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Abstract
Lately, there is a growing interest in conducting research on optimization algorithms due to their wide range of engineering applications. One
of the optimization algorithms' categories is evolutionary algorithms which are inspired from the natural behavior of animals and humans.
Further, each of the evolutionary algorithms has its own advantages and disadvantages in convergence accuracy and computational time. In the
present paper, a novel solution search algorithm taken from the team games is introduced. This evolutionary algorithm named Team Game
Algorithm (TGA) involves passing a ball, making mistakes and substitution operators. Comparing the TGA's results to the outcomes of other
well-known algorithms for unimodal and multimodal test functions elucidates the successful design of the proposed heuristic algorithm.
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This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The beginning of the 20th century could be considered as
an inception of the extensive use of mathematical models and
optimization fields. Optimization consists of numerous fields,
such as operations research, the artificial intelligence and even
computer sciences. Therefore, these fields together could help
us to improve the efficiency of industries especially the
practical ones. In fact, we need to resolve particular problems
that couldn't be solved by traditional methods. In this respect,
evolutionary computations as one of the sub-categories of
artificial intelligence have been utilized to address those
particular problems. This idea is based on a multi-point search
instead of one-point originally introduced by Rechenberg [24]
and [23]. Later, Holland introduced the Genetic Algorithm
(GA) as the first evolutionary algorithm for the global opti-
mization using chromosomes and their genes [10]. Then, [4],
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introduced the Ant Colony Optimization (ACO) algorithm
inspired from the movements of ant. This algorithm performs
based upon two principal rules: The first one is the footprint
pheromone and the second one is the search of the path with
more pheromones. Furthermore, Eberhart and Kennedy pre-
sented particle swarm optimization (PSO) [5] as another
evolutionary algorithm which was based on the swarm
behavior of birds and fishes. Indeed, PSO sets the position of a
particle by using its best experience and the best experience of
all particles [12]. introduced a new group-based algorithm,
which imitates the foraging behavior of honeybees. Later, [1],
utilized the political, social and economic behavior of coun-
tries to introduce novel operators. They presented an effective
algorithm named Imperialist Competitive Algorithm (ICA). In
their method, empires compete against each other and as the
algorithm goes forward, the weakest empire loses its colonies
[22]. used the theory of Newtonian physics and constructed a
gravitational search algorithm (GSA) which was based on the
law of the gravity and the notion of mass interactions.

These algorithms were some prominent evolutionary algo-
rithms while many other algorithms have been introduced in the
recent years, such as: Cuckoo Optimization Algorithm (COA)
lgorithm, Future Computing and Informatics Journal (2018), https://doi.org/
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[31], Firefly Algorithm (FA) [30], Glowworm Swarm Optimi-
zation (GSO) [15], Bat Algorithm (BA) [32], Cat Swarm Opti-
mization (CSO) [3], Fruit Fly Optimization Algorithm (FFOA)
[19,29], Differential Evolution (DE) [25], Artificial Immune
System (AIS) [11], Krill Herd (KH) [6], Levy-Flight Krill Herd
(LKH) [28], Bacterial Foraging Optimization (BFO) [20], Lion
Pride Optimization (LPO) [27], the lion's algorithm [21],
Hunting Search Optimization (HUS) [18], Artificial Fish Swarm
(AFS) [16], Simulated Annealing (SA) [14], Magnetic Opti-
mization Algorithm (MOA) [17,26], Harmony Search (HS) [7],
Probabilistic Hill-climbing Algorithm [9], etc.

In this paper, we're going to introduce a novel meta-heuristic
optimization algorithm based on team game strategies
involving football, volleyball, basketball, water polo and so on.
Team games have to follow several straightforward rules which
are vital for them to succeed. Certainly, one of the most
essential strategies of team games is passing a ball, whereas
players must have teamwork for achieving points or scoring
goals. Another strategy of the team games is using the mistakes
of the team's opponent to receive scores. In a football game, for
instance, a mistake in the play of the team's opponent could lead
to a powerful counter strike and an achievement of a goal. We
also know that each team game has a playground territory in
which players can play a role in and out of the playground
territory. In a game, there may be an injured or a tired player
whommust be substituted. These substitutions can speed up the
pace of the game and even sometimes cause the team to score its
goal. We have simulated these processes based on the team
games' acts via regarding them as the optimization operators.
The players are the population in the specified algorithm, which
are divided into two groups; original and substituting players. In
the proposed algorithm, passing a ball, making mistakes and
substitution operators are simulated by mathematical formula.
Furthermore, for the operators, we will check that the members
are doing their activities in the defined territory appropriately.

