-way property. The scheme proposed
in [43] avoids tracking by using a random number r in the
tag response, which therefore consist of (r||DM (ID||r)). An
improvement is proposed in [44], where transaction numbers
are used to avoid replay attacks, and the tag ID is updated
at every successful transaction in order to prevent trace-
ability. The tag ID is updated also in the scheme of [42],
where MACs are used to authenticate both the tag and the
reader.

In addition, since the IoT paradigm implies a peer-to-
peer network, and a blockchain is essentially a database
distributed over a peer-to-peer network, there is an increasing
interest in applying the blockchain technology to the IoT
field [27], [45]–[47]. IoT applications can benefit from the
use of a blockchain providing integrity and nonrepudiation
of communications between the nodes [27], [45]. Further-
more, innovative IoT applications can be built taking advan-
tage of smart contracts, which are applications run on a
suitable blockchain capable of self-enforcing some business
rules [46], or enabling the trading of IoT services directly by
the nodes of the IoT network [48].

IoT-related security presents unique challenges due to the
characteristics of the devices involved. In fact, a paramount
issue in IoT applications is the energy consumption, since
devices are usually battery-backed, and the battery life often
determines the very life time of the device. Furthermore,
passively-powered devices like RFID tags are limited in how
much electrical power they can receive from the reader. This
represents an interesting positioning in the design space,
as the limiting factor is not posed by the mere energy bud-
get but, inherently, by the instantaneous power that can be
supplied. In a sense, this situation resembles the power cap
issue incurred by high-end processors used in server settings,
albeit scaled down to the deeply embedded realm. As a
consequence, to meet their energy requirements, IoT devices
are often limited in their computing capabilities [49]. On
the other hand, this conflicts with the computational require-
ments of cryptographic primitives, like SHA-2, which are
very demanding and place a significant overhead on IoT
devices [43], [50], [51]. This trade-off reaches its extreme
with blockchain-based applications [47], preventing nor-
mal IoT nodes from participating in the consensus proto-
col [46]. Clearly, only carefully designed application-specific

28420 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

accelerators can provide enough flexibility to address the
conflicting constraints described above in an effective
way.

C. TRUSTED COMPUTING
Hashing functions also have a central role in establishing
some form of trustworthiness in dedicated computing plat-
forms, from embedded devices up to servers and cloud sys-
tems relying on heterogeneous accelerators. In the trusted
computing jargon [52], hashing is used to compute the
so-called measurement of both hardware and software con-
figurations, checking the full integrity of the system. These
measurements can have various incarnations in real applica-
tions, beyond the strict definition given by trusted computing
standards. Take as an example the emergence of FPGAs in
the cloud. In the last few years, there has been an emerging
interest in including reconfigurable hardware in cloud sys-
tems, as major cloud providers have started having FPGAs
in their facilities [53]. This trend stems from the recogni-
tion that reconfigurable hardware implementations of com-
monly used algorithms can achieve better performance and
improved power efficiency compared to classical CPU-based
implementations [54]. Among the various challenges posed
by the employment of reconfigurable hardware in cloud set-
tings, there is the need to secure the provided bitstream. In
fact, when the reconfigurable hardware is not under their
direct control, users need to be guaranteed that the hardware
accelerator synthesized on the remote FPGA is the one they
submitted, and has not being tampered with, for example
by adding backdoors for leaking user’s data. This is particu-
larly relevant when sensitive data is involved [55]. Moreover,
it is also necessary to avoid that a single malicious FPGA
brings down the entire facility [53]. Securing the provided
bitstream implies that the accelerator running on the FPGA
can be trusted, and therefore can operate with sensitive data
with the guarantee that such data is properly handled. For
example, [55] proposes an architecture for trusted FPGA in
the cloud where a hardware SHA-2 accelerator is employed
to authenticate the bitstream supplied to the FPGA. A similar
system is employed in [56], where the use of trusted accel-
erators on reconfigurable hardware is proposed for prevent-
ing software running on the CPU from accessing sensitive
data by offloading them to the FPGA, although in the lat-
ter work the components of the secure system are synthe-
sized on the programmable part of the FPGA along with the
user’s design, where they are included through a dedicated
toolchain.

Interestingly, reconfigurable hardware is also used to
implement trusted execution environments (TEEs) similar to
Intel SGX [57], mainly aiming to avoid the need for the
manufacturer, e.g. Intel, to directly verify the code running
in the TEE [58]. An example of such approaches is proposed
in [59], where the case is made for hardware SHA-2 circuits
into the trusted processor architecture in order to minimize
the security overhead. Another proposal is outlined in [58],
where a SHA-512 accelerator is employed as a PRNG.

FIGURE 1. General architecture of a SHA-2 processor core. Custom
designed components are highlighted.

IV. APPROACHES TO SHA-2 ACCELERATION
While software implementations of SHA-2 may be sufficient
for scenarios with limited constraints, emerging applications
pose stringent set of requirements that are best met by hard-
ware acceleration. In fact, not only are hardware implemen-
tations more efficient in terms of performance and energy
consumption compared to software implementations, but they
also guarantee inherently better security. Table 2 presents a
synoptic overview of the different approaches proposed in
the literature to design SHA-2 hardware accelerators. At the
highest level, hardware implementations of SHA-2 can be
classified according to two design approaches [60]:
• Programmable processor architectures. These architec-
tures resemble a general-purpose processor, with one
or more central buses, an ALU, an instruction memory,
and an ad-hoc microcode; but all these components
are designed to perform only the computation of the
SHA-2 hash algorithm.

• Accelerator architectures. Also referred to as copro-
cessor architectures, these implementations follow the
approach of performing the entire computation directly
in hardware.

A further classification is based on the implementation
strategy for the computational core of the accelerator. Since
there are many different strategies, and several optimisa-
tion techniques which are appropriate for different strategies,
the whole Section V will focus on reviewing the different
SHA-2 accelerator architectures proposed in the literature.
The remainder of this section, on the other hand, will survey
programmable processor architectures and describe their gen-
eral components along with various optimisation techniques.

A. PROGRAMMABLE PROCESSOR ARCHITECTURES
The datapath of a SHA-2 processor implementation is shown
in Figure 1. It includes the components commonly used in
a processor design, such as an I/O module, a Control Unit,
a ProgramCounter, a RAMmemory used to hold the working
variables and the message M to be hashed, and a ROM
memory for the Kt constants and the initialisation values
DMk (0). These components are arranged around a central
bus, along with components designed specifically for the
SHA-2 computation, such as a computation unit dedicated

VOLUME 8, 2020 28421

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

TABLE 2. Synoptic overview of SHA-2 acceleration solutions.

to the expansion of M to produce the Wt words, and one
or more computation units for implementing the compressor
function. A detailed description of the datapath of a proces-
sor architecture can be found in [61], where other elements
commonly used in general-purpose processors, such asMem-
ory Address Registers and Memory Data Registers, are also
used.

To be executed by this kind of implementations, the
SHA-2 algorithm must be described in terms of micro-
operations, which are the operations directly executable by
the architecture in a clock cycle. Since one iteration of the
SHA-2 algorithm usually requires more than one micro-
operation, processor architectures require multiple clock
cycles to hash a single message, compared to accelerator
architectures which take one cycle per SHA-2 iteration.

Improved processor architectures may rely on the optimi-
sation of some of its components, particularly the arithmetic
units. For example, in [60] a four-input ALU is used to
compute Equations (II.6) and (II.7). A different strategy relies
on multiple instances of the same unit, so as to parallelise the
execution of different micro-operations. In [62] the number of
cycles needed by a SHA-2 iteration is reduced by executing

two micro-operations of the same iteration simultaneously,
taking advantage of multiple arithmetic units.

B. ACCELERATOR ARCHITECTURES
Accelerator architectures are built around a combinatorial
block, hereafter referred to as the transformation round core,
which performs the SHA-2 step function as described in
Section II-B3. The overall equation implemented by a trans-
formation round core can be obtained by combining Equa-
tions (II.6), (II.7) and (II.11):

At+1 = 61 (Et)+ Ch (Et ,Ft ,Gt)+60 (At)

+Maj (At ,Bt ,Ct)+ Ht + Kt +Wt

Bt+1 = At
Ct+1 = Bt
Dt+1 = Ct
Et+1 = 61 (Et)+ Ch (Et ,Ft ,Gt)+ Dt + Ht + Kt +Wt

Ft+1 = Et
Gt+1 = Ft
Ht+1 = Gt (IV.1)

28422 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

FIGURE 2. General architecture of a SHA-2 accelerator core.

1) GENERAL ARCHITECTURE
The architecture of a SHA-2 accelerator is directly derived
from the structure of the algorithm, as described in Section II,
and it is shown at a high level in Figure 2.

Prior to hashing, the incomingmessage needs to be padded.
Therefore, a Padding Unit is responsible for producing the
PDBs. It is worth noting that the Padding Unit modifies only
the last block of a message, leaving the others untouched.
Since padding can be performed in software quite efficiently,
without affecting the overall security of the system, many
implementations [1], [76], [79], [80], [84], [85], [92], [93],
[96]–[99] do not include the Padding Unit. These implemen-
tations take in already formatted PDBs. On the other hand,
other implementations [63]–[66], [71], [72], [74], [75], [82],
[95] choose to include a Padding Unit directly in hardware.
In this case, the original messages must be provided to the
accelerator, while the PDBs will be built internally. When
comparing reported results, especially for the area occupation
metric, it must be taken into account whether a Padding Unit
is included in the hardware design.

The PDB enters the Expander, which outputs the words
Wt according to Equation (II.4). The implementation of
the Expander is quite straightforward, and is based on a
16-position shift register to store the required words with
the necessary delay. The input of the shift register chain is
the result of the computation of Equation (II.4). Since the
Wt value is not read from the input of the shift register,
but from one of the internal delay registers, the Expander is
decoupled from the critical path of the Compressor [85].Most
implementations adopt this architecture for the Expander,
which is explicitly described in [65], [74], [75], [82], [96],
[100] and shown in Figure 3. Possible improvements rely on
special devices for implementing the shift register, such as
block RAMs (BRAMs) or first-in, first-out memory queue
(FIFO)s [85], or the shift register mode of the configurable
logic blocks (CLBs) of Xilinx R© FPGAs [81]. A folded
implementation of the Expander, employing only one adder,
is proposed instead in [78], [79]. The unrolled implemen-
tation of the Expander is presented in [91], [95]. In [93],
an architectural optimisation of the Expander is proposed,
based on the delay balancing technique. This technique aims
to shorten the critical path by placing more combinatorial
logic on noncritical paths. The effect of this reordering is
that noncritical paths, which do not determine the worst-case
delay of the circuit, are stretched, while the critical path is
shortened, resulting in a reduction of the circuit delay.

