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Abstract. Ultrafine particle generation through mechanical processes was not carefully 
deepened so far, even if it could be related to the human health-based researches. In particular, 
the evaluation of ultrafine particles produced in battlefield scenarios can be useful to quantify 
the exposure of soldiers to particles carrying toxic heavy metals. In the present work ultrafine 
particle generation during high-velocity impact of metal projectiles was deepened performing 
symmetrical high velocity Taylor impacts of copper cylinder tests (Rod-on-Rod tests) by 
means of a gas-gun facility. Particle number distributions and total concentrations were 
measured through one-second-time resolution instruments in a chamber where impact events at 
different velocities were performed. Particle number generation per impact was also evaluated. 
Particle concentrations in the 106 part. cm-3 range were measured corresponding to particle 
generations higher than 1012 particles per impact, then comparable to those typical of 
combustion sources. Particle number distribution showed a unimodal distribution with a 10 nm 
mode. Summarizing, the performed experimental campaign revealed an extremely high 
generation of ultrafine particles from mechanical processes. 

1.  Introduction 
The exposure to airborne particles was associated to several adverse health effects [1]. In particular, 
ultrafine particles (UFPs, particle diameter <100 nm) were recognized to cause harmful health 
consequences due to their ability in easily crossing the human respiratory system and depositing in the 
deepest regions of the lungs carrying toxic compounds [2-4]. 

UFPs mainly come from anthropogenic activities involving combustion phenomena such as 
industrial processes, traffic, and indoor sources [5-8]. Anyway, unlike combustion-generated particles, 
a lack of understanding in UFP generation through mechanical processes still remains. Even if 
fragmentation phenomena due to the application of high-energy stress could lead to the formation of 
UFPs [9], few experimental studies were performed to quantify it. 

A possible area of interest in the evaluation of UFP formation through mechanical processes is the 
workplace environment and, in particular, the environments where ballistic impacts are usually 
performed, e.g. battlefield scenarios where soldiers are exposed to ballistic-generated aerosol particles. 
Aerosols produced during such events could strongly affect the human health since they are made up 
of toxic heavy metal particles such as lead, tungsten heavy alloys, depleted uranium (DU): as example, 
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submicron uranium oxide particles are amongst the alleged reasons of Gulf War and Balkan 
syndromes [11]. 

Several experimental analyses were performed to evaluate the exposure to particles experienced by 
soldiers in battlefield scenarios by launching heavy metal penetrators against armored test vehicles  
[11-14]. Anyway, these were only focused on the measurement of super-micrometric particles, 
revealing total particle mass concentrations of thousands of mg m-3 in the surroundings of the impact 
area. Nonetheless, UFPs down to about 5 nm in diameter were recognized through transmission 
electron microscope (TEM) measurements of particles sampled during ballistic impacts involving 
tungsten alloy penetrators into steel target plates [15], however no measurements were performed to 
quantify the UFP production. 

Studies aimed to measure the UFP generated via non-hot mechanical processes were only 
performed for activities typical of industrial workplace environments (e.g. welding [16]). 

The present work wants to fill this gap evaluating the UFP generation during high-velocity impact 
of metal projectiles. Size number distribution, total concentration and emission factor of UFPs 
generated during Rod-on-Rod (RoR) impact tests of copper cylinders s(are discussed. 

2.  Experimental apparatus 

2.1.  Rod-on-Rod test: materials and methods 
Ballistic experiments were performed launching a copper cylinder (high purity copper 99.98% in the 
cold worked conditions: yield stress of 244 MPa; length 48 mm, diameter 10.76 mm) against a steady 
cylinder with the same diameter hung with four nylon fishing lines for the alignment. RoR experiment 
was performed to avoid friction forces along the impact surface during impact, in order to integrate 
data already obtained with classic Taylor impact test against anvil [17,18].  

 
 

 
 Figure 1. Photo sequence of RoR test (290 m s-1). 

Impact tests were performed with light gas-gun at the University of Cassino and Southern Lazio. The 
system consists of a reservoir containing the working fluid, i.e. air (7.2 L, maximum pressure 200 bar), 
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a barrel (3500 mm long) in which the projectile is accelerated by the expanding fluid, and an impact 
chamber (2.5 m3) where the impact occurs and the measurements are performed. The velocity of the 
impacting cylinder was measured by laser photodiodes. Each test was documented using high-speed 
video camera. In figure 1 a photo sequence of a RoR test performed at 290 m s-1 is reported.  

