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Abstract

Statistical significance is a tool for making decisions on a probabilistic basis extensively used in the scientific world. It must be recognized that 
the 0.05 value as the threshold of the statistical significance is undoubtedly arbitrary and nothing prevents it from being modified according to 
well-founded arguments. Furthermore, it must also be recognized that the logic of the statistical significance test is quite debatable, as well as being 
little understood by researchers who are the main users. Also the meaning of p-values is often ignored with consequent misinterpretations and 
misunderstandings. I will give a general overview and some insights on the topics of the p-values and of the statistical significance.
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Introduction 
Recently, seventy-two eminent biostatisticians, psychologists, 

philosophers, science methodologists, economist, etc. (let’s 
define them, generally, as scientists) propose “to change the 
default P-value threshold for statistical significance from 0.05 
to 0.005.” [1]. The proposal has been motivated by the “the lack 
of reproducibility of scientific studies” and by the fact that “the 
statistically significance threshold of the P<0.05 gives a high false 
discovery rate”, even in the absence of any flaws in the experimental 
design, conduction of the study, statistical analysis and reporting of 
the results. Moreover, it has to be stressed, that the proposal applies 
to “claims of new discoveries” and that “should not be used to reject 
publications of novel findings with 0.005<P<0.05 properly labeled 
as suggestive evidence”. As a further remark, the expression “false 
discovery rate” misuses, as it happens very often, the term “rate” 
which appropriately means “a measure of the frequency per unit 
time of some phenomenon of interest” [2]; indeed, the appropriate 
term in this context is proportion. This paper [1] has been also 
commented by Ioannidis [3], who is also one of the authors of 
the paper [1], by re-iterating the criticisms of the results of the 
biomedical research expressed some years ago in a seminal paper 
titled “Most Published Research Findings Are False” [4]. However, 
even if this paper has been and it continues to be a very relevant 
landmark for this topic and debate, it seems to be not free from 
some methodological problems, particularly regarding the model  

 
employed for calculating the posterior probability, as Goodman  
and Greenland pointed out [5,6]. Moreover, it must also be said that 
some criticisms on the statistical testing paradigm, on the use of the 
statistical significance tests instead of the confidence intervals and 
on the abuse and misinterpretation of p-values have been raised for 
a long time. 

To deepen these topics very useful references, among others, 
are the landmark paper by Berger and Sellke [7] with the very 
impressive title of “The Irreconcilability of P-Values and Evidence” 
together with six companion commentaries in the issue of March, 
1987 of the Journal of the American Association and the paper by 
Goodman [8]. In addition, also the paper by Moran and Salomon [9] 
has to be particularly recommended, owing to its pretty exhaustive 
review of the statistical test theory also from the historical point 
of view. Indeed, the debate on the statistical significance test goes 
back to the first work of Fisher and to those of Neyman and Pearson 
together with the disputes between Fisher and Neyman (mainly), as 
it has been reported, among others, in some books [10-12] to which 
readers are referred. In addition, it has to be said that the proposal 
of moving the significance threshold from 0.05 to 0.005 has been 
previously formulated by Johnson [13], one of the authors of the 
paper of Benjamin et al. [1] This proposal has been commented 
by two letters [14,15] with a reply by Johnson [16] to which the 
interested readers are referred.
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Finally, the very impressive Ioannidis’s paper “Most Published 
Research Findings Are False” [4] has been commented by Jager 
& Leek [17] who reported a substantial reduction of the “false 
discovery rate” to 14% leading to the conclusion that “the medical 
literature remains a reliable record of scientific progress”. However, 
the Jager and Leek’s paper has been furtherly criticized by six 
companion commentaries [18-23] in the same issue of Biostatistics 
with, not surprisingly, very different judgements and considerations. 
Indeed, it is very well instructive to see how many aspects can be 
raised by a statistical method together with its practical realization. 
However, as a general conclusion, it seems that the drastic and 
dramatically alarming Ioannidis’s statement [4] has to be mitigated 
to some extent. Coming back to the meaning and the interpretation 
of the p-values, it is important to stress that Ioannidis reported 
[3], according to Wasserstein & Lazar [24], that the most common 
misinterpretation of p-values, among the multiple ones present in 
the scientific literature, is that they represent the “probability that 
the studied hypothesis is true”. 