A ROM unit is employed to store and supply the Kt con-
stants. Multi-mode architectures [65], [82] take advantage
of the fact that the values for SHA-256 are the most sig-
nificative halves of the values for SHA-512, therefore the
ROM for the SHA-256 constants can be used also in the
SHA-512 datapath.

The current hash value needs to be retained until the end
of the hashing of the current PDB, since it must be added
to the value of the working state Z . In a straightforward
implementation, eight adders are required to perform the
final addition of Equation (II.13) simultaneously. However,
in [84], [85] an efficient alternative technique is proposed to
compute the new intermediate hash value without adding any
latency, since it is calculated during the last stages.

The actual hash computation is performed within the Com-
pressor, which is also where the critical path is located. The
transformation round core is responsible for the computation
of Equation (IV.1), and its straightforward implementation is
shown in Figure 4. However, Equation (IV.1) must be com-
puted R times for each PDB. There are different techniques
that can be used to perform the whole computation from the
transformation round core, which will be described next.

2) LOOP ROLLING
The loop rolling technique consists of implementing an itera-
tive algorithm by using the same component to perform iter-
atively the same computation. A feedback loop is employed
to forward the output of the component to its input, so as to
re-apply the function performed by the component. Architec-
tures employing this technique require R + 1 clock cycles
to produce a hash value, since an additional clock cycle
is employed for performing the last addition described by
Equation (II.13).

3) PIPELINING
Hardware pipelining as used in many dedicated SHA-2 archi-
tectures consists of instantiating S blocks each performing
a fraction of the total number of iterations. In other words,
such architectures distribute the R rounds required by a single
hash calculation onto S pipeline stages, each handling R/S
iterations. However, within each pipeline stage, loop rolling
is still employed to perform the R/S iterations. Relying on
hardware replication, pipelined SHA-2 architectures increase
the steady-state throughput, since they are capable of out-
putting a new hash value everyR/S cycles, or even less if loop
unrolling is also used: comparedwith the nonpipelined imple-
mentation employing a single transformation round core,
the throughput improvement reaches a factor S. Furthermore,
each stage can be optimized for the specific subset of rounds
that it handles.

On the other hand, pipelined implementations incur an area
occupation increase by a factor S, and an increase in power
consumption due to the presence of more register elements.
In addition, due to the fact that the computation of the inter-
mediate hash value of the j-th PDB DM (j) requires knowing
the previous intermediate hash value DM (j− 1) according

VOLUME 8, 2020 28423

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

FIGURE 3. Straightforward architecture of the Expander.

FIGURE 4. A straightforward implementation of the transformation
round. The critical path is highlighted.

to Equation (II.3), and taking into account the fact that the
latency of the computation of a single PDB is unaffected by
the pipelining technique, which works on multiple PDBs in
parallel, pipelined architectures cannot speed up the compu-
tation of a single message. For this reason, several propos-
als [101] choose to instantiate multiple loop-rolled SHA-2
cores instead of a single pipelined implementation. Never-
theless, the vast majority of recent and optimised SHA-2
architectures choose to employ pipelining, relying on the
opportunity of processing different messages at once.

In pipelined SHA-2 architectures, the output of each stage,
which is supplied as input to the following stage, is stored into
the pipeline registers. This does not happen if the transfor-
mation round employs spatial reordering, since the pipeline
register is moved across the architecture and it stores inter-
mediate values rather than the output of the stage. In these
architectures, the input to the following stage is provided
directly by the combinatorial part of the previous stage.

C. OPTIMISATION TECHNIQUES
The implementation of the transformation round core can
exploit a number of optimisation approaches. Usually,
the architectures proposed in the literature rely on a mix of
techniques taking advantage of their combined effect. In fact,
some techniques are not particularly impactful by themselves,
but turn out to be indispensable for the application of other
techniques leading to the desired improvement. For example,
loop unrolling and spatial reordering are often employed with

the purpose of creating opportunities for the application of
variable precomputation or component improvements.

This section discusses in isolation each of the techniques
applied in the different hardware implementations of SHA-2.
Section V will then illustrate how these techniques are com-
bined in each full design proposal.

1) COMPONENT IMPROVEMENT
Performance can be improved by optimizing the single com-
ponents which perform the basic operations of the algo-
rithm. For the SHA-2 algorithms, this technique can be
applied to the adders. Equation (IV.1) suggests that two-input
adders, which usually are implemented by using fast
carry-propagation schemes, can be replaced by three-input
Carry Save Adders (CSA) which have slightly the same
latency of a single two-input adder. However, this replace-
ment is not always profitable, depending on other optimi-
sations being in place, which may change the order of the
performed operations [1].

2) VARIABLE PRECOMPUTATION
Some values can be computed earlier than strictly needed,
if the inputs on which they depend are already available. If the
computation is on the critical path, this can directly improve
the frequency and hence the throughput. Precomputation can
be applied to SHA-2 at two distinct scales.

Looking at the SHA-2 algorithm as a whole, we highlight
that the message schedule described by Equation (II.4) does
not depend on any intermediate result, and hence can be pre-
computed so as to make the proper message block available
when needed. In fact, the first 16 values of Wt are available
from the very beginning, and the time needed to compute aWt
value is usually less than the time required by Equation (IV.1).
Moreover, due to the fact that the values of the constant Kt
are known from the beginning of the computation, the pre-
computation ofWt allows for the precomputation of the sums
Wt + Kt , as done in [1].
Precomputation can also be exploited within the transfor-

mation round core, by computing in the current step some
values that are not immediately used, but will be consumed by
some of the following iterations. This type of precomputation
is also favoured by Equation (II.12), which implies that the

28424 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

values of the accumulator variables, except those that are
computed in the current round, are available at least one round
earlier. By repeatedly applying Equation (II.12), it turns out
that some accumulators are actually available two or even
three rounds in advance.

Some examples of this kind of precomputation, also
called operation rescheduling [84], are illustrated in
Section V-C; precomputation within the round also underpins
the quasi-pipelining approach, discussed in Section IV-C6.

3) LOOP UNROLLING
The combinatorial block can perform more than one iteration
of the algorithm in the same clock cycle. A transformation
round core employing loop unrolling by a factor u computes u
subsequent iterations in the same clock cycle, hence reducing
the total number of iterations to R/u.
To achieve loop unrolling by a factor u, Equation (IV.1)

must be rewritten to combine the results of u subsequent
iterations (t, t − 1, . . . , t − (u− 1)). Consider for instance
an unrolling factor u = 2, meaning that the iterations t and
t−1 are to be combined. Taking into account Equations (II.6)
to (II.7), Equation (II.11) for step t can be written as

At+1 = T 1
t (Et ,Ft ,Gt ,Ht ,Kt ,Wt)+ T 2

t (At ,Bt ,Ct)

Bt+1 = At
Ct+1 = Bt
Dt+1 = Ct
Et+1 = Dt + T 1

t (Et ,Ft ,Gt ,Ht ,Kt ,Wt)

Ft+1 = Et
Gt+1 = Ft
Ht+1 = Gt (IV.2)

and for step t − 1 it can be written as

At = T 1
t−1 (Et−1,Ft−1,Gt−1,Ht−1,Kt−1,Wt−1)

+T 2
t−1 (At−1,Bt−1,Ct−1)

Bt = At−1
Ct = Bt−1
Dt = Ct−1
Et = Dt−1

+T 1
t−1 (Et−1,Ft−1,Gt−1,Ht−1,Kt−1,Wt−1)

Ft = Et−1
Gt = Ft−1
Ht = Gt−1 (IV.3)

Combining Equation (IV.2) and Equation (IV.3) yields the
equation expressing the value of the accumulators at iteration
t+1 as functions of the value of the accumulators at the itera-
tion t−1, which is the function performed by a transformation
round core unrolled by a factor u = 2.

At+1 = T 1
t (Dt−1 + T 1

t−1(Et−1,Ft−1,Gt−1,

Ht−1,Kt−1,Wt−1),Et−1,Ft−1,Ht ,Kt ,Wt)

×T 2
t (T 1

t−1(Et−1,Ft−1,Gt−1,Ht−1,Kt−1,Wt−1)

+T 2
t−1(At−1,Bt−1,Ct−1),At−1,Bt−1)

Bt+1 = T 1
t−1(Et−1,Ft−1,Gt−1,Ht−1,Kt−1,Wt−1)

T 2
t−1(At−1,Bt−1,Ct−1)

Ct+1 = At−1
Dt+1 = Bt−1
Et+1 = Ct−1 + T 1

t (Dt−1 + T 1
t−1(Et−1,Ft−1,Gt−1,

Ht−1,Kt−1,Wt−1),Et−1,Ft−1,Ht ,Kt ,Wt)

Ft+1 = Dt−1 + T 1
t−1(Et−1,Ft−1,Gt−1,Ht−1,Kt−1,Wt−1)

Gt+1 = Et−1
Ht+1 = Ft−1 (IV.4)

As shown by Equation (IV.4), loop unrolling increases the
critical path, due to the addition of another level of functions
T 1 followed by another sum in the computation of At+1. On
the other hand, the number of iterations is reduced by a factor
equal to the unrolling factor.
Furthermore, the unrolled loop may expose more oppor-

tunities for applying other optimisations that can reduce the
critical path, further improving performance. For example,
loop unrolling may expose the fact that some values are
computed before the time when they are actually needed,
and this circumstance enables the application of temporal
precomputation [1].

4) LOOP FOLDING
Loop folding is the opposite transformation of loop unrolling,
since it consists of splitting the execution of one iteration
in multiple clock cycles. The advantage of doing so is the
possibility of reusing the same functional block to perform
different operations in the same iteration, hence reducing the
total area occupation.
Usually, the architectures employing loop folding incur

an increase in latency, due to the steep rise in the number
of clock cycles required to perform the whole computa-
tion [78]. Nevertheless, [72] proposes a rescheduling of oper-
ationswhich avoids any increase in latency. This rescheduling
takes into account the data dependencies in the SHA-2 algo-
rithm, which prevent the simultaneous execution of all the
additions.

