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Abstract—In Usage CONtrol (UCON) access decisions rely
on mutable attributes. A reference monitor should re-evaluate
security policies each time when attributes change their values.
Catching timely all attribute changes is a challenging issue,
especially if the attribute provider and the reference monitor
reside in different security domains. Some attribute changes
might be missed, corrupted, and delayed. As a result, the
reference monitor may erroneously grant the access to malicious
users and forbid it for eligible users.

This paper proposes a set of policy enforcement models which
help to tolerate uncertainties associated with mutable attributes.
In our model the reference monitor as usually evaluates logical
predicates over attributes and additionally makes some estimates
on how much observed attribute values differ from the real state
of the world. The final access decision counts both factors. We
assign monetary outcomes for granting and revoking access to
legitimate and malicious users and compare the proposed policy
enforcement models in terms of cost-efficiency.

Index Terms—Usage Control, Mutable Attribute, Policy En-
forcement, Cost, Markov Chain

I. INTRODUCTION

Access control aims to assure that only trusted principals are
granted to access a computational resource [1]. Usage control
is in charge to guarantee that principals remain trusted also
when the access is in progress, i.e. when these principals use
the resource. The principal’s trustworthiness is evaluated by
the reference monitor based on security attributes [13], [14],
assertions done by the attribute provider about subjects and
objects participating in access and usage control.

The UCON model proposed by R. Sandhu et al. [17]
encompasses access and usage control scenarios and operates
with mutable attributes to specify and enforce security policies.
Access decisions in UCON are based on authorizations (predi-
cates over subject and object attributes), conditions (predicates
over environmental attributes), and obligations (actions that
must be performed by a requesting subject). The reference
monitor in UCON re-evaluates the access each time when
an attribute changes its value. Catching timely all attribute
changes is a challenging issue.

The nature of security attributes is diverse and some at-
tributes (e.g., the requester’s reputation and location) are
remote, reside outside the control of the reference monitor, and
can be only observed. These attributes should be constantly
pushed by the attribute provider (e.g. the requester) or pulled
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by the reference monitor. The system usually allows pulling
only of the current attribute value, and as a result some
attribute changes between adjacent pulling queries might be
missed. Worse, these unnoticed changes might violate security
policies. For example, if a security policy grants access rights
to users resided in a certain location, there is no evidence that
mobile users remained in the same location and never was
leaving it in-between checks [5].

Also, a system faultiness, delays occurred during attributes
delivery due to the network latency, and malicious activities
(e.g., a man-in-the-middle, eavesdropping and impersonating
of data by the attribute provider) contribute to the problem
of correct policy enforcement. The impact of uncertainties
associated with observed attributes should be tolerated by the
reference monitor.

This paper proposes the cost-effective enforcement models
of 𝑈𝐶𝑂𝑁𝐴 [17] security policies. Our basic idea is the
following:

1) The reference monitor evaluates security policies with
respect to observed attribute values;

2) If policies hold, the reference monitor runs an exper-
iment which estimates how observed attributes differ
from the real state of the world. If this difference is
negligible, the experiment succeeds and the reference
monitor grants (or continues) the access.

We assign monetary outcomes for granting and revoking
access to legitimate and malicious users and compare the pro-
posed policy enforcement models in terms of cost-efficiency.

The main contributions of this paper are:

∙ identifying and estimating the impact of all uncertainties
associated with attributes used to produce access deci-
sions;

∙ introducing models of a correct policy enforcement and
enforcement under uncertainties;

∙ introducing a cost model for a policy enforcement and
comparing the cost-efficiency of proposed enforcement
models.

The paper is structured as follows. Section II gives basic
notes on UCON. Section III introduces the model of a mutable
attribute, and enlists all types of uncertainties associated with
mutable attributes. Sections IV and V present models of
correct policy enforcement and policy enforcement under un-
certainties. Section VI outlines a cost model and estimates an



average profit of policy enforcement. Section VII summarizes
related works. Section VIII concludes the paper.

II. USAGE CONTROL

Usage control (UCON) [17] demands for continuous control
over long-standing accesses to computational resources (e.g.,
an execution of a job in Grid, a run of a virtual machine in
Cloud). Continuity of control is a specific feature of UCON
intended to operate in an inconstant context. The context is
formed by attributes of a requesting subject, an accessed object
and execution environment.

An attribute is denoted as a variable ℎ.𝑣 where ℎ identifies a
subject requesting an object, the object itself, or environment,
and 𝑣 refers to the attribute name. An assignment of an
attribute maps its name to a value in its domain Ω𝑎𝑡𝑡𝑟, i.e.,
ℎ.𝑣 = 𝑟, where 𝑟 ∈ Ω𝑎𝑡𝑡𝑟. Without loss of generality, we
assume that there is only one attribute in the system denoted
as 𝑣 and it assumes values from a finite domain.

Attribute mutability is an important feature of UCON. It
means that an attribute can change its value as a result of
an access request or caused by other uncontrollable factors.
A behaviour of an attribute is simply a sequence of values
assigned to attribute with time passage: {𝑣0, 𝑣1, ..., 𝑣𝑖, ...},
where 𝑣0 refers to the attribute value when a subject sends
an access request. An index 𝑖 ∈ ℕ

0 refers to a time point
at which an attribute changes its value. We define a strictly
increasing function 𝑐𝑙 which assigns a real time value to any
index, that is, 𝑐𝑙 : ℕ0 → ℝ.