So, according to this misunderstanding, “a P value of .02 (2%) is 
wrongly considered to mean that the null hypothesis (eg, the drug is 
as effective as placebo) is 2% likely to be true and the alternative (eg, 
the drug is more effective than placebo) is 98% likely to be correct” 
[2]. These wrong interpretations are not surprising since it is very 
well known the poor feeling that researchers have for Statistics and 
for the scientific reasoning based on the statistical methodology. 
Also some comments, particularly raised in the case of negative 
controlled clinical trials and only based on some clinical reasoning 
[25] without considering the corresponding statistical aspects [26], 
turn out to be rather questionable or, at least, definitely incomplete.

The difficulties of a correct interpretation of the p-values 
even led to banish the p-values from the Basic and Applied Social 
Psychology (BASP) journal; indeed, after a grace period of one 
year, announced by the first Trafimow’s Editorial [27], the editors 
announced that BASP “would no longer publish papers containing 
P-values, because the values were too often used to support lower-
quality research” [28]. Furthermore, in their Editorial, the Editors 
emphasized that “the null hypothesis significance testing procedure 
(NHSTP) is invalid, and thus authors would be not required to 
perform it.” So, if this decision will be shared by other journals, 
we can also arrive at a situation of no p-values at all in the papers 
of the scientific literature. The BASP journal announcement has 
been commented by Nature [29]. This fact confirms the attention 
of Nature to the role of the Statistics in the scientific research and 
to the meaning of the p-values, as the publication of the paper by 
Nuzzo [30] and of the companion editorial [31] furtherly attests. 

Nuzzo’s paper [30] succeeded in drawing the attention of 
a large audience of physicians on the Bayes’s rule, previously 
introduced in the epidemiological context by some papers written 
by Goodman [32-35]. In fact, Nuzzo’s paper [30] shows very clearly, 
in a figure, how p-values of 0.05 or 0.01, empirically obtained 
from a statistical analysis, can modify three values of the a “priori 
odds” that the null hypothesis (H0) is true; namely: “19 to-1 odds 
against the null hypothesis”, “1-to-1 odds”, and, finally, “9-to-1 
odds in favor of the null hypothesis”. I think that discovering that 

a p-value of 0.05 or even 0.01 can have a very little impact on the 
plausibility of an almost unlikely null hypothesis (19 to-1 odds or 
P=0.95 against) and that only in the case of a very plausible H0 (9-
to-1 odds or P=0.90 in favor) the p-values are very similar to the H0 
probabilities, could have made it clear the difference between the 
statistical significance and the probability that H0 has of being true. 
Furthermore, Nuzzo’s paper [30] made it clear that: 

a)	 the statistical test is carried out considering true the null 
hypothesis

b)	 how this assumption is in fact questionable

c)	 Finally, how it is practically not sensible to reason in terms 
of a “true null hypothesis” for concluding in the terms of the 
evidence of a clinical research. Indeed, the message very well 
spread by this paper is that the null hypothesis, assumed to be 
absolutely true under the paradigm of the statistical significance 
test, has actually an unknown probability of occurring and that 
it is sensible to consider different probability scenarios of the 
veracity of H0.

The only criticism that could be done on Nuzzo’s paper [30] 
consists in the fact that have not been shown the formulas of the 
Bayes factor, leaving its role not very well defined; in addition, it has 
not reported which Bayes factor has been used for the calculations 
shown in the figure. Indeed, the pertinent answers to the questions 
related to the statistical methodology must be found by the 
reader in the referenced papers. An additional merit of Nuzzo’s 
paper [30] was of leading the American Statistical Association to 
express its official position and thought about the meaning of the 
p-values in some papers [24,36] and also to publish on YouTube a 
very instructive video of the statistical section “ASA statement on 
P-values and statistical significance: Development and impact” with 
speakers Nuzzo, Johnson, and Senn [37].

A further explanation of p-value has been given by Mark et al. 
[38] and also a non-technical introduction to the p-value statistics 
has been reported by Figueiredo Filho et al. [39]. In addition, 
several formally correct videos on the topic of the p-values are 
on YouTube [40-42] together with one very amusing featuring 
cartoons as protagonists [43]. I do not want to make considerations 
about the philosophy of the science or on the role of the Statistics 
in the scientific research or to propone a new paradigm of the 
scientific method. Furtherly, I must say that I do not even share the 
controversy raised by some statisticians who would like only the 
intervals of confidence to be used instead of the statistical tests, 
because I think that both must be used, given that both provide 
useful information about the results of the statistical analysis of a 
research. Indeed, the problem is always of interpreting correctly the 
results of the statistical procedures and of knowing their meaning. 
As a biostatistician, more oriented in sample size calculations 
and clinical trials methodology, my aim is to point out the correct 
interpretation of the p-values together with some personal 
suggestions about their use focused also on the plausibility of the 
null hypothesis or to the probability that a null hypothesis has to 
be true.
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P-values: Some Historical Considerations
According to Fisher [44] the p-values could be considered as 