5) SPATIAL REORDERING
In the architecture of the transformation round core, pipeline
registers are located at the beginning of the computation to
hold the inputs or, more frequently, at the end of the compu-
tation to store the outputs. The spatial reordering technique,
firstly introduced in [102] for SHA-1, consists of moving the
pipeline register in the middle of the round, more specifically
in the best position so as to obtain a reduction in the criti-
cal path by splitting the round itself into balanced, parallel
halves.
This optimisation, essentially a form of variable precompu-

tation, is in fact also referred to as the spatial precomputation
technique. It has the key advantage of avoiding any latency
penalty, since there are no additional registers.

VOLUME 8, 2020 28425

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

FIGURE 5. The architecture with spatial reordering proposed in [90]. The
critical path is highlighted.

6) QUASI-PIPELINING
Quasi-pipelining is a technique aimed to introduce pipelining
within the transformation round core, taking advantage of
Equation (II.12) to perform data forwarding. The model has
been formalised in [103] and can be potentially applied to any
circuit which can be modeled as:
• a shift register chain of n positions Ri, i ∈ [1, n];
• a number of combinatorial logic functions φi, including
the identity, each of which taking as input one or more
register values;

• a chain of combining operations, each of which being a
commutative and associative binary operator to combine
the results of the φi functions, feeding the shift register
chain with the result.

Two additional registers are placed at the end of the chain
for the K constant and the W expanded word, with index
n + 1 and n + 2 respectively. The latency of the combining
operators, which for SHA-2 always coincide with the modulo
addition, is assumed greater than the latency of the φi func-
tions, therefore the critical path runs from the Rn+2 register
through the combining operators chain, ending to the input
of R1.
In order to break this critical path, it may be first necessary

to reorder the chain of combining operators, which is possible
thanks to their commutativity and associativity properties.
To this end, define the φi block as the couple of each φi
operation and its associated combining operator.3 Each φi
block is associated with an index Ii constituted by the list of
indices of the registers Rj which feed the φi function. The
chain of combining operators can therefore be reordered by
sorting the φi blocks according to the lexicographic order of
their indices.4 For SHA-2, the chain is already well-ordered.
The critical path can now be broken into so-called quasi-
pipeline sections Qj, again according to the index Ii of the φi

3The φn+2 block does not include a combining operator.
4Ii ≺ Ij if and only if Ii is a prefix of Ij or, possibly after a common prefix,

the first differing number of Ii is less than the corresponding number of Ij

blocks. Namely, a quasi-pipeline section includes all the φi
blocks sharing the same first number in their index Ii. Quasi-
pipelined sections are finally separated by registers.

For SHA-2, the application of the quasi-pipelining tech-
nique requires the circuit to be split in two halves due to the
feedback in the middle of the chain required to compute Et .
The quasi-pipelining technique is then applied as graphically
shown in Figure 6 and described below:

φ1 = 60 (R1) ⇒ I1 = {1}

φ2 = Maj (R1,R2,R3) ⇒ I2 = {1, 2, 3}

φ3 = 61 (R5) ⇒ I3 = {5}

φ4 = Ch (R5,R6,R7) ⇒ I4 = {5, 6, 7} ⇒

φ5 = R8 ⇒ I5 = {8}

φ6 = R9 ⇒ I6 = {9}

φ7 = R10 ⇒ I7 = {10}

Q1 = {φ1, φ2}

Q2 = {φ3, φ4}

⇒ Q3 = {φ5}

Q4 = {φ6}

Q5 = {φ7} (IV.5)

The quasi-pipeline sections can be optimised by employing
the delay balancing technique, letting paths shorter than the
critical one be stretched without incurring any performance
penalty. For example, there is no need to separate Q3 and
Q4, since both of them contain one modular addition, while
Q1 and Q2 contain two modular additions. Similarly, there is
no point in having Q5 as a separate quasi-pipeline section,
since it does not include any modular addition. The resulting
quasi-pipeline sections are hence:

Q1 = {φ1, φ2}

Q2 = {φ3, φ4}

Q3 = {φ5, φ6, φ7} (IV.6)

Taking into account that the quasi-pipeline sections are filled
in descending order, at each iteration t the quasi-pipeline
section Qj computes its part of round t − q + j, where q is
the total number of quasi-pipeline sections. If t < q − j,
quasi-pipeline section Qj is not active, and its registers Ri are
not clocked in order to fill the pipeline. However, unlike usual
pipelining, all the quasi-pipeline sections operate on the same
input registers Ri. This creates the need for data forwarding,
which is allowed by the shift register configuration and the
fact that the chain is lexicographically ordered. An array of
selecting functions σi, i.e. multiplexers, is therefore added to
perform data forwarding and completing the circuit.

V. SHA-2 ACCELERATOR ARCHITECTURES
The vast majority of hardware implementations of SHA-2
follow the coprocessor architecture approach. Despite the fact
that it requires a higher design effort compared to the proces-
sor architecture approach, a coprocessor implementation can

28426 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

FIGURE 6. Application of Quasi-pipelining in SHA-2: (a) Quasi-pipelined model of SHA-2 with quasi-pipelined sections. (b) Final
Quasi-pipelined Sections. (c) Complete Quasi-pipelined SHA-2 circuit. Light border denotes identity functions, which do not correspond to
any actual circuits. Note that there are only two actual multiplexers in the final circuit.

achieve improved gains in terms of raw performance and area
efficiency [96].

This section surveys the various SHA-2 architectural
designs proposed in the technical literature, showing how
each of them makes use of the techniques discussed in
Section IV to achieve different optimization objectives.

A. BASIC ARCHITECTURES
The work in [63] proposes a hardware implementation of
Equations (II.6) to (II.11) with dedicated logic within a trans-
formation round unit. Since the equations employ only bit-
wise logic operations, shift operations and modulo additions,
corresponding logic gates, bit reordering and modular adders
are used to build up the transformation round unit. This is
surrounded by a ROM, which provides it with the Kt constant
values, and a number of support units. The Constants Unit
supplies the transformation round core with the initialisation
values DM . The initial values DM (0) are hard-coded in the
FPGALUTs, while for the subsequent PDBs the initialisation
values DM provided by the Constants Unit are updated by
the Last Transformation Unit. This unit includes an array of
adders which perform Equation (II.13) to update the inter-
mediate message digest. The Wt values are provided by a
Wt - unit, which in turn is fed by the Padding Unit. A very
similar architecture is implemented in [64] on aXilinxVirtex-
5 FPGA board, while [67] proposes the use of parallel adders
to implement the additions leading to the computation ofAt+1
and Et+1.

The work in [65] implements a multi-mode variant of [63],
where a Control Unit is in charge of reconfiguring the circuit
to perform one of the different SHA-2 variants, according to
the user’s specifications. The most important aspect of [65]
is the management of the different word widths of SHA-
256 and SHA-512. This is tackled by clearing the least sig-
nificant 32 bits of the datapath when SHA-256 is selected.
The multi-mode architecture of [66] takes advantage of the
similarities between MD5, SHA-1, and SHA-256 to support
all of them. On the other hand, it does not support SHA-512,
which is the case in [65]. This exclusion is due to the fact that
SHA-512 works on 64-bit words, whereas [66] is a 32−bit
architecture.

A straightforward implementation of loop unrolling is pre-
sented in [68], where multiple instances of the transformation
logic round are placed between registers. This allows for
evaluating different values of the unrolling factor.

Loop unrolling by a factor 2 is also exploited in [69] with
the aim of decreasing power consumption while increasing
parallelism in the round function computation. This architec-
ture is further optimized in [70] where multi-operand addi-
tions are compressed by using CSAs. The same optimisation
techniques are exploited in [71], where a multi-mode archi-
tecture is proposed. This architecture is further optimised
in [72] by observing that, due to data dependencies, the whole
round function can be computed using only two CSAs with-
out incurring any performance penalty, by properly schedul-
ing the various additions.

VOLUME 8, 2020 28427

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

FIGURE 7. Straightforward shift register architecture implementation.

In [86], a reordering within the transformation round is
proposed. The following variable is defined

τt = Ht + Kt +Wt + Dt (V.1)

and substituted into Equation (IV.1), leading to

At+1 = 60 (At)+Maj (At ,Bt ,Ct)

+61 (Et)+ Ch (Et ,Ft ,Gt)+ τt − Dt
Et+1 = 61 (Et)+ Ch (Et ,Ft ,Gt)+ τt (V.2)

This architecture is further improved in [87] with the addition
of CSAs, while in [104] the application of loop unrolling is
explored, with the unrolling factor 4 yielding the best results.

In order to achieve low power consumption, [73] reduces
the number of adders and the simultaneously clocked register
by employing the loop folding technique. Only one adder is
used to perform all the operations of the Compressor and the
Expander, which therefore do not operate in parallel and can
be disconnected from the clock network accordingly.

B. SHIFT REGISTER ARCHITECTURES
The architecture proposed in [74] exploits Equation (II.12)
in the implementation of Equation (IV.1). In fact, Equation
(II.12) implies that the accumulators can be chained in a shift
register configuration, where for Et+1 the incoming value of
Dt is added with the output of the T 1

t function. The shift regis-
ter chain is supplied with T 1

t +T
2
t as input, which is the value

of At+1. The coprocessor architecture proposed in [96] also
follows the shift register approach, both for the SHA-256 and
the full HMAC-SHA-256 implementations. The multi-mode
variant of the shift register approach is presented in [98]. The
shift register architecture can be optimised to utilise a single
adder to perform the final sum. This is illustrated in [77],
where an adder from the datapath is reused to this end.

The shift register approach is also adopted in [78],
which is an architecture specifically tailored to low-power,
area-constrained applications. The round function is imple-
mented by reducing the number of operator blocks at the min-
imum, reusing the same operator block to perform multiple
computations. The shift register architecture of the Compres-
sor is therefore modified to work with a single adder, which
subsequently adds different operands to compute the round
function across several clock cycles, while the Ht register
is used as the accumulator for the addition. Interestingly,
a similar architecture is adopted also for the Expander, which

requires four clock cycles to compute a word, compared
with the seven clock cycles of the Compressor. The whole
circuit requires 490 clock cycles to fully compute a hash,
hence effectively trading throughput for area and power con-
sumption. The multi-mode extension of this architecture is
presented in [79].

Another proposal aimed at reducing area occupation, fol-
lowing the shift register architecture, is [100]. In this case,
the area reduction is obtained by reducing the word size of
the SHA-512 hash function, which is normally 64 bit, to a
lower value, taking advantage of the fact that most of the
operations involved in the hash algorithm can be computed
in a bit-wise fashion. Implementations with the word size
reduced to 32 bit, 16 bit and 8 bit are considered. Interestingly,
the 32-bit variant achieves 72% of the throughput of the
full-word-size implementation, meaning that it is more area
efficient than the full-word-size counterpart. The architecture
described in [99] also reduces the word width of the circuit
to 8 bit, exploiting also loop folding to achieve further area
reduction.