Access decisions in UCON are based on authorizations
(predicates over subject and object attributes), conditions
(predicates over environmental attributes), and obligations
(actions that must be performed by a requesting subject). For
the sake of simplicity, we consider security policies consisting
of authorization predicates only, that is, the 𝑈𝐶𝑂𝑁𝐴 model.
We define a predicate 𝑝 to be a boolean-valued computable
function mapping an attribute value to either true or false,
𝑝 : Ω𝑎𝑡𝑡𝑟 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.

Another important feature of UCON is that it assumes to
specify when access decisions are evaluated and enforced.
There are two phases called a pre-authorization, or access
control, and a continuous policy enforcement, or usage control.

Access control phase is started by the reference monitor
upon receiving a request at time 𝑡𝑡𝑟𝑦 . The reference monitor
acquires 𝑣𝑖, evaluates authorization predicates only once and
grants access to a resource at time 𝑡𝑝𝑒𝑟𝑚 if 𝑝(𝑣𝑖) = 𝑡𝑟𝑢𝑒,
where 𝑐𝑙(𝑖) ≤ 𝑡𝑝𝑒𝑟𝑚 < 𝑐𝑙(𝑖+ 1).

Usage control phase is started by the reference monitor
at time 𝑡𝑝𝑒𝑟𝑚. The reference monitor continuously evaluates
authorization predicates when the access is in progress. Conti-
nuity of control means that the reference monitor re-evaluates
authorization predicates each time when an attribute changes
its value. If a new value 𝑣𝑗 violates a security policy, the
reference monitor revokes the access. The access should be
continued only if 𝑝(𝑣𝑖+1)∧𝑝(𝑣𝑖+2)∧...∧𝑝(𝑣𝑗) = 𝑡𝑟𝑢𝑒. Though
usage control ends as a result of the access revocation or at

subject’s discretion, we consider only the first scenario. Usage
control is over at time 𝑡𝑟𝑒𝑣 = 𝑐𝑙(𝑘) if 𝑝(𝑣𝑘) = 𝑓𝑎𝑙𝑠𝑒.

III. ATTRIBUTE MODEL

Access decisions rely on correct attribute values. Our main
concern in this paper is enforcement of a UCON policy
based on a remote attribute with observable mutability. Remote
means that an attribute is managed by the attribute provider
which is not under control of the reference monitor. Hence,
the reference monitor should trust the attribute provider to use
this attribute. Observable mutability means that the reference
monitor observes only partially how the attribute behaves
in time. Thus, for the same attribute we distinguish real
attribute values which truly describe the attribute behaviour in
the system and observed attribute values which are obtained
by the reference monitor and used to evaluate authorization
predicates.

A. Real Attribute Values

Since an attribute in UCON is mutable and changes its value
as a result of the access or caused by other uncontrollable
factors, we introduce a random variable 𝐴 which models the
attribute value at some point of time. 𝐴 is a real valued func-
tion on the attribute’s domain Ω𝑎𝑡𝑡𝑟, that is, 𝐴 : Ω𝑎𝑡𝑡𝑟 → ℝ.
The event “𝐴 = 𝑎” represents the fact that the attribute value
is 𝑎. Let probability of that event to happen be Pr(𝐴 = 𝑎).
The function Pr has all properties of a probability function,
e.g., for any event 𝐸, 0 ≤ Pr(𝐸) ≤ 1. Let event 𝒫(𝐴)
denote that an attribute value satisfies authorization predicates,
i.e., 𝒫(𝐴) : 𝐴 = 𝑎, 𝑝(𝑎) = 𝑡𝑟𝑢𝑒, and assume the event
𝒫(𝐴) specifies the opposite, i.e. the attribute value violates
the predicate.

Let a behaviour of a real attribute be specified by a scheme
⟨A, CL𝐴𝑃 ⟩, where:

∙ A = {𝐴𝑖 : 𝑖 ∈ ℕ
0} is a discrete-time stochastic process

modelling a mutable attribute. We call 𝐴𝑖 the state of the
process at 𝑖, and 𝐴𝑖 = 𝑎 denotes that after 𝑖 changes, the
attribute value equals to 𝑎;

∙ CL𝐴𝑃 = {𝑐𝑙𝐴𝑃 (𝑗)∣𝑗 ∈ ℕ
0} is an ordered set of times-

tamps assigned to each attribute change by the attribute
provider when it happens. We assume that 𝑐𝑙𝐴𝑃 (0) = 𝑡𝑡𝑟𝑦
and for all 𝑗 ≥ 1, 𝑐𝑙𝐴𝑃 (𝑖) = 𝑐𝑙𝐴𝑃 (𝑖−1)+T. T is either
a constant or a random variable specifying a time interval
between adjacent attribute changes.

Fig. 1. A Reputation Attribute Model

Example 1: Following the approach in [10], [9] we consider
a mutable attribute which encodes a reputation of a re-
quester. The attribute domain is Ω𝑎𝑡𝑡𝑟 = {“general”, “normal”,



“suspicious”, “malicious”} and respectively 𝐴(“general”) =
1, 𝐴(“normal”) = 2, 𝐴(“suspicious”) = 3, and
𝐴(“malicious”) = 4.