an index of the “strength of the evidence” against H0. Particularly, 
after having choose the statistical test, carried out the experiment, 
calculated the test statistic from the actual experimental data 
and the probability value associated with the test statistic, if this 
probability value is quite small (say, ≤0.05) the null hypothesis 
could be rejected. However, it would be better to use the expression 
“to not accept”, according to a less strong expression that is 
more relevant to the probabilistic nature of the statistical testing 
procedure. Actually, Fisher popularized the use of the p-values 
in statistics and, particularly in his influential book Statistical 
Methods for Research Workers [45], proposed the level p = 0.05, 
or a “1 in 20 chance of being exceeded by chance”, as a limit for 
statistical significance.

Then Fisher reiterated the p = 0.05 threshold and explained 
its rationale, stating: “It is usual and convenient for experimenters 
to take 5 per cent as a standard level of significance, in the sense 
that they are prepared to ignore all results which fail to reach this 
standard, and, by this means, to eliminate from further discussion 
the greater part of the fluctuations which chance causes have 
introduced into their experimental results” [44]. So, a p-value of 
≤0.05 on the null hypothesis indicated, according to Fisher [44], 
that: “Either an exceptionally rare chance has occurred or the 
theory is not true”. Fisher’s further advice [44] was that “If one in 
twenty does not seem high enough odds, we may, if we prefer it, 
draw the line at one in fifty…or one in a hundred”.

Furtherly, in the Statistical tables for biological, agricultural 
and medical research compiled with Yates [46] there are reported 
the quantiles of several probability distributions (standardized 
Gaussian: (Table II). The Normal Probability Integral; Student’s t: 
(Table III). Distribution of t; χ 2: (Table IV). Distribution of c2, and F: 
(Table V). Distribution of z and Variance Ratio for 20%, 10%, 5%, 
1%, and 0.1%; thereafter it was called F distribution in honor of 
Fisher or F distribution shortly for the distribution of Fisher and 
Snedecor) for selected probability values. So, the computed values 
of the statistical tests could be compared against some cut-offs 
corresponding, especially, to the p-values of 0.05 (mainly) and 0.01, 
cementing their use as statistical significance thresholds.

A basic point, perhaps not very well understood, is that the 
inference from the p-value involves only the null hypothesis 
and that the “likelihood” of this hypothesis, calculated from the 
experimental data, is not also the “probability of the null hypothesis 
of being true”. That is, the p-values should not to be misinterpreted 
as posterior probabilities that have to be obtained according to the 
Bayesian paradigm. However the main relevant and frequent use 
of the p-values is currently in the context of the Neyman-Pearson 
hypothesis testing frequentist paradigm, in which two hypotheses 
are formalized; namely the null hypothesis (H0) and the alternative 
(H1 or HA), with the first to be tested versus the latter. Then, the test 
statistic is obtained from the formula of the pertinent statistical test 
and the corresponding probability value is calculated by referring to 
the probability distribution of the test statistic. It has to be pointed 
out that currently, the p-values are compared with the prefixed 

significance level instead of comparing the test statistics with the 
tabulated critical values that delimit the critical region of rejection 
(not acceptance) of H0 of the pertinent probability distribution. 

In fact, the diffusion of statistical software that calculates 
the probability values has made the consultation of tables quite 
obsolete. Furthermore, one thing is to state that the p-value is 
<0.05 and another is to report its exact value (to a certain number 
of decimal places) such as p = 0.0253. It has to remember that the 
critical region corresponds to an area of a probability distribution, 
and, therefore, to a probability value that is equal to the significance 
level, chosen by the researcher and defined as α at the left or right 
tail of the distribution in the case of a unilateral test or equal to α/2 
at the left and right tail of the distribution in the case of a bilateral 
test. In the frequentist paradigm, are relevant the type I error (α) 
that corresponds to the probability of rejecting (not accepting) a 
true null hypothesis, and the type II error (β) that corresponds 
to the probability of not rejecting a false null hypothesis or, more 
known and quoted, the power of the statistical test given by 1-β. In 
fact, this procedure refers to the repetition of the same experiment 
carried out under the same conditions on samples repeatedly 
and randomly obtained from the same distribution (H0 is true) or 
from two (at least) different distributions just in agreement to the 
alternative hypothesis.