A different way to improve the shift register architecture
involves the use of parallel adders for the adder chain. In [75]
the adder chain is implemented with 5-to-3 parallel adders,
while [76] employs a single 7-3-2 parallel adder to compute
At+1. The architecture proposed in [80] combines the use
of parallel adders with the loop folding technique, in order
to reduce area occupation limiting the throughput penalty,
therefore maximizing the area efficiency.

C. ARCHITECTURES WITH PRECOMPUTATION
The architecture proposed in [81] precomputes the sum Kt +
Wt outside the main operational block, in order to shorten the
critical path. Moreover, it employs a 5-to-3 parallel adder to
compute At+1. The architecture is further optimised in [88],
where loop unrolling by a factor 5 is used. Values required
later in the unrolled chain of operations are precomputed as
soon as possible.

Variable precomputation is employed in [84] to shorten the
critical path at the iteration t . Taking into account that Ht =
Gt−1 due to Equation (IV.1), and that the values Kt and Wt
are available in advance, the quantity

δt = Ht + Kt +Wt = Gt−1 + Kt +Wt (V.3)

can be precomputed during round t − 1, leading to the fol-
lowing computation during round t:

At+1 = 60 (At)+Maj (At ,Bt ,Ct)

+61 (Et)+ Ch (Et ,Ft ,Gt)+ δt
Et+1 = Dt +61 (Et)+ Ch (Et ,Ft ,Gt)+ δt (V.4)

This architecture is further improved in [85] with two opti-
mised variants for the Expander, relying upon BRAMs and
FIFOs respectively

The work in [86] pushes this approach further, proposing
another precomputation based on the fact that Dt = Ct−1
again due to Equation (IV.1). The quantity τt defined in

28428 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

Equation (V.1) can be precomputed during round t − 1 as5

τt = δt + Dk = δt + Ct−1 (V.5)

The computation of round t can therefore be reduced to

At+1 = 60 (At)+Maj (At ,Bt ,Ct)

= 61 (Et)+ Ch (Et ,Ft ,Gt)+ δt
Et+1 = 61 (Et)+ Ch (Et ,Ft ,Gt)+ τt (V.6)

In [86] three architectures are compared against the straight-
forward implementation of Equations (II.6) to (II.11) with a
common platform, which employs a rolling loop to perform
the whole SHA-256 computation. The three architectures
considered in [86] include the scheme resulting from Equa-
tions (V.1) and (V.2) originally proposed in [84], the one
resulting from Equations (V.3) and (V.4), and the one result-
ing from Equations (V.5) and (V.6).

The architectures are further optimised in [87] by employ-
ing Carry-Save Adders. Moreover, the common evaluation
platform is improved by inserting two registers to break the
critical path without requiring any additional clock cycle.
These additional registers are located after the K constant
ROMmemory and before theDM feedback loop multiplexer.

Themulti-mode architecture proposed by [82] also exploits
the precomputation of δt and τt , computing these two in
parallel as

δt = Ht + Kt +Wt

= Gt−1 + Kt +Wt

τt = Ht + Kt +Wt + Dt
= Gt−1 + Kt +Wt + Ct−1 (V.7)

While the first equation is the same as Equation (V.3), the sec-
ond equation is implemented by computing Gt−1 + Ct−1 in
parallel with the sum Kt + Wt , and the result of the latter is
added, in parallel, to both the former and Gt−1.
The architecture presented in [83] exploits variable pre-

computation even further, in order to introduce a form of
pipelining within the transformation round. In the first stage,
Equation (V.3) is computed and the output is stored into a
register, while the second stage computes Equation (II.6). A
similarly aggressive precomputation is performed in [89] in
the context of a two-unrolled architecture.

D. ARCHITECTURES WITH SPATIAL REORDERING
[90] introduces the use of spatial reordering within the design
of the transformation round core for SHA-2. The computation
of

P1∗t+1 = 60 (At)+Maj (At ,Bt ,Ct)

P2∗t+1 = 61 (Et)+ Ch (Et ,Ft ,Gt)

H∗t+1 = Ht + Kt +Wt (V.8)

5To stress the fact that Equation (V.5) is computed at round t − 1 while
Equation (V.1) is computed at round t , [86] calls the latter δ′t instead of τt

is performed before the pipeline registers, while the compu-
tation of

At+1 = P1∗t + P2
∗
t + H

∗
t

Et+1 = Dt + P1∗t (V.9)

is performed after the register, along with Equation (II.12).
Because of this reordering, the critical path includes the two
adders used for computing of At+1 and the following adder
for P1∗t , along with theMaj function.
The same authors propose in [1] a methodology for the

optimisation of the block responsible for the computation
of the round function, building on the spatial reordering
technique. This methodology takes also advantage of loop
unrolling, component improvements and variable precompu-
tation, and leads to the following computation ahead of the
pipeline registers:

p1t+1 = 60 (At−1)+Maj (At−1,Bt−1,Ct−1)

p2t+1 =
(
Dt−1 + Ht−1 + (K +W)t−1

)
+61 (Et−1)+ Ch (Et−1,Ft−1,Gt−1)

p3t+1 = Dt−1 + (K +W)t−1 +61 (Et−1)

= Ch (Et−1,Ft−1,Gt−1)

p4t+1 = (K +W)t + Gt−1
p5t+1 = p4t−1 + Ct−1
p6t+1 = Et−1 + Ch (p2t+1,Et−1,Ft−1) (V.10)

In the above equation, (K +W) denotes that the sum is pre-
computed outside the operational block, due to data prefetch-
ing. Note also that p2t+1 is not computed from p3t+1, due to
the fact that the sumDt−1+Ht−1+(K +W)t−1 is performed
by a Carry-Save Adder. The results of Equation (V.10) are
stored in the pipeline registers along with At−1, Bt−1, Et−1,
and Ft−1, allowing for the following computation after the
pipeline registers:

At+1 = 60 (Bt+1)+Maj (Bt+1,At−1,Bt−1)

+ (p4t+1 + p6t+1 +61 (p2t+1))

Et+1 = p6t+1 +61 (p2t+1)+ p5t+1
Bt+1 = p3t+1 + p1t+1 Ft+1 = p2t+1
Ct+1 = At−1 Gt+1 = Et−1
Dt+1 = Bt−1 Ht+1 = Ft−1 (V.11)

While the methodology in [1] proposes a sequence of tech-
niques to be applied for obtaining an optimised hash core,
their application is not always straightforward and requires a
careful analysis of the circuit by the designer. The approach is
further improved in [97], most notably by adding recursion,
obtaining an even improved hash core. The latter version is
evaluated against different FPGA platforms in [91], where the
corresponding architecture of the Expander is also described.
Finally, [105] presents a multi-mode hash accelerator based
on the same techniques.

VOLUME 8, 2020 28429

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

TABLE 3. Impact of SHA-2 optimisation techniques on evaluation metrics. Stronger impacts are highlighted.

E. ARCHITECTURES WITH QUASI-PIPELINING
The first quasi-pipelined architecture for SHA-2 is introduced
in [92], together with an improved variant employing delay-
balancing. A slightly different version is presented in [93],
where the Expander is also optimised with the delay balanc-
ing technique. An independent theoretical analysis carried out
in [106] confirms that this design is optimal, at the architec-
tural level, with respect to throughput.

Unrolling by factors 2 and 4 of the quasi-pipelining archi-
tecture is presented in [95], obtaining an improvement in
throughput only for SHA-512 with unrolling factor 2.

Although it does not apply explicitly the quasi-pipelined
formulation described in Section IV-C6, the work in [94]
exploits the same basic idea of splitting the adder chain with
registers and exploiting Equation (II.12) for data forwarding,
here for the Et accumulator. This work also employs a form
of precomputation by summing the value Kt with the word
Wt directly in the Expander, so as to remove this sum from
the critical path.

VI. MATCHING DESIGN TECHNIQUES TO APPLICATION
METRICS
Table 3 compares the various techniques described in
Section IV in terms of their effects on performance, area
occupation and energy efficiency, and the implementation
complexity of each of them. The table also lists the most
representativeworks employing each technique. As described
in Section V, each design usually exploits more than one
technique in order to meet the stated objectives.

Most design techniques are primarily aimed to perfor-
mance, at the expense of increased area occupation and
energy consumption. These approaches are best evaluated in
terms of area efficiency or area-delay product, and power
efficiency or power-delay product, in order to assess whether
the price in terms of area occupation and energy consumption
actually pays off.

A. PERFORMANCE
The most used metric to assess performance of hash circuits
is the throughput, defined as the number of bits delivered per
unit of time. If the hash circuit is capable of outputting a new

hash value every Nclk clock cycles, and the clock period is
τclk , the throughput can be written as

Q =
L(DM (M))
τclk · Nclk

=
L(DM (M)) · fclk

Nclk
(VI.1)

The number of bits of the output depends on the selected
hash function and does not offer any degree of freedom for
improving throughput, unless the designer is in the position
of choosing which hash function to employ. For this reason,
when comparing designs for the SHA-2 function with differ-
ent hash sizes, it is preferable to refer to the hash rate, defined
as

F =
1

τclk · Nclk
=

fclk
Nclk

(VI.2)

The other two terms of Equation (VI.1) are instead fully
dependent on architectural design decisions. The clock period
is lower bounded by the critical path delay, hence it is directly
influenced by the architectural techniques which impact the
critical path. Variable precomputation, spatial reordering and
quasi-pipelining all reduce the critical path, therefore they are
beneficial for the throughput metric.

The number of clock cycles between two consecutive out-
puts is the latency required to compute the hash of a sin-
gle PDB. For architectures capable to perform one iteration
per clock cycle, Nclk is R + 1 unless the architecture can
handle concurrently the final sum and the execution of the
last iteration, such as [84], [85], or includes the adder in
the critical path, such as [1], [97]; in such cases Nclk is R.
Architectures with loop folding, on the other hand, require
multiple clock cycles per iteration, making this technique
negative for throughput.

Hardware pipelining, relying on S pipelined blocks each
handling R/S iterations, does not modify the number of clock
cycles required to produce a single hash message. Instead,
it reduces Nclk by processing more PDBs simultaneously
based on the availability of multiple units. The throughput
is consequently increased by a factor equal to the number of
pipeline stages.