The rest of this paper is organized as follows. In Section 2,
a brief description of the team games and the rules are pre-
sented. Further, the strategy of the team game algorithm and
the formulation of the operators are provided in Section 3. In
Section 4, the results of the specified algorithm and the graphs
are presented. Finally, Section 5 concludes the present study.

2. Team games

Generally speaking, games are divided into two categories.
The first one is the individual games and the second one which
we'll explicate here is the team games.

A team is defined as a number of members who have the
same goals, same destinations and complementary skills.
Based on these characteristics, they are bound to each other
and relied upon one another. Katzenbach and Smith say:
“members of a team are dependent together; it means no ac-
tivity from a member, results in teamwork failure.” [13].

In the team games, there are two teams to compete; and in
order to have a fair game, each team has the same number of
players. In every team game, all the team players cooperate
with each other. Moreover, the consequences affected the team
Please cite this article in press as: Mahmoodabadi MJ, et al., TGA: Team game a
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and as a result affected all the players of that team. We will
plumb this subject and analyze the team games which played
with a ball. In this kind of games, both teams have the equal
chance of obtaining the ball and starting the game. Further-
more, there is a field which is defined for two teams' players
and they have the permission to move the ball just within that
field. If the ball goes out of the specified field by the action of
one of the players, referee declares that “the ball is out” and
the ball will be given to the opponent team. Another obvious
issue in these games is the substitution of the players. The
players must be active and participate with their team mem-
bers to succeed in the game although any unpredictable event
could happen in the game. Most of these events are limited to
fatigue and sometimes injuries. As a matter of fact, an injured
or a fatigue player could no longer moves in the playground
and must be substituted. In addition, we know that at anywhere
and anytime of a game, the substitution could be performed
and a fresh player can come in.

3. Team game algorithm (TGA)

In this section, a heuristic algorithm which stemmed from
team games is proposed and is named Team Game Algorithm
(TGA). In this algorithm, agents are players and their perfor-
mance will be measured by their stamina which is called the
propriety in the optimization methods. All players, which
include the two teams’ players, have contacts with each other.
Cooperation between teammates and involvements against the
players of the opponent team result in all players try to catch
up the goals. Players with higher stamina stay more in field,
even sometimes to the end of the game.

In TGA, each player (agent) has three kinds of operations:
passing a ball, making mistakes and substitution. Passing a ball
is a logical operator and mistaking mistakes is a stochastic
operator. Also, substitution happens in the tired team. By
passing balls, we expect that a team wins the game and a player
who is the best of that match is introduced. This player could
even belong to the loser team and is the optimum point in the
specified search space.
3.1. Initialization
Consider a system having n agents (players). First of all we
create n players randomly in the search space. Half of the
players will be chosen to play in team A and the rest of them
will be given to team B. The number of substituting players is
free. They will sit on the football substitute bench and wait for
a coach order to be substituted.

X ¼

0
BB@

x11 x12
x21 x22

/ x1n
/ x2n

« «
xD1 xD2

« «
/ xDn

1
CCA¼ ðx1; x2;/; xnÞ ð1Þ

where xDn is the position of the nth player in the direction of D
(dimension). Also, the number of all players (n) contains the
summation of players in teams A and B.
lgorithm, Future Computing and Informatics Journal (2018), https://doi.org/



Fig. 2. The schematic illustration of the Equation (7).
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nA¼ nB¼ n

2
ð2Þ

In Equation (2), nA and nB are the number of players in
teams A and B, respectively, who play on the field.

Now each team selects its own players from the existing
players (X ) and sets up its team.