Finally, it has also to consider the Jeffreys’s approach to testing 
in the Bayesian context [7]. This method requires the definition of 
the Bayes factor as the ratio between the value of the maximum 
likelihood calculated from the experimental data under the null 
hypothesis (given the parameter under H0 equal to θ0, say) and the 
value of the likelihood calculated from the experimental data under 
the alternative hypothesis (given the parameter under H1 equal to 
θ1, say). Then the null hypothesis is rejected if the calculated ratio 
is <1 or, otherwise, if the value of the calculated ratio is >1, the 
null hypothesis is not rejected. Thereafter, it is possible to report 
the posterior probabilities (the probability that H0 is true given 
the experimental data) by transforming the odds (the calculated 
Bayes factor) in a probability by recalling that probability (p) is 
obtained as p = 1 / (1 + odds). Finally, is also possible to calculate 
the posterior probability for the alternative hypothesis of being 
true, given the experimental data.

Considerations about the disagreement and the sparse points 
of agreement among the three giants Fisher, Neyman (with also E. 
Pearson) and Jeffreys are out of the limits of this editorial. Useful 
papers for some further insights are from Berger and Sellke [7], 
Hubbard and Bayarri et al. [47], Gibbons[48], Pratt et al. [49], De 
Groot [50], Christensen [51] and finally, Berger [52]. It has to be 
stressed that instead of to reject, I always used the expression to not 
accept just for underlying the probabilistic nature of the statistical 
testing procedure; otherwise, it has to be used the expression not 
rejected since the expression to accept has to be absolutely avoided 
owing to the fact that, according to the scientific paradigm, the null 
hypothesis can be only disproved. However, it has to be said that the 
expression accept the null hypothesis is currently used also in the 
statistical literature [53]. Finally, it has to be point out the fact that if 
the null hypothesis is not rejected, nothing could be concluded, and 
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this is a point not well understood by clinical researchers. To this 
point it has to be remembered the sharp and definite sentence: “the 
absence of the evidence is not the evidence of the absence”.

The meaning of the p-values
The p-value quantifies the probability of having obtained 

the experimental results “under the null hypothesis (H0)” that is, 
usually, a hypothesis of no difference. Let’s disregard for sake of 
simplicity the case of the non-inferiority settings in which the null 
hypothesis is of the “maximal difference not clinically/biologically 
relevant” and the recently considered superiority statistical 
testing in which the null hypothesis is of the “minimal difference 
clinically/biologically relevant” [54]. The expression “under the 
null hypothesis (H0)” can be better paraphrased as “if the null 
hypothesis is true” but it is, maybe, only with the expression “given 
that the null hypothesis is true (p-value | H0) that it is very well 
stated and understandable that the p-value of the statistical test is 
obtained as a conditional probability.

So, considering the formula of the conditional probability, 
the probability of H0 of being true is equal to 1 [P(H0) = 1] by the 
assumption underlying the statistical test of significance, and, 
consequently, the probability of the joint event given by a statistical 
significant result [P(xOBS)≤0.05)] and H0 true [P(H0) = 1], defined 
as [P(xOBS ∩H0)] remains equal to the simple probability value 
(p-value) associated with the test statistic. Being the formula of a 
conditional probability given by:

( )
( )

OBS 0
OBS 0

0

P x H
P(x H ) 

P H
∩

=|
                                                           

(1)
  

Where xOBS indicates the observed  Result. It is well evident that 
a value equal to 1 at the denominator does not change the value 
at the numerator. It is also evident that the assumption “the null 
hypothesis is true” is useful for carrying out the test of significance 
and for being able to conclude against the null hypothesis or to 
make no conclusions at all. However, it is also well evident that 
in the real world there cannot exist a “true null hypothesis” or a 
“true alternative hypothesis”. It is possible to argue that there is a 
situation “equipoise-like” in which the two hypotheses are equally 
probable of being true [P (H0) = P (HA) = 0.5] or situations in which 
P(H0) > P(HA) or P(H0) < P(HA), taking also into account the context 
of the research. So, it must reasonably be said that this paradigm 
is a useful tool for concluding about a research (a decisional rule 
on a probabilistic basis) but it is not adequate to conclude on the 
veracity of the null hypothesis. To this aim it has to consider a 
different approach built on the Bayesian theory.