Loop unrolling has a twofold effect on performance. On
one hand, it directly reduces the number of cycles required to
hash a message by computing multiple iterations in a single

28430 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

clock cycle. On the other hand, it substantially increases τclk
due to the increased number of combinatorial levels required
to compute the different iterations. The overall effect of loop
unrolling hence depends on whether the reduction of the
number of clock cycles compensates for the increase in the
critical path. This does not happen in [88], while it happens
in [1]. This discussion does not take into account the fact that
loop unrolling can enable further transformations which can
reduce the critical path, as mentioned in Section IV-C3.

Moreover, while the reduction of Nclk is platform-
independent, the increase in τclk does depend on the under-
lying technology. This implies that the overall effect of loop
unrolling on throughput is technology-dependent. In [2] loop
unrolling turns out to be beneficial for throughput on fairly
recent FPGAs.

B. AREA OCCUPATION
Area occupation refers to the size of the circuit when imple-
mented in ASIC technology. On reconfigurable technologies
such as FPGAs, area occupation refers to the utilisation of
device resources [107]. It is a relevant factor for the final cost
of the design, since a larger design requires a larger device
for the physical implementation [108].

Usually, area occupation is traded off for performance.
Techniques like pipelining and loop unrolling, which are
aimed to increase throughput, have a severely adverse impact
on area occupation, since the circuit must be replicated as
many times as the number of pipelined blocks or the unrolling
factor. However, unlike the case of multiple instances of
the same circuit, only the datapath needs to be replicated.
Conversely, loop folding is aimed to reduce area occupation,
at the expense of degraded throughput.

Other techniques, such as variable precomputation, spatial
reordering and quasi-pipelining, have a limited impact on the
area occupation of SHA-2 accelerators since the additional
resources utilised by these architectures are just a handful of
registers.

C. POWER AND ENERGY CONSUMPTION
As with any digital system, energy consumption represents
the main operational cost for SHA-2 hardware accelerators.
However, interestingly, operational costs might not be the
only factor of interest, as instantaneous power consumption
may sometimes have strong implications on the physical
design of the accelerator. In fact, the energy absorbed per unit
of time by a circuit is dissipated as heat, which must be driven
away from the hardware to avoid damaging the circuit by
overheating [109]. The cost of cooling clearly increases with
the amount of power to be driven away [110], while thermal
requirements can even place an upper bound on the amount of
functionality that can be integrated in a chip [111], no matter
what the cost constraints are, leading to the so called power
cap issues. Other applications, including passively-powered
circuits, are limited in the amount of power they can draw.
The constraint on the SHA-2 functionality placed by power
supplying limitations is even tougher than the one posed by

power dissipation, since there are no measures that can be
used to mitigate the problem, unlike the case of cooling. In
such occurrences, the input power constraint can only be met
by means of architectural optimisations [43].

If NM is the number of clock cycles required to hash
a single message M by a hardware component consuming
power P, the energy consumption of hashing a message can
be written as

JM = P · τclk · NM =
P · NM
fclk

(VI.3)

since τclk ·NM is the time required to hash the messageM . For
architectures processing one message at a time, NM = Nclk ,
while for architectures processing more than one message
simultaneously, the identityNM = Nclk holds on average over
multiple messages. Therefore, the average energy consump-
tion per message hash can be written as

J = P · τclk · Nclk =
P
F

(VI.4)

with F being the hash rate, defined by Equation (VI.2).
The equation above suggests that the energy consumption

can be reduced by either increasing the hash rate, or decreas-
ing the power consumption. The hash rate has been analyzed
in Section VI-A, so the remainder of this section will focus
on power consumption. The power consumption of a circuit
is usually divided into a static and dynamic component. The
static component depends mainly on technological aspects,
such as the power supply V , or the threshold voltage of
the transistors, amongst others [112]. On the other hand,
the dynamic component can be influenced by architectural
decisions [113] and therefore by the particular techniques
employed in designing the SHA-2 circuit. Energy is absorbed
from the supply by a CMOS gate during a transition from 0 to
V , and is dissipated as heat during the subsequent transition
from V to 0. Therefore, only the former transition leads to
energy consumption [110]. For this reason, the switching
activity α is often defined as the probability of a transition
from 0 to V within a clock cycle, avoiding a 1/2 factor
throughout the power consumption formulae.

At the gate level, the dynamic power consumption can be
written as [110]:

Pd = α · fclk · C · V 2 (VI.5)

where C is the capacitive load of the gate. For FPGAs,
the power consumption can be rewritten to take into account
the utilisation U of each resource in the whole device after
programming [114]:

Pd = fclk · V 2
·

∑
i

αi · Ci · Ui (VI.6)

These formulae show the impact of the clock frequency
on power consumption. Techniques that optimise through-
put of the SHA-2 accelerator through decreasing the critical
path end up increasing the power consumption, due to the
corresponding increase of fclk . This is the case of variable
precomputation, spatial reordering, and quasi-pipelining.

VOLUME 8, 2020 28431

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

As mentioned above, in massively parallel systems,
increasing fclk puts more pressure on the cooling sys-
tem, whose dissipation capabilities may limit the maxi-
mum clock frequency, or poses an inherent limitation for
passively-powered devices. On the other hand, this power
increase does not lead to an energy-per-hash consumption
increase, since fclk also appears on the denominator of Equa-
tions (VI.3) and (VI.4). It is worth noting that if the opti-
misation of throughput is not due to a decrease in τclk
but to a decrease in Nclk , this argument does not apply.
In such cases, there is no power consumption penalty, and
there is an energy-per-message reduction due to the through-
put increase, as shown by Equation (VI.4). Techniques that
increase throughput by decreasing Nclk include pipelining
and loop unrolling.

Another factor impacting power consumption is area occu-
pation [115], since more low-level resources need to be
powered, and physical data and clock nets are longer [116].
This is shown also by Equation (VI.6). Therefore, designs
which optimise resource utilisation, such as loop folding,
also improve power efficiency. On the other hand, techniques
leading to increased area occupation, such as pipelining
and loop unrolling, also face increased power consumption.
A more direct effect of architectural choices on power
consumption is linked with the number of register opera-
tions [70], [117]. Since each register is read and written once
per clock cycle, reducing the number of clock cycles needed
to compute a hash also reduces the number of operations
performed by registers, hence the dynamic power dissipation
due to register operations. From this point of view, loop
unrolling turns out to be beneficial in terms of power savings.

The overall effect to be expected on power consumption
due to each design technique is summarized in Table 3.
Pipelining has an adverse effect on power consumption, due
to its increase in area and register operations. On the other
hand, loop unrolling can be expected to be beneficial, despite
the area increase, due to its frequency and register operation
reduction. The experimental evaluation of [2] confirms the
impact of loop unrolling, while other techniques appear not to
have significant effects on power consumption. Loop folding
has in fact twofold implications on power consumption. It
leads to power savings due to the area reduction, but this
also comes at the cost of increased register operations. The
predominant effect ultimately depends on the underlying
technology employed for the SHA-2 accelerator.

D. IMPLEMENTATION COMPLEXITY
This comparison criterium refers to the effort required for
the designer to apply the architectural technique to a circuit,
which is especially relevant in cases where a customized sys-
tem is to be built. Pipelining and loop unrolling are structured
techniques, that can also be applied automatically by modern
CAD tools. Variable precomputation implies for the designer
to break the critical path, which for SHA-2 is clearly located
in the computation of At+1. Computations that do not depend
on At and Et can be moved ahead of the previous round.

Quasi-pipelining is a more sophisticated technique, but it can
be applied without too much effort as it is clearly documented
in [103].

On the other hand, loop folding and spatial reordering
require a significant intervention by the designer. For the
former, the designer must identify which components can
be shared, establish the schedule of operations, and then
implement it. For the latter, it is up to the designer to balance
the paths between the two halves resulting from reordering.

E. IMPACT ON APPLICATIONS
Different applications place different constraints on the
underlying SHA-2 circuitry. Table 4 lists the constraints
incurred by the applications discussed in Section III in order
to suggest the optimisation techniques best suited for each
application.

High-performance Web servers, providing security ser-
vices relying on SHA-2, are mainly concerned with through-
put, since they need to scale in the number of concurrent
users they can serve. For this application, switching from
software implementations to a dedicated crypto-accelerator
may potentially bring substantial savings in terms of energy,
i.e. operational costs. The need of processing different mes-
sages simultaneously, and the relatively large budget for
circuit area and cost, indicate that pipelining, among other
throughput-focused techniques, can be greatly beneficial for
this class of applications.

Similarly, special applications like trusted computing sup-
port are loosely constrained, in that SHA-2 is performed
rather infrequently and does not pose strict throughput or
energy constraints, while the main concern is typically the
area occupation, since the security scheme reduces the area
available for the user logic. This can be addressed by using
the loop folding technique.

Bitcoin mining rigs have far more stringent constraints,
especially on throughput and energy consumption, and both
of themmust be fulfilled in order to design a profitable miner.
Area requirements must also be kept under control, both for
allowing parallel instances of the miner to be instantiated
within the same device, and to contain the cost of the rig.
The same goes for power, which can become a limiting factor
in the design of a massively parallel architecture. This set of
requirements can be addressed by using loop unrolling com-
bined with throughput-oriented techniques such as variable
precomputation or spatial reordering. In this way, the loop
unrolling expands the applicability of the other techniques
while delivering energy savings.

IoT applications typically feature heavily constrained
low-cost devices. Area occupation of the SHA-2 circuit must
therefore be contained for these applications. Most impor-
tantly, energy consumption must be kept as low as possible,
in order not to waste the limited energy budget of these
devices. Of course, porting mining within an IoT environ-
ment would add the requirement for high throughput and is
normally performed by the most powerful elements in the
network. In this context, techniques that deliver increased

28432 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

TABLE 4. Requirements of surveyed applications relying on SHA-2 and recommended optimisations. The most important requirements, listed as critical,
must be addressed by the designer with the utmost care, since even the sheer functionality of the application relies on satisfying such requirements.
Slightly less critical requirements, still capable of influencing the quality of the overall solution, are listed as major. On the other hand, moderate
requirements provide additional advantages to the application but are not essential, while less relevant or negligible requirements are listed as minor.

throughput of the accelerator with limited impact on area and
throughput, such as variable precomputation, spatial reorder-
ing, and quasi-pipelining can be utilised.

For passively-powered devices such RFID tags, a limited
amount of energy per unit of time can be delivered to the
device, while the overall energy consumption, or even the
duration of the operation is less of a concern. Therefore,
the dominant constraint is on power rather than energy con-
sumption or throughput.Moreover, the severe cost limitations
of RFID applications result in strict constraints on area occu-
pation, which suggests implementations based on the loop
folding technique.