The attribute value is changed based on “bad”, “good” and
“neutral” feedback received from other parties (see Figure 1).
The attribute mutability is modelled as a discrete-time Markov
chain A uniquely defined by the one-step transition matrix:

Prob =

⎛
⎜⎜⎝

0.6 0.4 0.0 0.0
0.5 0.3 0.2 0.0
0.0 0.2 0.3 0.5
0.0 0.0 0.1 0.9

⎞
⎟⎟⎠ (1)

That is, the entry in the 𝑖-th row and 𝑗-th column is the
transition probability Pr(𝐴𝑖 = 𝑎 ∣ 𝐴𝑖−1 = 𝑏), giving the
probability that the attribute will change value to 𝑎 if its current
value is 𝑏.

A time interval between adjacent attribute changes can be
modelled as a constant with rate 2 seconds.

If the initial attribute value was 𝐴0 = 3, the possible
attribute behaviour could be:

(𝐴0 = 3 : 0𝑠), (𝐴1 = 4 : 2𝑠), (𝐴2 = 3 : 4𝑠), (𝐴3 = 2 : 6𝑠), ...

B. Observed Attribute Values

Only the attribute provider knows how the attribute behaves
in time, but the reference monitor can also observe this
process. There are two basic models how attribute changes
are delivered to the reference monitor: push and pull. Push
model defines a scenario when each new attribute value is
timestamped and pushed by the attribute provider to the
reference monitor. Pull model defines a scenario when the
reference monitor queries the attribute provider to give the
current attribute value, the attribute provider replies with the
value, its timestamp and some additional information.

By analogy with real attribute values, let observed attributes
be specified by a scheme ⟨Ã, CL𝑅𝑀 ⟩, where:

∙ Ã = {𝐴𝑖 : 𝑖 ∈ ℕ
0} is a discrete-time stochastic process

modelling an observation of attribute changes over time.
𝐴𝑖 = 𝑎 denotes that an attribute value after 𝑖 observations
equals to 𝑎;

∙ CL𝑅𝑀 = {𝑐𝑙𝑅𝑀 (𝑗)∣𝑗 ∈ ℕ
0} is an ordered set of

timestamps which assigned by the reference monitor. A
timestamp 𝑗 denotes when the 𝑗-th observation of an
attribute value was processed and the appropriate access
decision was enforced by the reference monitor. We
assume that 𝑐𝑙𝑅𝑀 (0) = 𝑡𝑝𝑒𝑟𝑚.

Real and observed attribute values form a bipartite directed
graph W = (A, Ã,E), where edges E connect real and
observed attributes via push/pull queries(see Figure 2). If there
exists an edge 𝑒 which connects 𝐴𝑐 and 𝐴𝑐′ , we say that 𝐴𝑐

corresponds to 𝐴𝑐′ and denote this as 𝐴𝑐 ≂ 𝐴𝑐′ . To evaluate
authorization predicates, the reference monitor can exploit
observed attribute values and timestamps of the corresponding
real counterparts.

C. Intentional and Unintentional Uncertainties

Observed attributes vary from the real counterparts due
to attacks, noise, delays during delivery, missed attributes,
etc. We call uncertainty a property on real and observed
attributes which specifies how these attributes vary. As closer
observed attributes to real, the better the policy is enforced.
We launch two types of uncertainties: unintentional (freshness
and correctness), and intentional (trustworthiness).

1) Freshness of Attributes: is unintentional uncertainty oc-
curring due to attributes mutability. Generally, it means that
the last observed value of an attribute is out-of-date, while the
current real value of the attribute needed to produce the access
decision is unknown. We introduce three types of freshness
uncertainties.

Freshness I (missed attributes) corresponds to the sce-
narios where only a part of attribute changes is detected in
observed attribute values:

∃𝑐 ≥ 0, 𝑚 > 0 : 𝐴𝑐+𝑚 ≂ 𝐴𝑐

As an example, assume the network of sensors providing the
current location of the user. Sensors have limited resources
(power, bandwidth, memory), and the reference monitor pulls
the location attribute only once per hour. Even if the attribute
does not satisfy the policy during this hour, the reference
monitor will make the incorrect access decision and continue
the access. There always exists a possibility of the policy
violation in-between despite that all observed attribute changes
satisfy the policy.

Freshness II (delays in processing) implies that there
are inevitable time delays needed for delivery of an attribute
(due to a network latency) and decision making (evaluation of
authorization predicates). That is:

∃𝑐′ ≥ 0, 𝑐′′ ≥ 0 : 𝐴𝑐′′ ≂ 𝐴𝑐′

𝑐𝑙𝑅𝑀 (𝑐′) > 𝑐𝑙𝐴𝑃 (𝑐
′′)

Freshness III (pending updates) corresponds to scenarios
where the current attribute value is uncertain since some
update queries are pending at the time of the access re-
evaluation. In this case, the attribute provider sends two values:
(i) the last certain attribute value and, (ii) some additional
information on how the real value varies from the last certain.

As an example, assume a policy which allows users with
a “normal” reputation (see Example 1) to submit a huge
number of applications for execution in Grid. The reputation
is updated only when the execution is ended and the system
receives feedback from a resource provider. Applications can
run concurrently and each single execution can be long-
lived and lasts days. The access decision to submit a new
job is based on the reputation value dated by last registered
feedback and on the number of applications currently running
on the user’s behalf. Indeed, the ongoing applications can be
malicious but this fact can be discovered afterwards. The only
way to obtain the fresh reputation value is to block the access
until all running applications terminate. Instead, the system has



Fig. 2. Security Policy Enforcement with Pull Acquisition Model

to be set up to make an access decision with some uncertainty
on the current reputation of the user.

