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Abstract We give a simplified proof of the linear instability of equilibrium figures
of rotating liquid based on energy estimates.
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1 Introduction

The classical problem of stability of equilibrium figures of uniformly rotating vis-
cous incompressible capillary self-gravitating liquid (see for instance [2]) is closely
related to the free boundary problem governing the evolution of an isolated liquid
mass. It consists of determination of a bounded domain £2, € R, the velocity vector
field V(x,t) = (V1, Va2, V3), and the scalar pressure ¢g(x, t), x € £2;, satisfying the
following relations:

Vi 4+ (V-V)V—=vV2V 4+ Vg =« VU,

V-V=0, xe8, t>0,

T(V,gm=0cH(x,t)n, R,=V-n, xel;=08,
V(x,0) =V, xe€ 8.
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Here v = const > 0is the viscosity coefficient, o and k are a non-negative coefficient
of the surface tension and the gravitational constant, respectively, which do not vanish

simultaneously, T(V, g) = —gI + vS(V) is the stress tensor, S(V) = (% + %),
J

j,k =1, 2,3 is the doubled rate-of-strain tensor, H is the doubled mean curvature of

I'; negative for convex domains, R, is the velocity of evolution of I} in the direction

of the exterior normal n and

dz

Ux,t) = 2l

£

is the Newtonian potential dependent on an unknown domain £2;. The density of the
liquid is assumed to be equal to one. The domain £2y is given.

Introducing a new pressure ¢ — kU instead of g, that we shall continue to denote
by g, we can write the above problem in the form

Vi 4+ (V-V)V=1V?V + Vg =0,
V-V=0, xe, t>0, (1.1)
T(V,gn=(cH(x,1)+«U(x,)n, R,=V-n, xel,=03,
V(x,0) =Vo, x e .

From now on we shall put a prime to vectors ¢ = (c1, ¢3, ¢3) to denote the part of
¢ orthogonal to the unit vector of the x3 axis es, say ¢/ = (cy, ¢2, 0). Let the liquid be
rotating as a rigid body around a fixed axis (x3-axis), then the basic velocity vector
field V, and the pressure P are given by

2
Vi (x) = wes X X = o(—x2, 11, 0), P<x>=%|x’|2+po, (1.2)

where x’ = (x1, x2,0), po = const, and w is the angular velocity of rotation. The
domain .# occupied by the rotating liquid, which is referred to as the equilibrium
figure, is defined by the equation

2
oH + WP+ U +po =0, x€F =07, (1.3)

where 7 is twice the mean curvature of ¢, and

dz
Ix —z|

U(x) =

The functions (1.2) satisfy the Navier—Stokes equations (1.1), and (1.3) is obtained
by inserting (1.2), in place of V, ¢, into the boundary condition (1.1)3. If .Z is axially
symmetric with respect to the x3-axis, then V,(x), P(x),x € .%,represent a stationary
solution of the problem (1.1), otherwise these functions defined in a uniformly rotating
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domain .%,, ;1, represent a periodic solution (by .#y we mean the domain obtained
by rotation of the angle 6 of .% around the x3-axis). Thus, the problem of stability of
an equilibrium figure is equivalent to the problem of stability of a special stationary
or periodic solution of (1.1).

We recall that solutions to (1.3) provide the stationary points of the functional

// dxdy 2|
2 [o Ix |2dx |x ’

where 8 = wl3 is the magnitude of the total angular momentum of the rotating liquid
and Iz = fgf les x x|?>dx is the inertia momentum of .% with respect to the x3-axis.
The functional Eg is considered in the set of domains §2, close to Z , with the same
volume and the position of the barycenter as .#; I = 9£2. Equation (1.3) is the Euler-
Lagrange equation associated with Eg. The second variation of Eg is the quadratic
form given by the formula (1.12) below. The equilibrium figure is regarded as stable
if the second variation is positive and unstable if it can take negative values.

Justification of this statements is given in [6,8—12]. It is based on the analysis of
the free boundary problem for the perturbations W = (V - ?b), s =g — P, written
in the coordinate system rotating with the angular velocity w (see [9]):

W, + (W - V)W + 2w(ez x W) — vV2W + Vs = 0,
V-W=0, ye, t>0,

Ep=0|T| + ———5—

2
> w = o~
Tamwn=«ﬂﬂw+-5wV+pm+uu%nm, (1.4)

R,=W-h, yel,
W(, 0 =Vo(y), e,
where y = 7Y Q)x, 2, = Z71R2)R,, T} = 982,, i is the exterior normal to
I, U(y,t) = f§, ly —z|7'dz and
cosf@ —sinf 0

@)= | sinf cosf O
0 0 1

To the solution (1.2) of (1.1) corresponds the zero solution of (1.4).