VII. CONCLUSION
Modern applications relying on SHA-2 have strict require-
ments in terms of performance, area, electrical energy or
power, often involving multiple of these metrics in conflict-
ing tradeoffs. In many cases, the constraints are so strict
that a hardware implementation is the only viable option.
Different design techniques have been proposed in the tech-
nical literature for SHA-2 hardware acceleration, among
which the designer can choose to implement their own cus-
tomized accelerator. Most of the available techniques are
oriented to the optimisation of throughput at the price of
increased energy consumption or area occupation, reflecting
the fact that classical applications of SHA-2 belong to the
field of network security, where interacting parties are tra-
ditionally supposed to have sufficient computing resources
and electrical energy. This assumption no longer holds for
emerging SHA-2 applications, making the resource-efficient
acceleration of SHA-2 crucial in a number of contexts.
Optimisation techniques that can deliver improvements in
throughput without excessive increase in area occupation or

energy consumption must be preferred in these cases. Nev-
ertheless, in some situations area or energy constraints even
force a reduction in terms of throughput. Sometimes, such
as in passive-powered devices, the requirement is not on the
energy budget, but on instantaneous power. In these occur-
rences, reducing the energy by shortening the computation
time is not an option. Frequently, as shown by this survey,
the requirements of the application in hand can only be met
by a combination of multiple techniques. Therefore, it is vital
to understand the influence of each design technique and
its interplay with the others. As an example, loop unrolling
turns out to be an optimisation-enabling technique which
can be employed, if its associated area penalty is tolerable,
in order to enable the application of other techniques. Hav-
ing showcased positive and negative impacts of each design
choice on the different circuit metrics, and ultimately on the
overall application requirements, this article aims to serve
as a general survey but also as a designer’s guide for the
selection of the best technique mixes to use while designing
application-specific SHA-2 hardware accelerators.

REFERENCES
[1] H. Michail, A. Kakarountas, A. Milidonis, and C. Goutis, ‘‘A top-down

design methodology for ultrahigh-performance hashing cores,’’ IEEE
Trans. Dependable Secure Comput., vol. 6, no. 4, pp. 255–268, Oct. 2009.

[2] R. Martino and A. Cilardo, ‘‘A flexible framework for exploring,
evaluating, and comparing SHA-2 designs,’’ IEEE Access, vol. 7,
pp. 72443–72456, 2019.

[3] Secure Hash Standard (SHS), Standard FIPS 180-4, National Institute of
Standards and Technology, U.S. Department of Commerce, Aug. 2015.

[4] X. Wang, H. Yu, and Y. L. Yin, ‘‘Efficient collision search attacks
on SHA-0,’’ in Proc. 25th Annu. Int. Cryptol. Conf. (CRYPTO), 2005,
pp. 1–16.

[5] SHA-3 Standard: Permutation-BasedHash and Extendable-Output Func-
tions, Standard FIPS 202, National Institute of Standards and Technology,
U.S. Department of Commerce, 2015.

VOLUME 8, 2020 28433

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

[6] NIST Policy on Hash Functions. Accessed: Nov. 12, 2017. [Online].
Available: https://csrc.nist.gov/projects/hash-functions/nist-policy-on-
hash-functions

[7] W. Stallings, Cryptography and Network Security: Principles and Prac-
tice, 7th ed. London, U.K.: Pearson, 2017.

[8] Recommendation for the Triple Data Encryption Algorithm (TDEA) Block
Cipher, Standard SP 800-67 Rev.2, National Institute of Standards and
Technology, U.S. Department of Commerce, Nov. 2017.

[9] Advanced Encryption Standard (AES), Standard FIPS 197, U.S. Depart-
ment of Commerce, 2011.

[10] Digital Signature Standard (DSS), Standard FIPS 186-4, U.S. Department
of Commerce, Jul. 2013.

[11] M. Bellare, R. Canetti, and H. Krawczyk, ‘‘Keying hash functions
for message authentication,’’ in Proc. 16th Annu. Int. Cryptol. Conf.
(CRYPTO). Berlin, Heidelberg: Springer, 1996, pp. 1–15.

[12] The Keyed-Hash Message Authentication Code (HMAC), Standard FIPS
198-1, National Institute of Standards and Technology, U.S. Department
of Commerce, Jul. 2008.

[13] S. Kent and S. Seo, Security Architecture for the Internet Protocol, doc-
ument RFC 4301, Internet Request for Comments, Dec. 2005. [Online].
Available: https://tools.ietf.org/html/rfc4301

[14] S. Kent, IP Authentication Header, document RFC 4302, Internet
Request for Comments, Dec. 2005. [Online]. Available: https://tools.ietf.
org/html/rfc4302

[15] IP Encapsulating Security Payload (ESP), document RFC 4303, Internet
Request for Comments, Dec. 2005. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc4303.txt

[16] Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, Standard SP 800-90A Rev. 1, National Institute
of Standards and Technology, U.S. Department of Commerce, Jun. 2015.

[17] X. Wang, Y. L. Yin, and H. Yu, ‘‘Finding collisions in the full SHA-
1,’’ in Proc. 25th Annu. Int. Cryptol. Conf. (CRYPTO). Berlin, Germany:
Springer, 2005, pp. 17–36.

[18] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, Y. Markov,
A. Petit Bianco, and C. Baisse. (2017). Announcing the First SHA1
Collision. [Online]. Available: https://security.googleblog.com/2017/02/
announcing-first-sha1-collision.html

[19] R. Rivest, The MD5 Message-Digest Algorithm, document RFC 1321,
1992. [Online]. Available: https://www.ietf.org/rfc/rfc1321.txt

[20] X. Wang and H. Yu, ‘‘How to break MD5 and other hash functions,’’ in
Proc. 21st Annu. Int. Conf. Theory Appl. Cryptograph. Techn. (EURO-
CRYPT). Berlin, Germany: Springer, 2005, pp. 19–35.

[21] J. Black, M. Cochran, and T. Highland, ‘‘A study of the MD5 attacks:
Insights and improvements,’’ in Proc. 12th Int. Conf. Fast Softw. Encryp-
tion (FSE). Berlin, Germany: Springer, 2006, pp. 262–277.

[22] C. Palmer and R. Sleevi. (2014). Gradually Sunsetting SHA-1. Google.
[Online]. Available: https://security.googleblog.com/2014/09/gradually-
sunsetting-sha-1.html

[23] F. Tschorsch and B. Scheuermann, ‘‘Bitcoin and beyond: A technical sur-
vey on decentralized digital currencies,’’ IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 2084–2123, 3rd Quart., 2016.

[24] H. Gilbert and H. Handschuh, ‘‘Security analysis of SHA-256 and
sisters,’’ in Proc. Int. Workshop Sel. Areas Cryptogr. (SAC), 2004,
pp. 175–193.

[25] J. R. Douceur, ‘‘The sybil attack,’’ in Proc. 1st Int. Workshop Peer-Peer
Syst. (IPTPS). Berlin, Germany: Springer-Verlag, 2012.

[26] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[27] D. E. Kouicem, A. Bouabdallah, and H. Lakhlef, ‘‘Internet of Things
security: A top-down survey,’’ Comput. Netw., vol. 141, pp. 199–221,
Aug. 2018.

[28] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and
E. W. Felten, ‘‘SoK: Research perspectives and challenges for bitcoin
and cryptocurrencies,’’ in Proc. IEEE Symp. Secur. Privacy, May 2015,
pp. 104–121.

[29] N. T. Courtois, M. Grajek, and R. Naik, ‘‘Optimizing SHA256 in bitcoin
mining,’’ in Proc. 3rd Int. Conf. Cryptogr. Secur. Syst. (CSS) Berlin,
Germany: Springer, 2014, pp. 131–144.

[30] M. Vilim, H. Duwe, and R. Kumar, ‘‘Approximate bitcoin mining,’’ in
Proc. 53rd Annu. Design Autom. Conf. (DAC), 2016, pp. 1–6.

[31] M. B. Taylor, ‘‘The evolution of bitcoin hardware,’’ Computer, vol. 50,
no. 9, pp. 58–66, 2017.

[32] M. B. Taylor, ‘‘Bitcoin and the age of bespoke silicon,’’ in Proc. Int. Conf.
Compil., Archit. Synth. Embedded Syst. (CASES), Sep. 2013, pp. 1–10.

[33] K. O’Dwyer and D. Malone, ‘‘Bitcoin mining and its energy footprint,’’
in Proc. 25th IET Irish Signals Syst. Conf. China-Ireland Int. Conf. Inf.
Communities Technol. (ISSC/CIICT), 2014, pp. 280–285.

[34] S. Valfells and J. H. Egilsson, ‘‘Minting money with megawatts,’’ Proc.
IEEE, vol. 104, no. 9, pp. 1674–1678, Sep. 2016.

[35] P. Fairley, ‘‘Blockchain world–Feeding the blockchain beast if
bitcoin ever does go mainstream, the electricity needed to sustain
it will be enormous,’’ IEEE Spectr., vol. 54, no. 10, pp. 36–59,
Oct. 2017.

[36] G. Wood. (2014). Ethereum: A Secure Decentralised Generalised
Transaction Ledger. [Online]. Available: https://ethereum.github.io/
yellowpaper/paper.pdf

[37] S. M. Riazul Islam, D. Kwak, M. Humaun Kabir, M. Hossain, and
K.-S. Kwak, ‘‘The Internet of Things for health care: A comprehensive
survey,’’ IEEE Access, vol. 3, pp. 678–708, 2015.

[38] R. Hamza, K. Muhammad, A. Kumar, and G. Ramirez-Gonzalez, ‘‘Hash
based encryption for keyframes of diagnostic hysteroscopy,’’ IEEE
Access, vol. 6, pp. 60160–60170, 2018.

[39] A. Mathur, T. Newe, W. Elgenaidi, M. Rao, G. Dooly, and D. Toal,
‘‘A secure end-to-end IoT solution,’’ Sens. Actuators A, Phys., vol. 263,
pp. 291–299, Aug. 2017.

[40] A. Wood and J. Stankovic, ‘‘Denial of service in sensor networks,’’
Computer, vol. 35, no. 10, pp. 54–62, Oct. 2002.

[41] A. Mathur, T. Newe, and M. Rao, ‘‘Defence against black hole and
selective forwarding attacks for medical WSNs in the IoT,’’ Sensors,
vol. 16, no. 1, p. 118, Jan. 2016.