The presence of the uncertainty freshness III implies:

∃𝑐′ ≥ 0, 𝑐′′ ≥ 0, 𝑚 > 0 : 𝐴𝑐′′ ≂ 𝐴𝑐′

𝑐𝑙𝐴𝑃 (𝑐
′′ +𝑚) ≤ 𝑐𝑙𝑅𝑀 (𝑐′)

and the reference monitor knows 𝑚 value

2) Correctness: is affected by additive noises that usually
exist in case of non-accurate measurements. For example,
the location attribute can be sensed only with the given
precision. Thus, observed attribute values differ from the real
counterparts:

∃𝑐′ ≥ 0, 𝑐′′ ≥ 0 : 𝐴𝑐′′ ≂ 𝐴𝑐′

𝐴𝑐′ = 𝐴𝑐′′ +𝑁

and 𝑁 is a random variable that models additive noises
presented in observed attribute values.

3) Trustworthiness : appears as a result of altering at-
tributes by the attribute provider or as the result of attacks
occurred during attributes delivery, storing, etc. Current ap-
proaches guarantee only integrity of an attribute by validating
a signature of the entity which signs the attribute, but this does
not guarantee trustworthiness.

This uncertainty assumes that either an attribute value,
or a time of issuance, or both can be modified by the at-
tribute provider. Indeed, on each attribute request the attribute
provider responds with the same value which always satisfies
the policy. The presence of the trustworthiness uncertainty
means that:

∀𝑐 ≥ 0 : Pr[𝒫(𝐴𝑐)] = 𝑐𝑜𝑛𝑠𝑡

i.e., the probability that the observed attribute satisfies autho-
rization predicates remains constant and does not depend on
how the attribute behaves in reality.

IV. CORRECT POLICY ENFORCEMENT

The correct policy enforcement implies that having observed
attributes the reference monitor enforces the policy exactly in
the same fashion as with real attributes, and both observed and
real attributes respect authorization predicates.

A. Correct Enforcement of Access Control

Access control starts at time 𝑡𝑡𝑟𝑦 = 𝑐𝑙𝐴𝑃 (0) upon receiving
the access request and the initial attribute value. The refer-
ence monitor evaluates authorization predicates only once and

grants access to a resource at time 𝑡𝑝𝑒𝑟𝑚 = 𝑐𝑙𝑅𝑀 (0) if a policy
holds. We say that the policy holds for access control if:

1) 𝑝(𝐴0) = 𝑡𝑟𝑢𝑒, i.e. the initial observed attribute value
𝐴0 satisfies authorization predicates;

2) 𝑝(𝐴𝑚) = 𝑡𝑟𝑢𝑒, i.e. the real attribute value 𝐴𝑚 satis-
fies authorization predicates and 𝑐𝑙𝐴𝑃 (𝑚) ≤ 𝑡𝑝𝑒𝑟𝑚 <
𝑐𝑙𝐴𝑃 (𝑚+ 1) where 𝑚 ≥ 0;

Notice, some attribute changes may happen between 𝑡𝑡𝑟𝑦
and 𝑡𝑝𝑒𝑟𝑚, but attribute values must satisfy a security policy
exactly when the request is issued and later, when the access
decision is evaluated.

Let 𝐻 be an event specifying that the policy holds and
𝐻 specifies the opposite. Clearly, the policy satisfaction and
violation can be also defined as:

𝐻 = 𝒫(𝐴0) ∩ 𝒫(𝐴𝑚) (2)

𝐻 = 𝒫(𝐴0) ∪ (𝒫(𝐴0) ∩ 𝒫(𝐴𝑚))

Where we write 𝐸1 ∩ 𝐸2 for occurrence of both 𝐸1 and 𝐸2

and write 𝐸1 ∪ 𝐸2 for the occurrence of either 𝐸1 or 𝐸2 (or
both).

Definition 1: (Correct Enforcement of Access Control)
The reference monitor grants the access at 𝑡𝑝𝑒𝑟𝑚 if the policy
holds and denies otherwise.

Let 𝐺 be an event specifying that the reference monitor
grants the access and 𝐺 specifies the opposite (denies the
access). From Definition 1 we receive for the correct enforce-
ment of access control:

𝐺 = 𝐻, 𝐺 = 𝐻 (3)

B. Correct Enforcement of Usage Control

Usage control phase is started at 𝑡𝑝𝑒𝑟𝑚. The reference
monitor re-evaluates authorization predicates each time when
it observes an attribute change.

We say that a policy holds for usage control on a time
interval (𝑡𝑏 : 𝑡𝑒] if:

1) 𝑝(𝐴𝑘) ∧ 𝑝(𝐴𝑘+1) ∧ ... ∧ 𝑝(𝐴𝑙) = 𝑡𝑟𝑢𝑒, where 𝑡𝑏 <
𝑐𝑙𝑅𝑀 (𝑘) < ... < 𝑐𝑙𝑅𝑀 (𝑙) ≤ 𝑡𝑒;

2) 𝑝(𝐴𝑖) ∧ 𝑝(𝐴𝑖+1) ∧ ... ∧ 𝑝(𝐴𝑗) = 𝑡𝑟𝑢𝑒, where 𝑡𝑏 <
𝑐𝑙𝐴𝑃 (𝑖) < ... < 𝑐𝑙𝐴𝑃 (𝑗) ≤ 𝑡𝑒,

i.e., all real and observed attribute changes, occurred within
this interval, do satisfy authorization predicates.