In figure 2 the microstructure of copper specimens before impact and after impact is shown. In 
order to evaluate the effect of the plastic strain on the shape of the grains, the microstructure of the 
samples was measured post mortem very close to the impact surface. The average Cu grain size both 
before and after the impacts was about 20 μm, no significant microstructure changes were produced by 
the impact events themselves. 

 

   
Figure 2. Microstructure pictures of copper specimens: a) before test; b) post-impact test at  
230 m s-1; c) post-impact test at 290 m s-1. 

2.2.  Particle measurements 
Since the impact of heavy metal projectiles could promote particle agglomeration phenomena rapidly 
changing particle sizes and concentrations, high-resolution time measurements of distributions and 
total concentrations were performed. In particular, particle number distributions and total 
concentrations were measured through 1-s time resolution instruments: 

• Condensation Particle Counters (CPC 3775, TSI Inc.) able to detect airborne particles down to 
4 nm in diameter and a maximum total concentration equal to 1×107 part. cm-3; 

• Fast Mobility Particle Sizer spectrometer (FMPS 3091, TSI Inc.) able to measure sub-
micrometer aerosol particle number distributions and concentrations in the range 5.6–560 nm. 
The instrument draws an aerosol sample into the inlet continuously. Particles are positively 
charged to a predictable level using a corona charger. The charged particles are then 
introduced to the measurement region near the centre of a high voltage electrode column and 
transported down the column via clean sheath air. A positive voltage is applied to the 
electrode that creates an electric field that repels the particles outward according to their 
electrical mobility. Charged particles strike the respective electrometers and transfer their 
charge. A particle with high electrical mobility strikes an electrometer near the top, whereas a 
particle with lower electrical mobility strikes an electrometer lower in the stack. The use of 
highly sensitive electrometers allows for concentration measurements of multiple particle 
sizes simultaneously. 

CPC and FMPS sampling tubes were placed at about 50 cm from the impact area. Particle mass 
concentrations were not performed since a negligible particle mass amount was measured during 
similar tests involving high-velocity impacts of metal projectiles on a metallic target [18]. 

2.3.  Experimental methodology 

2.3.1.  Particle concentration and distribution measurements 
Impact tests at two different velocities, 230 and 290 m s-1, were performed. Three measurements were 
performed for each test. 

a) b) c) 
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CPC and FMPS samplings were simultaneously performed introducing tubes inside the chamber 
(rear of the chamber, about 1.5 m from the target). Tests were performed in clean environmental 
chamber.  

Particle concentrations and distributions measured through CPC and FMPS, respectively, were 
corrected for diffusion losses likely occurring onto the inner surface of the connecting tubes; these 
losses can be significant in the considered sampling line (the path experienced by the aerosol before 
entering the measurement devices is about 2 m). 

Particle diffusion loss correction was applied on the basis of the method proposed by Gormley and 
Kennedy [19]. The size-based correction was applied considering the particle size distribution 
measured by the FMPS. Moreover, the dilution effect caused by the air volume expanding from 
reservoir to the impact chamber was evaluated as a function of the air pressure in the reservoir. In 
order to estimate such dilution, an isothermal expansion process was assumed. 

2.3.2.  Particle emission factor evaluation 
In order to estimate the particle generation due to the ballistic impact, the particle number emission 
factor (NEF) was evaluated through the equation proposed for indoor particle sources by He et al. 
[20], 

   ,       (1) 

where Cin and Cin,0 represent the peak and initial particle number concentrations in the chamber, 
respectively, (AER +k)avg is the average total removal rate (taking into account the deposition rate, k, 
and the air exchange ratio, AER), Cin,avg is the average particle concentration in the chamber during the 
concentration decay, ∆t is the time difference between the initial and peak concentration, and V is the 
efficient volume of the chamber. As hereinafter reported, the particle generation is instantaneous, and 
then the removal rate terms (the second and third addends of the NEF) can be properly neglected. 

3.  Results and discussions 
In figure 3 CPC concentration trend resulted from one of the tests performed at 290 m s-1 is reported. 
The CPC trend shows that particle generation process is instantaneous since concentration ranges from 
initial levels (Cin,0, about 1×104 part. cm-3) to the peaks (Cin) within a very short time interval (∆t). 
CPC trend clearly demonstrates that sub-micrometric particles are produced through mechanical 
phenomena. After the peak the concentrations decrease. 

Average particle number concentration peaks at 230 and 290 m s-1 impact velocities were measured 
equal to 1.84×106 and 3.18×106 part. cm-3, respectively. 

In figure 4 particle number distribution evolution over time measured by FMPS spectrometer is 
reported for one of the 230 m s-1 impact velocity test.  