[42] T. Dimitriou, ‘‘A lightweight RFID protocol to protect against traceability
and cloning attacks,’’ in Proc. 1st Int. Conf. Secur. Privacy Emerg. Areas
Commun. Netw. (SECURECOMM), 2005, pp. 59–66.

[43] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels, ‘‘Security and
privacy of low-cost radio frequency identification systems,’’ in Proc. 1st
Int. Conf. Secur. Pervas. Comput., 2003, pp. 201–212.

[44] D. Henrici and P. Müller, ‘‘Hash-based enhancement of location privacy
for radio-frequency identification devices using varying identifiers,’’ in
Proc. 2nd IEEE Annu. Conf. Pervas. Comput. Commun. Workshops,
Jun. 2004, pp. 149–153.

[45] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, ‘‘On blockchain
and its integration with IoT. Challenges and opportunities,’’Future Gener.
Comput. Syst., vol. 88, pp. 173–190, Nov. 2018.

[46] K. Christidis and M. Devetsikiotis, ‘‘Blockchains and smart contracts
for the Internet of Things,’’ IEEE Access, vol. 4, pp. 2292–2303,
2016.

[47] M. Conoscenti, A. Vetro, and J. C. De Martin, ‘‘Blockchain for the
Internet of Things: A systematic literature review,’’ in Proc. IEEE/ACS
13th Int. Conf. Comput. Syst. Appl. (AICCSA), Nov. 2016, pp. 1–6.

[48] Y. Zhang and J.Wen, ‘‘The IoT electric business model: Using blockchain
technology for the Internet of Things,’’ Peer-Peer Netw. Appl., vol. 10,
no. 4, pp. 983–994, Jul. 2017.

[49] F. Samie, L. Bauer, and J. Henkel, ‘‘IoT technologies for embedded com-
puting: A survey,’’ inProc. 11th IEEE/ACM/IFIP Int. Conf. Hardw./Softw.
Codesign Syst. Synthesis (CODES), Oct. 2016, pp. 1–10.

[50] L. Malina, J. Hajny, R. Fujdiak, and J. Hosek, ‘‘On perspective of security
and privacy-preserving solutions in the Internet of Things,’’ Comput.
Netw., vol. 102, pp. 83–95, Jun. 2016.

[51] M. El-Haii, M. Chamoun, A. Fadlallah, and A. Serhrouchni, ‘‘Analysis
of cryptographic algorithms on IoT hardware platforms,’’ in Proc. 2nd
Cyber Secur. Netw. Conf. (CSNet), Oct. 2018, pp. 1–5.

[52] T. C. Group, ‘‘Trusted platform module library specification, family
‘2.0,’’’ Trusted Comput. Group, Beaverton, OR, USA, Tech. Rep. 01.38,
Sep. 2016.

[53] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang,
‘‘Enabling FPGAs in the cloud,’’ in Proc. 11th ACM Conf. Comput.
Frontiers (CF), 2014, pp. 1–10.

[54] C. Kachris and D. Soudris, ‘‘A survey on reconfigurable accelerators for
cloud computing,’’ in Proc. 26th Int. Conf. Field Program. Logic Appl.
(FPL), Aug. 2016, pp. 1–10.

[55] K. Eguro and R. Venkatesan, ‘‘FPGAs for trusted cloud computing,’’ in
Proc. 22nd Int. Conf. Field Program. Logic Appl. (FPL), Aug. 2012,
pp. 63–70.

[56] B. Hong, H.-Y. Kim, M. Kim, T. Suh, L. Xu, and W. Shi, ‘‘FASTEN:
An FPGA-based secure system for big data processing,’’ IEEE Design
Test, vol. 35, no. 1, pp. 30–38, Feb. 2018.

[57] V. Costan and S. Devadas. (2016). Intel SGX Explained. [Online]. Avail-
able: https://eprint.iacr.org/2016/086.pdf

28434 VOLUME 8, 2020

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

[58] A. Coughlin, G. Cusack, J. Wampler, E. Keller, and E. Wustrow, ‘‘Break-
ing the trust dependence on third party processes for reconfigurable secure
hardware,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays
(FPGA), 2019, pp. 282–291.

[59] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and
R. Riley, ‘‘Flexible hardware-managed isolated execution: Architecture,
software support and applications,’’ IEEE Trans. Dependable Secure
Comput., vol. 15, no. 3, pp. 437–451, May 2018.

[60] R. García, I. Algredo-Badillo, M. Morales-Sandoval, C. Feregrino-
Uribe, and R. Cumplido, ‘‘A compact FPGA-based processor for the
Secure Hash Algorithm SHA-256,’’ Comput. Electr. Eng., vol. 40, no. 1,
pp. 194–202, Jan. 2014.

[61] J. Docherty and A. Koelmans, ‘‘A flexible hardware implementation of
SHA-1 and SHA-2 hash functions,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2011, pp. 1932–1935.

[62] S. Dominikus, ‘‘A hardware implementation of MD4-family hash algo-
rithms,’’ in Proc. 9th IEEE Int. Conf. Electron., Circuits, Syst. (ICECS),
vol. 3, Jun. 2002, pp. 1143–1146.

[63] N. Sklavos and O. Koufopavlou, ‘‘On the hardware implementations of
the SHA-2 (256, 384, 512) hash functions,’’ in Proc. Int. Symp. Circuits
Syst. (ISCAS), Nov. 2003, p. 5.

[64] C. Jeong and Y. Kim, ‘‘Implementation of efficient SHA-256 hash algo-
rithm for secure vehicle communication using FPGA,’’ in Proc. Int. SoC
Design Conf. (ISOCC), Nov. 2014, pp. 224–225.

[65] N. Sklavos and O. Koufopavlou, ‘‘Implementation of the SHA-2
hash family standard using FPGAs,’’ J. Supercomput., vol. 31, no. 3,
pp. 227–248, Mar. 2005.

[66] S. Ducloyer, R. Vaslin, G. Gogniat, and E. Wanderley, ‘‘Hardware imple-
mentation of a multi-mode hash architecture for MD5, SHA-1 and SHA-
2,’’ in Proc. Conf. Design Archit. Signal Image Process. (DASIP), 2007,
pp. 1–7.

[67] A. Mohamed and A. Nadjia, ‘‘SHA-2 hardware core for virtex-5 FPGA,’’
in Proc. IEEE 12th Int. Multi-Conf. Syst., Signals Devices (SSD),
Mar. 2015, pp. 1–5.

[68] F. Crowe, A. Daly, T. Kerins, and W. Marnane, ‘‘Single-chip FPGA
implementation of a cryptographic co-processor,’’ in Proc. IEEE Int.
Conf. Field- Program. Technol., Mar. 2005, pp. 279–285.

[69] H. E.Michail, A. P. Karakountas, E. Fotopoulou, and C. E. Goutis, ‘‘High-
speed and low-power implementation of hash message authentication
code through partially unrolled techniques,’’ in Proc. 5th Int. Conf. Mul-
timedia, Internet Video Technol. (MIV), 2005, pp. 130–135.

[70] K. Aisopos, A. Kakarountas, H. Michail, and C. Goutis, ‘‘High through-
put implementation of the new secure hash algorithm through partial
unrolling,’’ in Proc. IEEE Workshop Signal Process. Syst. Design Imple-
ment., Jan. 2006, pp. 99–103.

[71] M. Zeghida, B. Bouallegue, A. Baganne, M. Machhout, and R. Tourki,
‘‘A reconfigurable implementation of the new secure hash algorithm,’’
in Proc. 2nd Int. Conf. Availability, Rel. Secur. (ARES), Apr. 2007,
pp. 281–285.

[72] M. Zeghid, B. Bouallegue, M. Machhout, A. Baganne, and R. Tourki,
‘‘Architectural design features of a programmable high throughput recon-
figurable SHA-2 Processor,’’ J. Inf. Assurance Secur., vol. 3, pp. 147–158,
Jan. 2008.

[73] M. Feldhofer and C. Rechberger, ‘‘A case against currently used hash
functions in RFID protocols,’’ in Proc. Move Meaningful Internet Syst.
Workshop (OTM), 2006, pp. 372–381.

[74] M. Mcloone and J. Mccanny, ‘‘Efficient single-chip implementation of
SHA-384 and SHA-512,’’ in Proc. IEEE Int. Conf. Field-Programmable
Technol. (FPT), Oct. 2003, pp. 311–314.

[75] W. Sun, H. Guo, H. He, and Z. Dai, ‘‘Design and optimized implemen-
tation of the SHA-2(256, 384, 512) hash algorithms,’’ in Proc. 7th Int.
Conf. ASIC, Oct. 2007, pp. 858–861.

[76] L. Bai and S. Li, ‘‘VLSI implementation of high-speed SHA-256,’’ in
Proc. IEEE 8th Int. Conf. ASIC, Oct. 2009, pp. 131–134.

[77] A. Satoh and T. Inoue, ‘‘ASIC-hardware-focused comparison for hash
functions MD5, RIPEMD-160, and SHS,’’ Integration, vol. 40, no. 1,
pp. 3–10, Jan. 2007.

[78] M. Kim, J. Ryou, and S. Jun, ‘‘Efficient hardware architecture of SHA-
256 algorithm for trusted mobile computing,’’ in Proc. Int. Conf. Inf.
Secur. Cryptol. (INSCRYPT), 2009, pp. 240–252.

[79] M. Kim, D. G. Lee, and J. Ryou, ‘‘Compact and unified hardware
architecture for SHA-1 and SHA-256 of trustedmobile computing,’’Pers.
Ubiquitous Comput., vol. 17, no. 5, pp. 921–932, Jun. 2013.

[80] M. M. Wong, V. Pudi, and A. Chattopadhyay, ‘‘Lightweight and high
performance SHA-256 using architectural folding and 4-2 adder com-
pressor,’’ in Proc. IFIP/IEEE Int. Conf. Very Large Scale Integr. (VLSI-
SoC), Oct. 2018, pp. 95–100.

[81] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr,
T. Lehman, and B. Schott, ‘‘Comparative analysis of the hardware imple-
mentations of hash functions SHA-1 and SHA-512,’’ in Proc. Int. Conf.
Inf. Secur. (ISC), 2002, pp. 75–89.

[82] R. Glabb, L. Imbert, G. Jullien, A. Tisserand, and N. Veyrat-Charvillon,
‘‘Multi-mode operator for SHA-2 hash functions,’’ J. Syst. Archit., vol. 53,
nos. 2–3, pp. 127–138, Feb. 2007.