If there exists at least one attribute value (either real or
observed) which does not satisfy authorization predicates, we
call this as a policy violation for usage control. Let a policy



violation time refer to the interval during which real attribute
values do not satisfy authorization predicates.

Definition 2: (Correct Enforcement of Usage Control) The
reference monitor correctly continues the usage session at 𝑡𝑛𝑜𝑤
if a policy holds on interval (𝑡𝑝𝑒𝑟𝑚 : 𝑡𝑛𝑜𝑤]. The reference
monitor revokes the access immediately when the policy
violation happens, hence the policy violation time equals to
nil.

V. POLICY ENFORCEMENT UNDER UNCERTAINTIES

Correct enforcement is not feasible in presence of uncer-
tainties since the reference monitor is unable to show that real
attribute values satisfy authorization predicates.

The basic idea for policy enforcement under uncertainties
is as follows:

1) The reference monitor evaluates authorization predicates
with respect to observed attribute values;

2) If so, the reference monitor runs an experiment which
estimates how far are observed attributes from real coun-
terparts. If this difference is negligible, the experiment
succeeds and the reference monitor grants (or continues)
the access.

A. Enforcement of Access Control

When uncertainties are present, we suppose that the refer-
ence monitor is powerful to mine some probabilistic knowl-
edge about a real attribute changes based on the observed
attribute 𝐴0 = 𝑎:

Pr𝑅𝑀 = Pr[𝒫(𝐴𝑚)∣𝐴0 = 𝑎]

specifies conditional probability that a value of a real attribute
𝐴𝑚 satisfies authorization predicates at time 𝑡𝑝𝑒𝑟𝑚 if the
observed attribute value at time 𝑡𝑝𝑒𝑟𝑚 equals to 𝑎.

Let 𝑌 be a random variable such that:

𝑌 =

{
1 if uncertainties are negligible
0 otherwise

Let 𝛿(𝑥) be a function, that is:

𝛿(𝑥) =

{
1 if 𝑥 ≥ 𝑡ℎ
0 otherwise

We propose two models of enforcement for access control
under uncertainties, a threshold enforcement and a flip coin
enforcement. The reference monitor is free to pick any of these
models.

Definition 3: (Threshold Enforcement of Access Control)
The reference monitor computes Pr𝑅𝑀 and grants the access
at 𝑡𝑝𝑒𝑟𝑚 if:

1) 𝑝(𝐴0) = 𝑡𝑟𝑢𝑒;
2) 𝑌 = 1, where Pr[𝑌 = 1] = 𝛿(Pr𝑅𝑀 ),

otherwise, the access is denied.
That is, if the initial observed attribute value satisfies au-

thorization predicates, the reference monitor grants the access
if the probability that the real attribute value 𝐴𝑚 also satisfies
authorization predicates is above a specified threshold 𝑡ℎ.

Definition 4: (Flip Coin Enforcement of Access Control)
The reference monitor behaves exactly as in the threshold
enforcement but uses Pr[𝑌 = 1] = Pr𝑅𝑀 instead.

Hence, if the initial observed attribute value satisfies autho-
rization predicates, the reference monitor runs the random ex-
periment that succeeds (returns grant) with probability Pr𝑅𝑀

and fails (returns deny) with probability 1−Pr𝑅𝑀 .
In notation of events, we get for the enforcement of access

control under uncertainties (either threshold or flip coin):

𝐺 = 𝒫(𝐴0) ∩ [𝑌 = 1] (4)

𝐺 = 𝒫(𝐴0) ∪ (𝒫(𝐴0) ∩ [𝑌 = 0])

B. Enforcement of Usage Control

We call check a time interval (𝑡𝑏 : 𝑡𝑒] where there is only
one observed attribute value 𝐴𝑘, and 𝑐𝑙𝑅𝑀 (𝑘) = 𝑡𝑒.

By analogy with access control, we assume that the refer-
ence monitor is powerful to compute probability that a policy
holds for usage control on any check:

Pr𝑘𝑅𝑀 = Pr[𝒫(𝐴𝑖) ∩ ... ∩ 𝒫(𝐴𝑗)∣𝐴𝑘 = 𝑎]

where 𝑡𝑏 < 𝑐𝑙𝐴𝑃 (𝑖) < ... < 𝑐𝑙𝐴𝑃 (𝑗) ≤ 𝑡𝑒
Definition 5: (Threshold Enforcement of Usage Control

under Uncertainties) The reference monitor continues the
access after 𝑛 policy checks at 𝑡𝑛𝑜𝑤 = 𝑐𝑙𝑅𝑀 (𝐴𝑛) if:

1) 𝑝(𝐴0) ∧ 𝑝(𝐴1) ∧ ... ∧ 𝑝(𝐴𝑛) = 𝑡𝑟𝑢𝑒, i.e., all observed
attribute changes, occurred within 𝑛 checks, do satisfy
authorization predicates;

2) ∀𝑘 = 0, .., 𝑛 : 𝑌𝑘 = 1, where Pr[𝑌𝑘 = 1] = 𝛿(Pr𝑘𝑅𝑀 ),
i.e., for each check the probability that a policy holds
on this check should be above a specified threshold;

otherwise, revokes the access.
Definition 6: (Flip Coin Enforcement of Usage Control

under Uncertainties) The reference monitor behaves exactly
as in the threshold enforcement but uses Pr[𝑌𝑘 = 1] = Pr𝑘𝑅𝑀

instead.