A¼ ðx1A;x2A;/;xnAÞ ð3Þ

B¼ ðx1B;x2B;/;xnBÞ ð4Þ
Moreover,

A∪B¼ X ð5Þ
where ∪ is the union operator.

After all, the ball will be given to a team randomly and
three operators will be applied on that team with pre-
determined probabilities.
3.2. Passing operator
The first operator is passing a ball, and is defined as
follows:

xiðtþ 1Þ ¼ xiðtÞ þ r�Ciðtþ 1Þ ð6Þ

Ciðtþ 1Þ ¼ 2xcapðtÞ � xiðtÞ � xrandðtÞ ð7Þ

where xiðtÞ is the position of the ith player in the host team.C is a
communicative formula between the specified player who has
the ball, a random player xrandðtÞ and the captain of the team
xcapðtÞ. Also in the above equation, r is a random vector that the
values of its components are between [0,1]. The schematic il-
lustrations of Equations (6) and (7) are provided in Figs. 1 and 2.
3.3. Mistake operator
The second operator is the players’ mistake and will be
performed when its probability condition is satisfied. In this
operator, a player of the ball-owner team and his/her peer in
the opponent team contact with each other. This contact results
in changing a random dimension of the player having the ball
via the following equation.

xdi ðtþ 1Þ ¼ xdi ðtÞ þ z�
�
xdj ðtÞ � xdi ðtÞ

�
ð8Þ
Fig. 1. The schematic illustration of the Equation (6).
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where xdi ðtÞ is the position of the ith player with its random
dimension d. Also, z is a random value between [�1,þ1].
Furthermore, xdj ðtÞ represents the position of the randomly
selected jth player of team B with dimension d.
3.4. Substitution operator
For the third operator, w e will check the player's propriety
during the iterations; if that player is unable to improve his
propriety in the specified iterations, he will be substituted and a
fresh player with a random position enters the game. Further, it
must be mentioned that not only improper but also constant
proprieties for a player during the iterations could lead to a
substitution, although a player with a worsening propriety might
occur less in the game.
3.5. Out of the field players
At the end of all these operations, the position of the ball-
owner player will be checked. If he has gone out of the field,
the player's location will be reset and he will be given a new
random position in the specified field.

With a general view, the flowchart of TGA is shown in
Fig. 3. For a clear vision of the structure of TGA, some notes
must be regarded:

(1) Players in TGA could observe each other's performance;
hence it causes TGA not to be a blind search algorithm.

(2) The players will learn from their mistakes to improve their
propriety.

(3) The substitution operator will prevent the algorithm from
getting stuck in the local minima.

In Fig. 4, a pseudo code for the proposed algorithm is shown.
In this pseudo code, pp is passing probability and game time is
the total number of iterations. Also xmin and xmax specify the
minimum and maximum domain of the playground which is
different in every function. trðiÞ is the times which a player
doesn't give a better propriety in the sequential iterations.
lgorithm, Future Computing and Informatics Journal (2018), https://doi.org/
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Condition 
satisfied? 

Output

Initialize two teams

Giving the position of a ball to a team by chance 

Substitution is necessary for injured or tired players 

Players of the selected team pass the ball to each other

Players of the selected team may make a mistake

Fig. 3. A general flowchart of TGA.
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4. Numerical and comparative results

In this section, the proposed algorithm has been tested by
10 standard test functions; and also, the results are compared
to the outcomes of three known algorithms in order to illus-
trate the performance of TGA. In Tables 1 and 2, unimodal
and multimodal test functions with their names, mathematical
formulations and their domains have been listed. Unimodal
Please cite this article in press as: Mahmoodabadi MJ, et al., TGA: Team game a
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test functions don't have any local minima while multimodal
test functions have one or more local minima. The minimum
values of test functions in both Tables 1 and 2 are zero.
Furthermore, these functions are minimized when
xi ¼ 0; i ¼ 1; 2;…; n except for the function f5, which its
minimum occurs in xi ¼ 1; i ¼ 1; 2;…; n where n is the
maximum number of dimensions.
lgorithm, Future Computing and Informatics Journal (2018), https://doi.org/



Fig. 4. The pseudo code of the team game algorithm.