[83] H. A. Tuan, K. Yamazaki, and S. Oyanagi, ‘‘Three-stage pipeline imple-
mentation for SHA2 using data forwarding,’’ inProc. 18th Int. Conf. Field
Program. Logic Appl. (FPL), 2008, pp. 29–34.

[84] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, ‘‘Improving
SHA-2 hardware implementations,’’ in Proc. 8th Workshop Cryptograph.
Hardw. Embedded Syst. (CHES), 2006, pp. 298–310.

[85] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, ‘‘Cost-efficient
SHAhardware accelerators,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 16, no. 8, pp. 999–1008, Aug. 2008.

[86] I. Algredo-Badillo, C. Feregrino-Uribe, R. Cumplido, and
M. Morales-Sandoval, ‘‘Novel hardware architecture for implementing
the inner loop of the SHA-2 algorithms,’’ in Proc. 14th Euromicro Conf.
Digit. Syst. Design, Aug. 2011, pp. 543–549.

[87] I. Algredo-Badillo, C. Feregrino-Uribe, R. Cumplido, and
M. Morales-Sandoval, ‘‘FPGA-based implementation alternatives for the
inner loop of the Secure Hash Algorithm SHA-256,’’ Microprocessors
Microsyst., vol. 37, nos. 6–7, pp. 750–757, Aug. 2013.

[88] R. Lien, T. Grembowski, and K. Gaj, ‘‘A 1 Gbit/s partially unrolled
architecture of hash functions SHA-1 and SHA-512,’’ in Proc. Cryptog-
raphers’ Track RSA Conf. (CT-RSA), 2004, pp. 324–338.

[89] F. Aisopos, K. Aisopos, D. Schinianakis, H.Michail, and A. Kakarountas,
‘‘A novel high–throughput implementation of a partially unrolled SHA-
512,’’ in Proc. IEEE Medit. Electrotech. Conf. (MELECON), Aug. 2006,
pp. 61–65.

[90] H. Michail, A. Milidonis, A. Kakarountas, and C. Goutis, ‘‘Novel high
throughput implementation of SHA-256 hash function through pre-
computation technique,’’ in Proc. 12th IEEE Int. Conf. Electron., Circuits
Syst., Dec. 2005, pp. 1–4.

[91] G. S. Athanasiou, C. E. Goutis, G. Theodoridis, and H. E. Michail,
‘‘Optimising the SHA-512 cryptographic hash function on FPGAs,’’ IET
Comput. Digit. Techn., vol. 8, no. 2, pp. 70–82, 2014.

[92] L. Dadda, M. Macchetti, and J. Owen, ‘‘The design of a high speed ASIC
unit for the hash function SHA-256 (384, 512),’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), vol. 3, 2004, pp. 70–75.

[93] L. Dadda, M. Macchetti, and J. Owen, ‘‘An ASIC design for a high speed
implementation of the hash function SHA-256 (384, 512),’’ in Proc. 14th
ACM Great Lakes Symp. VLSI (GLSVLSI), 2004, pp. 421–425.

[94] K. K. Ting, S. C. L. Yuen, K. H. Lee, and P. H. W. Leong, ‘‘An FPGA
based SHA-256 processor,’’ inProc. 12nd Int. Conf. Field Program. Logic
Appl. (FPL), 2002, pp. 577–585.

[95] R. Mcevoy, F. Crowe, C. Murphy, and W. Marnane, ‘‘Optimisation of
the SHA-2 family of hash functions on FPGAs,’’ in Proc. IEEE Comput.
Soc. Annu. Symp. Emerg. VLSI Technol. Archit. (ISVLSI), Mar. 2006,
pp. 317–322.

[96] M. Juliato and C. Gebotys, ‘‘Tailoring a reconfigurable platform to SHA-
256 and HMAC through custom instructions and peripherals,’’ in Proc.
Int. Conf. Reconfigurable Comput. FPGAs, Dec. 2009, pp. 195–200.

[97] H. E. Michail, G. S. Athanasiou, V. Kelefouras, G. Theodoridis, and
C. E. Goutis, ‘‘On the exploitation of a high-throughput SHA-256 FPGA
design for HMAC,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 5,
no. 1, pp. 2:1–2:28, 2012.

[98] M. Khalil, M. Nazrin, and Y. Hau, ‘‘Implementation of SHA-2 hash
function for a digital signature system-on-chip in FPGA,’’ in Proc. Int.
Conf. Electron. Design, Dec. 2008, pp. 1–6.

[99] X. Cao, L. Lu, and M. O’Neill, ‘‘A compact SHA-256 architecture for
RFID tags,’’ in Proc. 22nd IET Irish Signals Syst. Conf. (ISSC), 2011,
pp. 6–11.

[100] I. Ahmad and A. Shoba Das, ‘‘Hardware implementation analysis of
SHA-256 and SHA-512 algorithms on FPGAs,’’ Comput. Electr. Eng.,
vol. 31, no. 6, pp. 345–360, Sep. 2005.

[101] M. Togan, A. Floarea, and G. Budariu, ‘‘Design and implementation
of cryptographic modules on FPGA,’’ in Proc. Eur. Conf. Appl. Math.
Informat., 2010, pp. 149–154.

VOLUME 8, 2020 28435

R. Martino, A. Cilardo: SHA-2 Acceleration Meeting the Needs of Emerging Applications: Comparative Survey

[102] I. Yiakoumis, M. Papadonikolak, H. Michail, A. Kakarountas, and
C. Goutis, ‘‘Maximizing the hash function of authentication codes,’’
IEEE Potentials, vol. 25, no. 2, pp. 9–12, Mar. 2006.

[103] M. Macchetti and L. Dadda, ‘‘Quasi-pipelined hash circuits,’’ in Proc.
17th IEEE Symp. Comput. Arithmetic (ARITH), Jul. 2005, pp. 222–229.

[104] I. Algredo-Badillo, M. Morales-Sandoval, C. Feregrino-Uribe, and
R. Cumplido, ‘‘Throughput and efficiency analysis of unrolled hardware
architectures for the SHA-512 hash algorithm,’’ in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI, Aug. 2012, pp. 63–68.

[105] H. Michail, G. Athanasiou, G. Theodoridis, and C. Goutis, ‘‘On the
development of high-throughput and area-efficient multi-mode crypto-
graphic hash designs in FPGAs,’’ Integration, vol. 47, no. 4, pp. 387–407,
Sep. 2014.

[106] Y. K. Lee, H. Chan, and I. Verbauwhede, ‘‘Iteration bound analysis and
throughput optimum architecture of SHA-256 (384,512) for hardware
implementations,’’ in Proc. Int. Workshop Inf. Secur. Appl. (WISA), 2007,
pp. 102–114.

[107] L. Deng, K. Sobti, Y. Zhang, and C. Chakrabarti, ‘‘Accurate area, time
and power models for FPGA-based implementations,’’ J. Signal Process.
Syst., vol. 63, no. 1, pp. 39–50, Apr. 2011.

[108] I. Kuon and J. Rose, ‘‘Measuring the gap between FPGAs and ASICs,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

[109] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez,
‘‘Reducing power in high-performance microprocessors,’’ in Proc. 35th
Design Autom. Conf. (DAC), 1998, pp. 732–737.

[110] A. Chandrakasan and R. Brodersen, ‘‘Minimizing power consumption
in digital CMOS circuits,’’ Proc. IEEE, vol. 83, no. 4, pp. 498–523,
Apr. 1995.

[111] A. P. Chandrakasan, S. Sheng, and R.W. Brodersen, ‘‘Low-power CMOS
digital design,’’ IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473–484,
Apr. 1992.

[112] A. Amara, F. Amiel, and T. Ea, ‘‘FPGA vs. ASIC for low power applica-
tions,’’Microelectron. J., vol. 37, no. 8, pp. 669–677, Aug. 2006.

[113] F. Ge, P. Jain, and K. Choi, ‘‘Ultra-low power and high speed design
and implementation of AES and SHA1 hardware cores in 65 nanome-
ter CMOS technology,’’ in Proc. IEEE Int. Conf. Electro/Inf. Technol.,
Jun. 2009, pp. 405–410.

[114] L. Shang, A. S. Kaviani, and K. Bathala, ‘‘Dynamic power consumption
in Virtex-II FPGA family,’’ in Proc. 10th ACM/SIGDA Int. Symp. Field
Program. Gate Arrays (FPGA), 2002, pp. 157–164.

[115] L. Benini and G. De Micheli, ‘‘Static assignment for low power dissipa-
tion,’’ IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 158–268,Mar. 1995.

[116] L. Deng, K. Sobti, and C. Chakrabarti, ‘‘Accurate models for estimating
area and power of FPGA implementations,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., Mar. 2008, pp. 1417–1420.

[117] H. Michail, A. Kakarountas, O. Koufopavlou, and C. Goutis, ‘‘A low-
power and high-throughput implementation of the SHA-1 hash function,’’
in Proc. IEEE Int. Symp. Circuits Syst., Jul. 2005, pp. 4086–4089.

RAFFAELE MARTINO (Graduate Student Mem-
ber, IEEE) received the B.Sc. and M.Sc. degrees
(magna cum laude) in computer engineering from
the University of Naples Federico II, in 2013 and
2016, respectively, where he is currently pursu-
ing the Ph.D. degree in information technology
and electrical engineering with the Department of
Electrical Engineering and Information Technolo-
gies. He has been involved in a few European
projects funded under the Horizon 2020 research

and innovation programme, and he currently collaborates with the Depart-
ment of Agriculture, University of Naples Federico II. His research interests
include hardware architecture, compilers, and GPU programming.

ALESSANDRO CILARDO (Senior Member,
IEEE) received the degree (magna cum laude) in
electronics engineering, in 2003, and the Ph.D.
degree in computer science, in November 2006.
He is currently an Associate Professor with the
University of Naples Federico II. He is the single
or main author of around 80 peer-reviewed papers
published in leading scientific journals and con-
ferences, including various the IEEE and ACM
transactions, as well as top conferences like DATE

and FPL. His researches focus on digital design methodologies, and the
application of programming paradigms and tools from the parallel computing
domain to electronic system-level design. A further research activity in the
area of computer arithmetic targets the application domain of security and
cryptography-related processing. He is a Senior Member of the European
Network of Excellence on High Performance and Embedded Architecture
and Compilation (HiPEAC). He is involved in a number of funded projects
at both the national level and the European level (7FP and H2020 projects).

28436 VOLUME 8, 2020