VI. COST MODEL OF THE POLICY ENFORCEMENT

We assign monetary outcomes for granting and revoking
access to legitimate users and those whose attributes violate
security policies. We estimate an expected profit ⟨𝐶⟩ for
enforcement of access and usage control.

A. Cost Matrix

The reference monitor chooses between two alternatives
(grant access and deny/revoke access) only one, which is
as good as possible. Good means that the reference monitor
grants access to legitimate users and the policy holds, and
forbids the access to unauthorized entities otherwise. In the
presence of uncertainties, the reference monitor is unable to
infer accurately whether the policy holds, and, consequently,
to choose a good alternative. Mistakes are possible. There are
four scenarios (events) how the reference monitor acts under
uncertainties:

∙ 𝐺 ∩𝐻 true positive: grant access when policy holds;
∙ 𝐺∩𝐻 false negative: grant access when policy is violated;



∙ 𝐺 ∩𝐻 false positive: deny access when policy holds;
∙ 𝐺∩𝐻 true negative: deny access when policy is violated.

True positive and true negative are good-chosen alternatives,
while false negative and false positive are erroneous. Each
scenario has a monetary outcome, i.e. cost, the reference
monitor loses/gains if this scenario happens.

Let 𝐶𝑡𝑝 denote a cost of the true positive scenario, when the
reference monitor grants the access operating with observed
attributes and the policy really holds. 𝐶𝑓𝑛, 𝐶𝑓𝑝, 𝐶𝑡𝑛 are
costs of the remaining scenarios, respectively. The semantics
of costs for access control corresponds to “pay-per-access”
attributes, and specifies exact benefits and losses the system
gains for a given access request. It is difficult to determine
costs for every policy, but if the reference monitor behaves
correctly the costs should be positive, i.e. 𝐶𝑡𝑝 ≥ 0, 𝐶𝑡𝑛 ≥ 0,
and negative in the case of erroneous decisions, that is,
𝐶𝑎𝑐

𝑓𝑝 < 0, 𝐶𝑎𝑐
𝑓𝑛 < 0. Finally, let 𝐶𝑎 be a cost to push/pull

(observe) an attribute value.

B. Cost of Access Control Enforcement

The expected profit received by the reference monitor
processing a single access request will be the summation of
probabilities of all 4 scenarios weighted on corresponding
costs. Without loss of generality, we assume that 𝐶𝑎𝑐

𝑡𝑛 = 0 and
add to the expected profit a cost paid to observe the initial
attribute value:

⟨𝐶⟩ = 𝐶𝑡𝑝 ⋅Pr[𝐺 ∩𝐻] + 𝐶𝑓𝑛 ⋅Pr[𝐺 ∩𝐻]

+ 𝐶𝑓𝑝 ⋅Pr[𝐺 ∩𝐻] + 𝐶𝑎

(5)

1) Correct Enforcement: Since 𝐻 and 𝐻 are disjoint
events, i.e. Pr[𝐻 ∩ 𝐻] = 0 and Pr[𝐻] + Pr[𝐻] = 1, from
Equations 3 and 5 we receive:

⟨𝐶⟩𝑐𝑜𝑟 = 𝐶𝑡𝑝 ⋅Pr[𝐻] + 𝐶𝑎

Together with Equation 2 this yields the following average
profit per access request for correct enforcement of access
control:

⟨𝐶⟩𝑐𝑜𝑟 = 𝐶𝑡𝑝 ⋅Pr[𝒫(𝐴0) ∩ 𝒫(𝐴𝑚)] + 𝐶𝑎 (6)

= 𝐶𝑡𝑝 ⋅Pr[𝒫(𝐴0)] ⋅Pr[𝒫(𝐴𝑚)∣𝒫(𝐴0)] + 𝐶𝑎

In what follows, we use Pr[𝒫(𝐴0)] interchangeably with
𝛼, and Pr[𝒫(𝐴𝑚)∣𝒫(𝐴0)] we encode with 𝛽.

2) Threshold Enforcement: We recall some properties of
conditional probability:

Pr[𝐸1∩𝐸2∩𝐸3] = Pr[𝐸1]⋅Pr[𝐸2∣𝐸1]⋅Pr[𝐸3∣𝐸1∩𝐸2] (7)

We also need to point out that probability of a policy
satisfaction for real attributes is conditionally independent of
estimates of the reference monitor given that observed attribute
values satisfy the policy. That is:

Pr[𝒫(𝐴𝑚)∣𝑌 = 1 ∩ 𝒫(𝐴0)] = Pr[𝒫(𝐴𝑚)∣𝒫(𝐴0)] (8)

From Equations 2, 4, 7 and 8 we receive:

Pr[𝐺 ∩𝐻] = 𝛼 ⋅ 𝛽 ⋅Pr[𝑌 = 1∣𝒫(𝐴0)]

Pr[𝐺 ∩𝐻] = 𝛼 ⋅ (1− 𝛽) ⋅Pr[𝑌 = 1∣𝒫(𝐴0)] (9)

Pr[𝐺 ∩𝐻] = 𝛼 ⋅ 𝛽 ⋅ (1−Pr[𝑌 = 1∣𝒫(𝐴0)])

Without loss of generality, we assume that all access re-
quests come with the identical initial value of the attribute
and let 𝑎 be this value which satisfies authorization predicates.
With this assumption, we get that 𝛼 = 1, and Pr[𝑌 =
1∣𝒫(𝐴0)] = Pr[𝑌 = 1∣𝐴0 = 𝑎]