Table 1

Unimodal test functions.

Function name Formulation Domain

f1: Sphere Pn
i¼1

x2i
½�100; 100�n

f2: Schwefel 2.22 Pn
i¼1

��xi��þYn
i¼1

��xi�� ½�10; 10�n

f3: Quadric Pn
i¼1

ðPi
j¼1xjÞ2 ½�100; 100�n

f4: Schwefel 2.21 max
i
fjxij; 1 � i � ng ½�100; 100�n

f5: Rosenbrock Pn�1

i¼1

½100ðxiþ1 � x2i Þ2 þ ðxi � 1Þ2� ½�30; 30�n

f6: Step Pn
i¼1

ð½xi þ 0:5�Þ2 ½�100; 100�n

f7: Quadric noise Pn
i¼1

ix4i þ random½0; 1� ½�1:28; 1:28�n
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Numerical results of these test functions for the proposed
algorithm, Genetic Algorithm with Traditional-Crossover
(GATC) [8], Genetic Algorithm with Multiple-Crossover
(GAMC) [2], and Gravitational Search Algorithm (GSA)
Table 2

Multimodal test functions.

Function name Formulation

f8: Rastrigin Pn
i¼1

½x2i � 10 cosð2pxiÞ þ 10�

f9: Ackley
�20 exp

 
� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

x2i

r !
� ex

f10: Griewank
1

4000

Pn
i¼1

x2i �
Yn
i¼1

cos

�
xiffiffi
i

p
�
þ 1
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[22] are shown for 30 runs in Tables 3 and 4 for the maximum
iteration of 4000 and in Tables 5 and 6 for the maximum
iteration of 10,000. In all of these results, the population size is
set to 50 and the dimension size is set to 30. For GA with
either traditional-crossover or multiple-crossover, regenera-
tion, crossover and mutation probabilities are set to 0.4, 0.5
and 0.1, respectively. Moreover, the mutation parameter of the
traditional and multiple-crossover equals 1� 10�5 and
1� 10�10, respectively. Further, for GSA, G0 and a are set to
100 and 20 in sequence and K0 decreases from 50 to 1, line-
arly. For the TGA, the probability of doing a passing operation
is computed by Equation (9).

pp ¼ 1� 0:1
� t

time

�
ð9Þ

Also, tr(i), the substitution conditions for both teams are set
to 2000.

For more details of how TGA's operators work, its graphs
for functions f1, f5, f7, f8 and f9 have been plotted in Figs.
5e9, in sequence. In these graphs, the y axis is scaled as
logarithmic. In TGA's graphs, the speed of convergence is
Domain

½�5:12; 5:12�n

p

 
1
n

Pn
i¼1

cosð2pxiÞ
!

þ 20þ e
½�32; 32�n

½�600; 600�n

lgorithm, Future Computing and Informatics Journal (2018), https://doi.org/



Table 3

The results of comparing three algorithms (GATC, GAMC and GSA) to TGA

for the minimization of test functions in Table 1 with 4000 iterations.