In the present paper we are interested in the case of instability of this solution. We
study the following evolution problem obtained by linearizing (1.4) around the given
basic state W, = 0, 2; = .Z, T} =

Vi + 2w(e3 X v) — vV2y + Vp =0,
V.vix,H) =0, xe.%, t>0,
SW)(x)N(x) = NEx)(N - S(VN) =0, (1.5)
—p+vN-SWV)N+ Byp =0,

pr =N(x) - v(x, 1) — ho(X)/hoN()’) v(y,t)dS, xe¥9,
9
vix,0) =vo(x), xe€F, px,0)=py(x), xe€¥9.
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Here v(x, t) = (v, v2, v3), p(x,1),x € %, and p(x, ), x € 4 = 0.% are unknown
functions, N is the exterior normal to ¢, and

N - (e3 x x)
IN-(e3 x x)ll1, @)

ho(x) =

If N(x) - (e3 x x) = 0, which is the case for the axially symmetric .%, then hg = 0.
Finally,

p(y,ndS

Bup(x.1) = =0 &gpls, ) + b () = [ LD,

where Ag is the Laplace—Beltrami operator on ¢,

2

B _ ) _w_i n2 i/L
b(x) = 0 (24 (x) — H*(x)) T ATy, Ix —z|’
F

A and % are the doubled mean curvature and the Gaussian curvature of ¢, respec-
tively. In the case o = 0, we assume
b(x) > by > 0.

The problem (1.5) is considered in the space of functions satisfying the following
orthogonality conditions:

/p@st=a /p@JWMS=Q (16)
/V(y, t)dy =0,
z

/V(y,t)~m(y)dy+w/p(y,t)n3(y)~m(y)dS=0, i=123 (17
F

]

where 1; (x) = e; x x and e; is the unit vector directed along the x;-axis. It is easily
verified that the conditions (1.6) and (1.7) hold for arbitrary r > 0 if they are satisfied
at the initial moment t = 0 for v = vg, p = po. It is also obvious that fg pohodS =0
implies

/p(y, Dho(y)dS = 0. (1.8)

%
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We assume that .% is a given bounded domain in R® with smooth boundary ¢. It
satisfies the conditions

/x,-dsz, /xngdsz, i=1,273 j=12

(see [9]). Moreover, it may be assumed without loss of generality that

/xlxzdx =0. (1.9)

This relation is obvious if .% is axially symmetric with respect to the x3-axis; other-
wise it can be achieved by rotation of .% through an appropriate angle. Finally, we
assume that

lgllin / ((cos 0x1 + sin 9x2)2 - x32) dx > 0, (1.10)
<7
F

which means that .% is an oblate domain. We prove the following theorem.

Theorem 1.1 Let

(1)2|)C/|2 o
Bp = Bop + A ply17ds, (1.11)
g

Bp = / BpdsS,

g

and let conditions (1.9), (1.10) be satisfied. If the quadratic form

/ Bopds = / (@Yol + b(x)p?)dS
4G
2

2
//p(x)p(y)dedSy Lo /p(x)|x/|2d5 . (1.12)
x =yl &

%

where Vg is the surface gradient on ¢, takes negative values for some p(y) satis-
fying (1.6), (1.8), then the problem (1.5)—(1.8) has solutions growing exponentially as
t — oQ.

This means that the corresponding spectral problem has eigenvalues with positi-
ve real parts; this information is important for the proof of the instability of rigidly
rotating liquid. In mechanics results of this type are referred to as “the inversion of
the Lagrange theorem”.
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The proof consists of the construction and estimate from below of a certain functio-
nal dependent on the solutions of (1.4) and playing the role of the Lyapunov function.
It is much simpler than the proof given in [10-12]. The method we follow is proposed
in [3-5] and used in [7] under the additional restriction K erB = (. Here this res-
triction is removed. Our approach to the proof of instability is similar to that in the
papers [13] and [1], where other problems are studied and other Lyapunov functions
are estimated.

2 Auxiliary relations

Before we proceed to the proof of the theorem, we introduce the following spaces of

functions.

— H: the subspace of functions p € L;(¥) satisfying (1.6);

— KerB: the finite dimensional space of functions p € H satisfying B o =0 (in the
case o > 0, Kef\g - sz(g)).

- Hy= H &KerB;

— Hjp: the subspace of functions p € Hj satisfying the additional orthogonality
conditions

/pnj~NdS=O, j=12;

4

— Py, P;: orthogonal projections on Hy and Hy;

(f, g): the scalar product in Ly(%¥).