From Definition 3 and Equations 9 and 5 we get that the
average profit for a threshold enforcement of access control is
given by:

⟨𝐶⟩𝑡ℎ =

{
𝛽 ⋅ (𝐶𝑡𝑝 − 𝐶𝑓𝑛) + 𝐶𝑓𝑛 + 𝐶𝑎 if Pr𝑅𝑀 ≥ 𝑡ℎ

𝛽 ⋅ 𝐶𝑓𝑝 + 𝐶𝑎 otherwise

Obviously, the minimal average cost for the threshold en-
forcement is the following:

𝛽𝑚𝑖𝑛 =
𝐶𝑓𝑛

𝐶𝑓𝑝 + 𝐶𝑓𝑛 − 𝐶𝑡𝑝
(10)

This means that when a “distance” between real and observed
attributes equals to 𝛽, the reference monitor suffers at most
and performs erroneous access decisions.

3) Flip Coin Enforcement: All formulas of a threshold
enforcement suit for a flip coin enforcement too. Taking the
assumptions done in the threshold enforcement and Definition
4, we obtain the average profit for a flip-coin enforcement per
access request:

⟨𝐶⟩𝑓𝑙𝑖𝑝 = 𝐶𝑡𝑝 ⋅ 𝛽2 + (𝐶𝑓𝑝 + 𝐶𝑓𝑛) ⋅ 𝛽 ⋅ (1− 𝛽) (11)

To find the minimal average cost, we should take the
derivative of the average cost with respect to 𝛽. Hence the
minimal average cost for the threshold enforcement is given
by:

𝛽𝑚𝑖𝑛 =
1

2
⋅ 𝐶𝑓𝑝 + 𝐶𝑓𝑛

𝐶𝑓𝑝 + 𝐶𝑓𝑛 − 𝐶𝑡𝑝
(12)

4) Example: We continue Example 1, and assume the
security policy that grants access to “non-malicious” users.
Let the initial attribute value for all access requests equals to
“normal”.

We impose the freshness uncertainty in the system (e.g.,
inevitable delays occurred during the attribute delivery and
processing), that is, the reference monitor gets the attribute
value 𝐴0 = 2 at 𝑡𝑝𝑒𝑟𝑚𝑖𝑡 and can compute that there were
exactly 𝑚 attribute changes since 𝑡𝑡𝑟𝑦 until 𝑡𝑝𝑒𝑟𝑚𝑖𝑡. Then,
we need to compute the probability 𝛽 that the policy holds
at 𝑡𝑝𝑒𝑟𝑚 and choose the model of the policy enforcement.
We make an assumption, that the reference monitor knows
the one-step transition matrix of the Markov chain. If so, the
probability 𝛽 is given by [10], [9], [8]:

𝛽 = Pr[𝒫(𝐴𝑚)∣𝐴0 = 2] =
∑

𝑗∈{1,2,3}
(S ⋅Prob(𝑚))[𝑗]



Fig. 3. Cost-Effective Enforcement of Access Control

where the vector S = [0; 1; 0; 0] specifies the initial attribute
value.

Next, we picked the following costs: 𝐶𝑡𝑝 = 5, 𝐶𝑓𝑛 = −45,
𝐶𝑓𝑝 = −15, and to query an attribute we pay 𝐶𝑎 = −0.2.

Then, we performed a set of simulations to show which
of the enforcement models is the most cost-effective, i.e., the
most profitable from the prospective of the reference monitor.

We computed the average profit per access request for the
correct enforcement ⟨𝐶⟩𝑐𝑜𝑟, for the threshold enforcement
⟨𝐶⟩𝑡ℎ, and for the flip-coin enforcement ⟨𝐶⟩𝑓𝑙𝑖𝑝. We varied
the uncertainties between real and observed attributes by in-
creasing the number 𝑚 of attribute changes occurred between
𝑡𝑡𝑟𝑦 and 𝑡𝑝𝑒𝑟𝑚. We started from 𝑚 = 0 and went up to 40
unobserved attribute changes.

Figure 3 shows the obtained results. Obviously, the average
profit per access request for the correct enforcement is always
higher, since the reference never makes erroneous access
decisions there.

The average cost of the threshold enforcement decays when
the number of attribute changes is below 5. The cost grows
afterwards converging to the value −6 when the number
of attribute changes is above 30. In fact, all the models
converge to the certain cost value when 𝑚 increases. This
happens, because the Markov chain which models the attribute
behaviour also converges to a stationary distribution. Hence,
our analysis is appropriate mostly for 𝑚 < 20.

The flip coin enforcement shows the worse results with
respect to the threshold enforcement, despite the interval when
these two models almost match. The flip coin enforcement also
decreases initially and turns up slowly only when 𝑚 is bigger
then 22. By the way, when𝑚 > 5 there are chances for the flip
coin enforcement that the eligible users may get the access,
while for the threshold enforcement all the access requests
are denied. In fact, the cost-effectiveness compromises the
resource availability in some cases.

C. Cost of Usage Control Enforcement

Due to space limitations, we just give some general insights
how to compute the average cost of the usage session. For

usage control, all real and observed attributes should satisfy
the policy, and indeed it is hard for the reference monitor to
catch the attribute value which violates the policy. Instead, we
compute policy violation and satisfaction times for each check.
Indeed, a time interval consists of policy violation and policy
satisfaction sub-intervals which substitute each other with a
time passage.