GATC GAMC GSA TGA

f1 Min 8.95�10�19 3.61�10�25 4.54�10�18 2.16 £ 10-68

Max 4.45�10�14 1.89�10�18 1.74�10�17 8.44 £ 10-62

Mean 2.09�10�19 7.97�10�20 1.00�10�17 2.88 £ 10-65

Median 1.94�10�16 1.53�10�23 9.50�10�18 1.01 £ 10-65

Std.dev. 8.07�10�15 3.48�10�19 2.90�10�18 1.54 £ 10-62

f2 Min 9.67�10�11 2.18�10�14 1.17�10�8 9.44 £ 10-36

Max 9.02�10�8 7.51�10�11 2.45�10�8 2.79 £ 10-32

Mean 8.22�10�9 4.74�10�12 1.63�10�8 1.45 £ 10-33

Median 3.46�10�9 5.57�10�13 1.63�10�8 3.04 £ 10-34

Std.dev. 1.68�10�8 1.53�10�11 2.82�10�9 5.03 £ 10-33

f3 Min 1.23 0.17 0.61 6.45 £ 10-11

Max 289.09 48.33 9.38 1.62 £ 10-8

Mean 37.11 4.82 2.75 3.19 £ 10-9

Median 14.35 1.29 2.20 1.51 £ 10-9

Std.dev. 65.41 9.28 1.96 3.91 £ 10-9

f4 Min 16.06 41.83 1.44 £ 10-9 7.15�10�4

Max 42.44 73.93 2.93 £ 10-9 2.07�10�2

Mean 32.26 55.40 1.93 £ 10-9 6.17�10�3

Median 33.05 54.32 1.86 £ 10-9 5.20�10�3

Std.dev. 6.21 7.93 3.21 £ 10-10 5.07�10�3

f5 Min 1.18 2.23�10�2 21.27 1.59 £ 10-6

Max 339.35 315.52 22.21 12.09

Mean 87.28 75.39 21.73 1.98

Median 76.88 69.21 21.72 0.13

Std.dev. 76.06 81.86 0.21 3.08

f6 Min 0 0 0 0

Max 486 16 0 1

Mean 85.36 1.73 0 3.33�10�2

Median 12.50 0 0 0

Std.dev. 140.84 3.87 0 0.18

f7 Min 8.10�10�3 3.10�10�2 5.90�10�3 3.86£10¡3

Max 2.37�10�2 7.14�10�2 2.25�10�2 1.36 £ 10-2

Mean 1.54�10�2 4.82�10�2 1.19�10�2 7.98 £ 10-2

Median 1.36�10�2 4.77�10�2 1.14�10�2 7.91 £ 10-3

Std.dev. 4.40�10�3 1.06�10�2 3.60�10�3 2.46 £ 10-3

Note: the bold values show the best results.

Table 4

The results of comparing three algorithms (GATC, GAMC and GSA) to TGA

for the minimization of test functions in Table 2 with 4000 iterations.

GATC GAMC GSA TGA

f8 Min 29.84 57.70 9.94 0.99

Max 104.47 221.87 21.89 19.90

Mean 51.80 112.62 14.36 6.64

Median 47.26 105.46 13.93 5.97

Std.dev. 17.65 33.29 2.76 3.95

f9 Min 5.92 8.90 1.97�10�9 7.99 £ 10-15

Max 14.44 17.36 3.37 £ 10-9 0.13

Mean 10.49 14.28 2.54 £ 10-9 1.65�10�2

Median 10.51 14.77 2.48 � 10-9 1.68 £ 10-14

Std.dev. 1.91 2.03 3.68 £ 10-10 3.05�10�2

f10 Min 7.40�10�3 0 0 0

Max 10.07 2.35 0.24 2.46 £ 10-2

Mean 0.87 0.23 1.22�10�2 6.97 £ 10-3

Median 0.19 0.11 0 5.26 � 10-8

Std.dev. 1.98 0.45 4.52�10�2 9.18 £ 10-3

Note: the bold values show the best results.

Table 5

The results of comparing three algorithms (GATC, GAMC and GSA) to TGA

for the minimization of test functions in Table 1 with 10000 iterations.