Now, we present some important auxiliary relations the proof of which can be found
in [12].

1. An arbitrary vector field of rigid motion n(x) = a+b x x, a, b = const, satisfies

Bn-N=—o’n-x 2.1

It follows that

/go(x)xlxzdS = /go(x)xygdS =0, Vpe KerB.

g g

2. Let

y’;,:/(xg_xg)ds, a=1,2.
F

By (1.10), Sy > 0. Direct computations show that

/ 1) - N@)xax3dS = .S, / n(x) -N@)xx3dS = -7,  (22)

g @
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/m(X) “N(x)x1x3dS =/772(x) “N(x)x2x3dS = 0.
@ @

3. An arbitrary p € L2(¥) can be represented in the form
p(x) = p1(x) + p2(x), (2.3)
where

p1(x) = %5 ' (x) - N Llp) — 7 ny(x) - N L[ p),

I p] =/,O()C))C3xadS,
%

and p; satisfies the orthogonality conditions
[ p20ands = [ p2v1yanads <o, 2.4
g g

If pe H,then py € H. If p = ng - N, B = 1,2, then p, = 0.
4. By (1.9), (2.1) and (2.2), we have

(Bp, p) = (Bp1, ;1) + (Bpz2, p2),

where
2

(Bp1. p1) = (Bp1. p1) = > > I2[pl.7, " (2.5)

a=1

By (1.10), this quadratic form is positive, whence

(Bp. p) = (Bpa. p2). (2.6)

5. The equation (2.3) defines a non-orthogonal projection Q on the space of functions
p satisfying (2.4):

0p = p — (F ' m) - N@hlpl = 7 0y - N hpl) = po.
The adjoint projection has the form
Q*p=p+ (,S}Z*lexgh[p] - L5Z[1X2X311 [,0]),
where

Joulpl = | ny -NpdS, a=1,2.
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It is a projection on the space defined by
Joulp] =0, a=1,2.
6. If p € Hyp, then
p = Pop = Pyp1 + PoQp,
and Py Qp is representable in a unique way in the form
PoQp = PoQr,
where
r = P1Qp € H.
7. By (2.6), for p € Hy
(Bp, p) = (BPyQp, PyQp) = (BQr, Or).
Thus, 1f the form (1.12) can take negative values, then the _same is true for the
form (B Qr, Qr), which means that the operator B; = Q*BQ restricted to Hj,
i.e. the operator B = P Q*B Q P1, has negative eigenvalues. Only a finite number
of them may exist. Moreover,
KerB = 0,
hence
H =H ®H-_,

where H_ is the finite-dimensional space spanned by eigenfunctions of B corres-
ponding to the negative eigenvalues. We have

(BQr. Or) = (BQry, Qry) + (BQr—, Or),
where r+ = Pyr and Py are orthogonal projections on Hi. For ro # 0, the
first-term on the right-hand side is positive and the second-term is negative. For
an arbitrary s € L,(¥), the equations

Biry = Pys

are uniquely solvable in Hy and r4 € Hy.

Finally, we use the following proposition (for instance, see [8]):
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Proposition 2.1 For an arbitrary f € W21 /2

fieldw € W) (F) such that w -Nl|g = f,

(4) N H there exists a solenoidal vector

/w-nidx=0, n=e xx, i=1,2,3,

F

and

Wl = el fl i)

Wi,z < cll flliL,@)- 2.7

The correspondence between f and w is linear.

3 Proof of Theorem 1.1

Now, we pass to the proof of Theorem 1.1. We transform the problem (1.5)—(1.8). In
view of (1.7), we have

3
v0x, ) = v, 0 4+ > dilpln; (x),

i=1

where v is a vector field orthogonal to any rigid motion 7 = a + b x x defined at

point 1. of Section 2, with 7; defined after formula (1.7). Namely v+ satisfies:

/vL -n(x)dx =0,

F

moreover

dilp] = / POy 0 (3) - 13 ()dS.

g ||LM /
We introduce the functions
u(x, ) = v(x, ) — dslplnz(x), q(x,1) = p(x,1) — wds[pllx’|* + const.

Since 2e3 x n3(x) = —2(x1, x2, 0) = —V|x’|? and

0 2
2 o) = L/v-Nma(y)Fdh——“’/u-x’dx,
ot ||773||L2(/) ||773||L2(/)
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relations (1.5) can be written in the form

2wn3(x)

u; + 2w(ez x u) —vViu+ Vg = x'dx,

ImilL, 7 o
V.oukx,t)=0, xe.7, t>0,
Su(x))N(x) — N(x)(N - S()N) = 0, (3.1)

—g+VN-SuN+ Bp =0,

pr =Nx) -u(y, 1) — ho(x)/hoN(y) ‘u(y,ndS, xe€9,
u(x,0) =vo(x) —ukx,0) =uyx), xe.%, pkx,0 =px), xe¥.