The semantics of costs for usage control corresponds to
“pay-per-time-of-usage” attributes, and specifies the exact ben-
efits and losses the system gains in a unit of time for a given
usage session. The system receives profit if a policy holds on
a time interval and this revenue is proportional to the duration
of the interval. In opposite, the system suffers losses during
the policy violation time. Hence, only two costs for usage
control are meaningful, and they are encoded by 𝑐𝑡𝑝 and 𝑐𝑓𝑛,
respectively.

Let 𝜋𝑘 denote the policy satisfaction time in the 𝑘-th check
and 𝜋𝑘 encode the policy violation time. Obviously, 𝜋𝑘+𝜋𝑘 =
𝑡𝑒− 𝑡𝑏 where 𝑡𝑒 and 𝑡𝑏 are time borders of the 𝑘-th check. Let
𝐻𝑘 be a probability that a policy holds on the 𝑘-th check, and
𝐻

𝑘
states the opposite. Hence, the expected cost of a single

check is given by:

𝑐𝑘 = 𝜋𝑘 ⋅ 𝑐𝑡𝑝 ⋅Pr[𝐻𝑘] +Pr[𝐻
𝑘
] ⋅ (𝑐𝑡𝑝 ⋅ 𝜋𝑘 + 𝑐𝑓𝑛 ⋅ 𝜋𝑘) + 𝐶𝑎

(13)

The expected cost of a single check will converge to a
particular value with the growth of the check interval. Thus,
for our estimation let 𝑐𝑘 = 𝑐 be a constant with respect to an
order of a check. After 𝑘 checks we will gain 𝑘 ⋅ 𝑐.

What we miss so far is a probability that there will be
exactly 𝑘 checks during the usage session, and 𝑘-th policy
re-evaluation forces the access revocation. This probability is
the reference monitor estimate of the “difference” between real
and observed attributes for usage control.

Let Pr[𝐺𝑐ℎ] specify the probability that the access is re-
voked after 𝑘-th policy re-evaluation and assume it also re-
mains constant with respect to an order of a check. Therefore,
the average cost of a single usage session is given by:

⟨𝐶𝑈 ⟩ = 𝑐 ⋅
∞∑
𝑖=0

𝑖 ⋅ (Pr[𝐺𝑐ℎ])
𝑖 ⋅ Pr[𝐺𝑐ℎ]

i.e. we have a geometric distribution in number of checks,
where a success means the access revocation.

VII. RELATED WORK

Unintentional uncertainties related to freshness of attributes
can be seen as particular cases of timeliness and currency
factors from Bouzeghoub and Peralta [4]. Freshness of the first
type relates to the problem of defining the frequency of updates
(timeliness), while freshness of the second and third types
is caused by natural delays in delivery of the authorization
information (currency).

There are several related work on risk in access and usage
control. Aziz et al. [3] assess policies considering different
types of risk - operational, combinatorial and conflict of



interest. The approach is focused on reconfiguration of policy
in a way to reduce its risk and save its strength. Han et al.
[7] describe the approach to pre-evaluate security of policy
using risk before enforcement. We don’t consider composing
of policies and assume that they are created in a secure
way. Instead, our approach discusses peculiarities of collecting
uncertain attribute values and problems connected with this
issue.

Several approaches [16], [6], [12] use risk assessment to
analyze cost of possible outcomes of access and employ a cost-
benefit analysis to make an access decision. These methods
consider a static decision making process while our approach
analyzes the dynamic behavior of the system.

Few methods describe trustworthiness of policy arguments
and update mechanisms. Skalka et al. [15] discussed the
approach to evaluate credentials for distributed authorization
with risk. Next to paying attention to trustworthiness of
attributes our approach is also focused on their freshness.

The approach proposed in [11] empowers the UCON model
with risk assessment. This paper describes an approach for
selection of service providers (data consumer) in a service
oriented architecture (SOA). The model of risk-aware usage
policy enforcement is devoted to another problem: enforce-
ment of policies by a resource provider rather by a requestor
and making a rational decision about further accesses.

An examples of dealing with uncertain attribute values in
UCON is given in [2]. Each remote attribute is associated
with a security label which represents the trusted status of
the attribute, and could change as the result of the attribute
update. Since updates can run on a remote host, the behavior
identifies whether the current value of the attribute is trusted
within a specific platform. The model examines how to ensure
the correct enforcement of the UCON policy particularly if the
reference monitor is placed on the requestor’s side.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced the model of the cost-effective enforcement
of 𝑈𝐶𝑂𝑁𝐴 policies. We classified uncertainties real attributes
and observed attributes used to produce access decisions. We
defined correct, threshold, and flip-coin policy enforcement
models. We analysed cost-effectiveness of these models for
access control.

As drawbacks, we do accept the assumption that the un-
certainty can be modelled with the probability of the policy
violation and this probabilities are known. In fact, there are
inevitable difficulties on determining probabilities, and on
assigning the costs.

For a future work we are going to address these issues.
Besides, 𝑈𝐶𝑂𝑁𝐴 policies also contain actions, e.g. attribute
updates and obligations whose fulfilment can be uncertain too.
We would like to capture these uncertainties and focus more
on the continuous policy enforcement. Last but not least, we
would like to take into account the diversity of users and
instead of accepting an universe Markov chain for all users
to implement a Markov decision process (MDP) adopting on-

fly to a particular user. In fact, relevance of our approach to a
partially-observable MDP is worth further investigations.
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