GATC GAMC GSA TGA

f1 Min 8.95�10�28 9.90�10�46 4.16�10�18 5.10 £ 10-74

Max 1.65�10�22 1.83�10�28 1.16�10�17 6.17 £ 10-65

Mean 1.00�10�23 7.18�10�30 7.48�10�18 2.08 £ 10-66

Median 6.16�10�25 8.71�10�34 7.65�10�18 1.78 £ 10-70

Std.dev. 3.23�10�23 3.34�10�29 1.90�10�18 1.12 £ 10-65

f2 Min 5.84�10�15 1.22�10�23 1.05�10�8 2.67 £ 10-38

Max 1.28�10�11 7.57�10�14 2.45�10�8 7.53 £ 10-34

Mean 1.68�10�12 4.82�10�15 1.28�10�8 6.81 £ 10-35

Median 1.13�10�13 8.54�10�17 1.27�10�8 1.05 £ 10-35

Std.dev. 3.32�10�12 1.49�10�14 1.25�10�9 1.54 £ 10-34

f3 Min 9.51�10�8 6.68�10�9 1.97 £ 10-17 3.18�10�17

Max 2.60�10�3 4.38�10�4 6.66 £ 10-17 6.60�10�14

Mean 2.39�10�4 2.13�10�5 3.66 £ 10-17 5.90�10�15

Median 2.80�10�5 2.17�10�6 3.46 £ 10-17 1.92�10�15

Std.dev. 6.56�10�4 7.97�10�5 9.27 £ 10-18 1.23�10�14

f4 Min 1.83 3.52 1.13 £ 10-9 3.01�10�4

Max 5.46 7.88 1.65 £ 10-9 1.08�10�5

Mean 3.29 5.23 1.60 £ 10-9 1.78�10�6

Median 3.21 4.99 1.32 £ 10-9 1.14�10�6

Std.dev. 0.77 1.07 2.20 £ 10-10 2.32�10�6

f5 Min 0.03 2.23�10�2 21.27 3.05 £ 10-8

Max 204.32 80.93 14.34 4.95 £ 10-3

Mean 87.28 75.39 14.22 4.51 £ 10-4

Median 76.88 69.21 14.24 3.89 £ 10-5

Std.dev. 76.06 81.86 0.27 1.05 £ 10-3

f6 Min 0 0 0 0

Max 0 4 0 0

Mean 0 0.13 0 0

Median 0 0 0 0

Std.dev. 0 0.73 0 0

f7 Min 5.20�10�3 2.40�10�2 7.37�10�3 2.22 £ 10-3

Max 1.70�10�2 5.22�10�2 1.19 £ 10-2 7.42 � 10-2

Mean 1.07�10�2 3.84�10�2 1.14�10�2 5.19 £ 10-3

Median 1.00�10�2 3.67�10�2 1.11�10�2 5.43 £ 10-3

Std.dev. 2.90�10�3 6.60�10�3 2.14�10�3 1.30 £ 10-3

Note: the bold values show the best results.

Table 6

The results of comparing three algorithms (GATC, GAMC and GSA) to TGA

for the minimization of test functions in Table 2 with 10000 iterations.

GATC GAMC GSA TGA

f8 Min 25.86 58.70 7.96 0

Max 85.56 202.97 21.88 3.97

Mean 52.36 116.87 12.13 0.63

Median 50.74 111.43 11.94 6.95 £ 10-8

Std.dev. 15.03 36.15 2.61 1.02

f9 Min 6.84 9.68 1.80�10�9 7.99 £ 10-15

Max 13.95 18.04 2.47�10�9 1.86 £ 10-14

Mean 11.01 14.67 2.21�10�9 1.45 £ 10-14

Median 10.92 15.50 2.21�10�9 1.51 £ 10-14

Std.dev. 1.46 2.37 2.31�10�10 2.10 £ 10-15

f10 Min 0 0 0 0

Max 5.60 66.21 0 1.48�10�2

Mean 0.88 3.39 0 1.64�10�3

Median 0.39 0.10 0 6.37�10�9

Std.dev. 1.31 12.07 0 3.95�10�3

Note: the bold values show the best result.
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Fig. 5. The comparison of TGA, GSA, GAMC and GATC for the minimization

of f1 with 10000 iterations (time) and 30 dimensions.
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Fig. 6. The comparison of TGA, GSA, GAMC and GATC for the minimization

of f5 with 10000 iterations (time) and 30 dimensions.
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Fig. 8. The comparison of TGA, GSA, GAMC and GATC for minimization of

f8 with 10000 iterations (time) and 30 dimensions.
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Fig. 9. The comparison of TGA, GSA, GAMC and GATC for the minimization

of f9 with 10000 iterations (time) and 30 dimensions.

Table 7

Shifted unimodal test functions.