Orthogonality conditions (1.6) remain invariant and (1.7) are converted to

/u(x, t)dx =0, /u(x, t)-n3(x)dx =0,
/u(x, t) - ny,(x)dx —i—a)/p(x, Dn3(x) - n,(x)dS =0, a=1,2. 3.2)
F %

Now we change the equation for p; and instead of (3.1) consider the problem

2
u; +2w(es x u) — vV2u+Vq = M

> x'dx,
Im3ll7, ) A
V.oukx,t)=0, xe.F, t>0,
SWNx) = N@)(N-S@)N) =0, 3.3)
—g+VN- SN+ Bp =0,
pr = PON(x) -u(x,t), x €9,
u(x,0) =ugx), xeZ#, pkx,0 =po(x)=Pypy, x €Y.

We subject the initial data ug, pg to the conditions (3.2). It can be shown that in this
case the same relations hold for all # > 0. If (u, p, p) is a solution of (3.3) that grows
exponentially as 1 — oo, then (u, r, p’) with

t

o =p+ P//u(x, 7) - N(x)dt
0

is a growing solution of (1.5)—(1.8); by P’ we mean the projection on the space
KerB © ho (we recall that hgy € KerB)
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We follow the arguments in [7] and construct functions E(¢) and E(¢) such that

dE(t
d( ) + Ei(t) =0, (3.4)
E\(t) = —BE@), E0) <0, B>0. (3.5)
Then z(t) = — E(t) satisfies dz (’) > Bz(t) and, as a consequence,

2(t) = 2(0)e”",
which proves the theorem.
We obtain some estimates of u and p that are uniform with respect to . We multiply

the first equation in (3.3) by u and integrate over .%. Then we integrate by parts and
make use of the boundary conditions. This leads to

||u( DI,z + (Bp.u- N)+—||S(u)||L2(% 0.
Since
(Bp,u-N) = (Bp, Pou-N) = (Bp, py),

we obtain the energy relation

1d
53 (D1 ) + Bp. ) + SIS@IE ) = 0. (3.6)

In view of the orthogonality conditions, we have

1
il ) = V51,00 + Zd a7,

a=1

and, as a consequence,

) _
la(, t)”Lz(gi) + (Bp, p)
2
= IV C. DI,z + Bor. p1) + D d2lnglI7, 7,
a=1

+(BQry, Qry) + (BQr—, Qr-),

where r = P1Qp, r+ = Pyr and pj is the same as in (2.3).
Next, we use the relations

2e3 X n, = 2€4X3 = €yX3 — €3Xy + VX3X,, o =1,2,
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and write the first equation in (3.3) in the form

2
Vi 4 2w(e; x vh) — vVt + V(g + o Zdaxa)g) =R, (3.7)

a=1

where R is a linear combination of n;. We multiply (3.7) by the vector field w, intro-
duced in Proposition 2.1, with

f = Po(Lalpln, -N—=Lilpln, -N+ Qs), s e HNW,* (@),

and integrate over .% . Upon integration by parts we arrive at

d
E/Vl~wdx—/vL-wtdx+2a)/(e3va‘)-wdx

2
+ g / Svh) : S(wydx + /(Ep + oY dylplsxg) fdS =0. (3.8)
7 9 o=l

Equation (3.2) is obtained by adding (3.6) and (3.8) multiplied by a small y > 0.
We have

2
1
E@ = 5 [ IV'C DI, + Bov o0 + D dglpllngliz, )

a=1

+ (BOry, Ory) + (BOr—, 0r-) + zy/vL cwdx ).
7
v
Ei(@t) = §||S(VL)||12(9) - )//vL - Wrdx + 2wy/(e3 x V1) - wdx
7 z
vy

+ 7/S(vi) 1 S(wydx +y Iy,

F

where I is the surface integral in (3.8).
Now we verify (3.5). We use the Korn inequality

1 1
V=l ) = eSOy

and the estimates (2.7) for w. We distinguish two cases: ¢ > 0 and o = 0.
Lo >0 Wesets =ry —r_.By (2.7),

5 1/2
||w||L2(g,)5c||f||L2<g)se(Zlﬁ[pH||r+||i2(g>+||r_||iz(g)) . (39

a=1
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Using the Cauchy—Schwartz inequality, we easily show that
E(t) = c(BQr-, Or-) (3.10)

in the case of small y > 0.
We pass to the estimate of E(f). Since p(x, 1) = Pop(x,t) for all + > 0, we have