Distributions corresponding to ballistic impacts are unimodal with a peak at around 10 nm then 
showing considerable emission of UFPs from the ballistic event: this is an interesting result since very 
few scientific papers detected UFP formation phenomena through non-hot mechanical processes 
(typically industrial processes [21,22]). After the impact, dilution phenomena prevail on coagulation 
and condensation processes since no shifts of the mode towards larger particles were detected for 
several minutes. 

On the basis of the particle concentration data and equation (1), a number of emission factors were 
evaluated equal to 4.6×1012 and 7.9×1012 part. impact-1 for 230 and 290 m s-1 impact velocity tests, 
respectively, then showing that the impact velocity affects the particle generation phenomena. The 
number of particles generated instantaneously is comparable to that emitted by cooking activity in one 
minute [8] and one order of magnitude higher than the maximum particle number emitted by 1-
kilometer driving of an European diesel-fueled vehicle according to the current European regulation 
on tailpipe emission limits (6.0×1011 part. km-1 [23]). 
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Figure 3. Particle number concentration measured for a test at 290 m s-1 
through the CPC 3775 

 
 

 

 

 
Figure 4. Particle number distribution evolution measured for a test at 230 
m s-1 through the FMPS 3091. 
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4.  Conclusions 
The main result of the present study is the detection of a significant UFP generation by high-velocity 
impact of metals. In particular, the aerosol generated during RoR tests presents a particle distribution 
mode of 10 nm which is a mode typical of nucleation processes. In fact, a possible explanation for 
particle formation could be the metal vaporization process due to the high projectile surface 
temperature likely occurring during the impact even when no (or negligible) friction process is 
performed. 

The number of particles emitted through the single RoR impact (>1012 particles per impact) is 
comparable with (or larger than) the number emission factors of conventional sources involving 
combustion processes. 

The authors point out that future development will be focused on particle formation mechanisms. 
Ad-hoc experiments will be performed to evaluate, through numerical simulations of the tests, 
governing parameters (stress-strain status, friction phenomenon, temperature) in particle formation 
phenomena.  

References 
[1] Miller K A et al. 2007 New Engl. J. Med. 356 447 
[2] Strak M et al. 2010 Occup. Environ. Med. 67 118 
[3] Schmid O et al. 2009 Biomarkers 14 67 
[4] Franck U, Odeh S, Wiedensohler A, Wehner B and Herbarth O 2011 Sci. Total Environ. 409 

4217 
[5] Buonanno G, Fuoco F C and Stabile L 2011 Atmos. Environ. 45 1434 
[6] Buonanno G, Lall A A and Stabile L 2009 Atmos. Environ. 43 1100 
[7] Buonanno G, Stabile L, Avino P and Belluso E 2011 Waste Manage. 31 2253 
[8] Buonanno G, Johnson G, Morawska L and Stabile L 2011 Aerosol. Sci. Tech. 45 1069 
[9] Brilliantov N V, Bodrova A S and Krapivsky P L 2009 J Stat Mech-Theory E P06011 
[10] Busby C 2010 Documents of the European Committee on Radiation Risk No. 2 Brussels 
[11] Gold K, Cheng Y S and Holmes T D 2007 Mil. Med. 172 393 
[12] Cheng Y S, Kenoyer J L, Guilmette R A and Parkhurst M A 2009 Health Phys. 96 266 
[13] Parkhurst M A and Guilmette R A 2009 Health Phys.96 207 
[14] Parkhurst M A, Cheng Y S, Kenoyer J L and Traub R J 2009 Health Phys. 96 251 
[15] Machado B I et al. 2010 Int. J. Environ. Res. Publ. Health 7 3313 
[16] Buonanno G, Morawska L and Stabile L 2011 J. Aerosol Sci. 42 295 
[17] Buonanno G, Stabile L, Ruggiero A, Iannitti G and Bonora N 2012 AIP Conf. Proc. 1426 108 
[18] Stabile L, Ruggiero A, Iannitti G and Buonanno G 2013 J. Aerosol Sci. 55 66 
[19] Gormley P G and Kennedy M 1949 P. Roy. Irish. Acad. A 52A 163 
[20] He C, Morawska L, Hitchins J and Gilbert D 2004 Atmos. Environ. 38 3405 
[21] Maynard A D and Zimmer A T 2002 Ann. Occup. Hyg. 46 315 
[22] Elihn K, Berg P and Lidén G 2011 J. Aerosol Sci. 42 127 
[23] Commission Regulation (EC) No 692/2008 of 18 July 2008 
 

18th APS-SCCM and 24th AIRAPT IOP Publishing
Journal of Physics: Conference Series 500 (2014) 182018 doi:10.1088/1742-6596/500/18/182018

6