Function name Formulation Domain

g1: Sphere Pn
i¼1

ðxi � 1Þ2 ½�100; 100�n

g2: Schwefel 2.22 Pn
i¼1

��xi � 1
��þYn

i¼1

��xi � 1
�� ½�10; 10�n

g3: Quadric Pn
i¼1

ðPi
j¼1 ðxj � 1ÞÞ2 ½�100; 100�n

g4: Schwefel 2.21 max
i
fjxi � 1j; 1 � i � ng ½�100; 100�n

n
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notable until about 4000 iterations which is the result of
passing and mistake operators. Afterward, the substitution
operator strikes out and brings out the algorithm from local
minima even until about 8000 iterations and will let the other
two operators play their roles again. This can be a verifica-
tion to name TGA not only a speedy but also a precious
algorithm.
g5: Rosenbrock Pn�1

i¼1

½100ððxiþ1 � 1Þ�
ðxi � 1Þ2Þ2þ ððxi � 1Þ � 1Þ2�

½�30; 30�

g6: Step Pn
i¼1

ð½ðxi � 1Þ þ 0:5�Þ2 ½�100; 100�n

g7: Quadric noise Pn
i¼1

iðxi � 1Þ4þ random½0; 1Þ ½�1:28; 1:28�n
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Fig. 7. The comparison of TGA, GSA, GAMC and GATC for the minimization

of f7 with 10000 iterations (time) and 30 dimensions.
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Notable points for these figures are:

� The convergence speed of the proposed method, due to a
well-done operator named passing.

� Giving fantastic results in the Rosenbrock test function,
due to logical passing and mistake operators.

� The effect of substitution operator when the other two op-
erators couldn't affect noticeably anymore or the algorithm
glitches in local minima for multimodal test functions.
lgorithm, Future Computing and Informatics Journal (2018), https://doi.org/



Table 8

Shifted multimodal test functions.

Function name Formulation Domain

g8: Rastrigin Pn
i¼1

½ðxi � 1Þ2 � 10 cosð2pðxi � 1ÞÞ þ 10� ½�5:12; 5:12�n

g9: Ackley
�20 exp

 
� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

ðxi � 1Þ2
r !

� exp

 
1
n

Pn
i¼1

cosð2pðxi � 1ÞÞ
!
þ 20þ e

½�32; 32�n

g10: Griewank
1

4000

Pn
i¼1

ðxi � 1Þ2 �
Yn
i¼1

cos

�ðxi � 1Þffiffi
i

p
�
þ 1

½�600; 600�n

Table 10

The results of comparing three algorithms (GATC, GAMC and GSA) to TGA

for the minimization of the mentioned shifted functions in Table 8 with 10000

iterations.

GATC GAMC GSA TGA

g8 Min 29.84 53.72 5.97 0

Max 84.57 220.88 18.90 1.98

Mean 49.94 117.33 12.80 0.29

Median 51.24 110.44 11.94 4.90 £ 10-8
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As observed on the above tables, the results for TGA verify
its stability for all test functions. As an example, although
GSA gave better results in the unshifted Griewank function, it
couldn't be superior in the specified shifted function. Tables
7e10 represent shifted unimodal test functions, shifted
multimodal test functions, the results of comparing three al-
gorithms (GATC, GAMC and GSA) to TGA for the minimi-
zation of the mentioned shifted functions in Table 7 with
Table 9

The results of comparing three algorithms (GATC, GAMC and GSA) to TGA

for the minimization of the mentioned shifted functions in Table 7 with 10000

iterations.