2 2
Bp+ Y daxsxy = BOp +° D MyS; ' Io[p)x3x,
a=I1 a=1

with My, = [In3 ”2Lz( ) 171l 222?) It follows that the surface integral /s can be written
in the form

2
Iy = )" Mol[p] + (BOr, Qs)

a=1

2
= w? ZMD,I(%[,O] + (§Qr+, Ory) — (EQ”—’ or-).

a=1

The sum of the last two terms is equivalent to || ||%)V21 @)’ whence
2
2 2
Iy > c( D Lol + ||r||W21(g)).
a=1

We also need to estimate w;. By (2.7),
IWellL,7) < cll fillL,@)-
The time derivative f; can be written in the form

Jfr = Po(Lalpdny - N = Ii[pelny - N) + PoQry — 2Py Qr—
= Po(2lpeny - N = Lilpdny - N) + PLQpr — 2Py Qr— ;. (3.11)

Since Pons - N = 0, we have

2
pr = Po(vl N+ dalolng ~N). (3.12)
a=1
As for the last term in (3.11), we use the formula
m m
ree= > (9@ (x) = D (P1Qpr, 9))9j (x), (3.13)
j=1

j=1
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where the ¢; are normalized eigenfunctions of the operator B; corresponding to the
negative eigenvalues. We can estimate a finite sum (3.13) using (3.12). We obtain

) 12
o Ly < c( > el + vt .N||§2(%)
a=1
and
) 1/2
Wl 2) < cllfill @) < c( > el + IS, 3;)) . (319
a=1
Finally, by (2.6),
2
2 2 2 2
ISOWIZ,05) = el I, < c( ZI Il + ||r||W21/2(%). (3.15)
o=

Estimates (3.9), (3.14) and (3.15) enable us to show, using the Cauchy—Schwartz
inequality, that

—y/vJ‘ -widx + 20))//(63 x v) - wdx + %/S(VJ') : S(w)dx
F F F

%
=0 (150D + v1o) (3.16)
with 6 € (0, 1). It follows that

E(t) > cllr_|? > _BE(t
10 2 ellr- 1R ) 2 —BE®)

if y is sufficiently small. At the initial moment ¢t = 0 we have

2
1
EO) = 5 | IV 0lIZ, ) + Bor, o) + D dalplling |z, )

a=1

+(BOry. Qro) + (BOr_, Qr_) +2y / vi o wdx

F =0

= (BQr_, Or_) <0

ifvt(x,0) = 0and p(x,0) = PyQp(x, 0) = PyQr_(x, 0). Hence in the case 0 > 0
(3.5) is proved.
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II.oc = 0. We sets = s + s— where s1 € Hy are solutions of the equations
Bis+ = Pi(—Ag)™re,
where Ag is the Laplace Beltrami operator. These functions satisfy the inequalities
sy < l=A) ™ Prelying, < clrelly, 12,
so instead of (3.9) we have
5 1/2
IWllLy) < el flia@) < c( Z}dé[p] el 12, + - ||§Vzl,2(%) :
- (3.17)

Estimate (3.10) remains valid if y is small. Instead of (3.11) and (3.15) we have

2
2 2 2 2
IS = elf I, = c( ;:1 I1p] + Ilrllwzl/z(%), (3.18)

fi = Po(2[pelny - N = Ii[pilny - N) + PoQs; — 2Py Os— 4,
2

1/2
2 2 2
||fz||L2<g)se(Zla[sznr,nW1,2(%+||r_,,||w21/2(%) - (19

a=1 2
We estimate the norms of r; and r_ ;, using (3.12) and (3.13), which leads to the same
inequality (3.14) as in the case o > 0. The surface integral /¢ has the form
2
Iy =D Malllp]+ (BOr, Qs),
a=1
where
(BOr, 0s) = (r, Q*BQs) = (ry, (= Ag) ™ Pri) + (r—, (= Ag) ' ro).

Hence

2
Iy = c( D Lilel+ ||r||§vz_1/z(%).

a=I

It follows that (3.16) holds also in the case o = 0, whence

E (1) > cllr—|I> _ .
1()_ || ||W21/2(g)
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Finally, we use the fact that

m m
-1 gy = D1 oI < ||r||§vgl/z(g) > ||¢j||§vzl/z(%
i=1 j=1

and m < oo. This implies E1(¢) > c||r_||% @) = —c(§Qr_, Qr_) > —BE(@),
which was required. Theorem 1.1 is completefy proved. O
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