GATC GAMC GSA TGA

g1 Min 8.13�10�26 7.86�10�30 4.60�10�18 0

Max 1.76�10�20 7.34�10�27 8.90�10�18 0

Mean 8.42�10�22 1.07�10�27 6.87�10�18 0

Median 6.61�10�23 4.37�10�28 7.00�10�18 0

Std.dev. 3.22�10�21 1.58�10�27 1.14�10�18 0

g2 Min 5.00�10�14 1.47�10�14 9.94�10�9 0

Max 4.47�10�9 1.12�10�12 1.74�10�8 0

Mean 2.19�10�10 3.04�10�13 1.29�10�8 0

Median 2.39�10�11 1.46�10�13 1.28�10�8 0

Std.dev. 8.09�10�10 3.34�10�13 2.16�10�9 0

g3 Min 5.37�10�8 7.56�10�10 2.52 £ 10-17 2.16�10�16

Max 1.70�10�3 1.36�10�4 5.95 £ 10-17 2.14�10�14

Mean 2.76�10�4 9.47�10�6 3.59 £ 10-17 3.00�10�15

Median 5.59�10�5 1.35�10�6 3.56 £ 10-17 1.38�10�15

Std.dev. 5.08�10�4 2.59�10�5 7.33 £ 10-17 4.34�10�15

g4 Min 20.14 30.20 1.25 £ 10-9 1.04�10�7

Max 46.68 63.77 1.94 £ 10-9 2.13�10�5

Mean 37.76 47.92 1.56 £ 10-9 2.69�10�6

Median 31.41 48.89 1.55 £ 10-9 1.41�10�6

Std.dev. 6.41 7.45 1.95 £ 10-9 4.39�10�6

g5 Min 0.03 2.23�10�2 21.27 3.05 £ 10-3

Max 204.32 80.93 14.34 4.95 £ 10-3

Mean 87.28 75.39 14.22 4.51 £ 10-4

Median 76.88 69.21 14.24 3.89 £ 10-5

Std.dev. 76.06 81.86 0.27 1.05 £ 10-3

g6 Min 0 0 0 0

Max 9 0 0 0

Mean 0.33 0 0 0

Median 0 0 0 0

Std.dev. 1.64 0 0 0

g7 Min 7.20�10�3 1.52�10�2 4.00�10�3 3.02 £ 10-3

Max 2.04�10�2 5.77�10�2 2.10�10�2 9.00 £ 10-2

Mean 1.19�10�2 3.88�10�2 1.48�10�2 6.14 £ 10-3

Median 1.16�10�2 4.12�10�2 1.56�10�2 5.83 £ 10-3

Std.dev. 3.00�10�3 9.00�10�3 4.10�10�3 1.62 £ 10-3

Note: the bold values show the best results.

Std.dev. 13.28 33.69 3.40 0.59

g9 Min 6.18 9.15 1.66 � 10-9 7.99 £ 10-15

Max 12.63 18.53 2.64 � 10-9 2.22 £ 10-14

Mean 10.47 14.72 2.10 � 10-9 1.48 £ 10-14

Median 10.63 14.99 2.09 � 10-9 1.51 £ 10-14

Std.dev. 1.56 2.54 2.59 � 10-9 3.08 £ 10-15

g10 Min 0 7.40 � 10-3 0 0

Max 5.01 16.97 2.22 � 10-2 7.39 £ 10-3

Mean 0.55 0.86 1.60 � 10-3 9.88 £ 10-4

Median 0.21 0.13 0 3.57 � 10-7

Std.dev. 1.08 3.07 4.60 � 10-3 2.55 £ 10-3

Note: bold values show the best results.
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10,000 iterations, and the results of comparing three algo-
rithms (GATC, GAMC and GSA) to TGA for the minimiza-
tion of the mentioned shifted functions in Table 8 with 10,000
iterations, correspondingly.

In Tables 7 and 8, test functions mentioned in Tables 1 and
2 have been shifted one unit in the direction of x axis.
Therefore, all the shifted test functions have a minimum
amount of 0 at x ¼ 1, except for f5 which has a minimum
amount of 0 at x ¼ 2.

5. Conclusions

In this article, a new optimization method was introduced
which unlike other algorithms, it is not stemmed from the
natural phenomena but originated from the sport phenomena.
According to this algorithm, team games consist of several
skills. Sharp passing, learning from the mistakes and beside
them, a well-timed substitution are some of these skills to
achieve the common purpose of the team. Simulating vital
rules of a team in order to minimize the optimization problems
was the purpose of this article. Eventually, the proposed
optimization algorithm was tested by several standard criterion
functions and also was compared with three notable algo-
rithms to declare the convergence speed and precision of
finding the global optimum point in both shifted and unshifted
test functions.
lgorithm, Future Computing and Informatics Journal (2018), https://doi.org/
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