Bayes Factors
For calculating the probability of the null hypothesis of being 

true it is necessary to refer to the “Bayes factor” that represents 
the evidence from the data, and the value of the “prior odds” that 
has to be obtained, according to Benjamin et al. [1] “by researchers’ 
beliefs, scientific consensus, and validated evidence from similar 
research questions in the same field.” Benjamin et al. [1] shows the 
application of the calculations focused on the truth of the alternative 

hypothesis (H1) against the null hypothesis (H0), but for keeping 
consistency with the familiar statistical testing paradigm focused 
on the null hypothesis, I will consider the opposite situation of the 
truth of the null hypothesis (H0) against the alternative hypothesis 
(H1), which involves the reversal of the likelihood ratio. So:

0 OBS 0 OBS 0
OBS 0

1 OBS 1 OBS 1

OBS 0
OBS

OBS 1

P(H x ) P(H ) (x H ) BF(x ) prior odds(H )
P(H x ) P(H ) (x H )

(x H )where BF(x ) Bayes Factor
(x H )

ƒ
= = •

ƒ

ƒ
= →

ƒ

| |
| |

|
|

(2)

Where the Bayes factor has to be calculated by considering the 
distributional properties of the observed data. It has to remember 
that the odds corresponds to the ratio between a probability and 
its complement to 1; so, for a priori probability equal to 0.95 very 
unfavorable for the null hypothesis of being true, the a priori odds 
is 0.95/0.0.05 = 19 or for a priori probability very favorable for 
the null hypothesis of being true equal to 0.90 the a priori odds is 
0.90/0.0.10 = 9. Furthermore, we obtain an odds value of 1 for a 
probability of 0.5 and of 0.33 for a probability of 0.25, respectively.

Then, by multiplying the prior odds by the Bayes Factor, it is 
possible to calculate the posterior odds that, for an easy reading, can 
be converted in a probability value by remembering that p = odds / 
(1 + odds). For example, with BF of 0.2, 0.1, 0.05, and, finally, of 0.01 
the above prior odds of 19 against the null hypothesis give posterior 
odds of 3.8, 1.9, 0.95, and 0.19. It is straightforward to obtain the 
corresponding posterior probability values of 0.792, 0.655, 0.487, 
and 0.159. Again, for the above prior odds of 9, we obtain posterior 
odds of 1.8, 0.9, 0.45, and 0.09 with the corresponding posterior 
probability values of 0.643, 0.474, 0.310, and 0.083. It has to be 
said that the above Bayes factor values correspond, according 
to Goodman [34] to a “Strength of Evidence” “weak”, “moderate”, 
“moderate to strong”, and, finally “strong to very strong”, 
respectively. Apart from considering some particular values of the 
Bayes Factor as shown before, it is very useful to consider that in 
the case of statistical tests based on the Gaussian distribution, as 
usually happens in the biomedical research, the “minimum Bayes 
Factor” is obtained by:

( )2 / 2exp z−                                                                                        (3)

Where “z” is the quantile of the standardized Gaussian 
distribution corresponding to the obtained p-value; for instance z 
= 1.28155 for a p-value = 0.90, z = 1.6448 for a p-value of 0.95, z 
= 1.88079 for a p-value = 0.97, z = 1.95996 for a p-value = 0.975, 
z = 2.32635 for a p-value of 0.99, and, finally, z = 3.09023 for a 
p-value of 0.999. It has to be noted that the “Minimum Bayes 
Factor” corresponds to the strongest Bayes factor against the null 
hypothesis. Unfortunately, in Table 1 of the Goodman’s paper [34] 
it has not reported that the probability values shown on the first 
column under the heading “P Value (Z Score)” has to be considered 
as two tailed. So, the values of the Minimum Bayes Factor shown 
on the second column are, obviously, only correct for the two 
tailed probability value obtained by dividing by two the values 
shown in the first column. In any case, a substantial decrease of the 
probability of the null hypothesis of being true has been obtained 
for all the situations shown in the table.
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Table 1: Values of the posterior probabilities of the null hypothesis (H0) of being true according to some values of the a priori odds 
calculated from the p-value obtained from the experimental data. Values of the “Minimum Bayes Factor (M-BF)” and of the “Symmetrical 
Bayes Factor” (S-BF) are shown.

P-value Zeta

Minimum 
Bayes

Factor

A priori

p(H0)

A priori

Odds(H0)

M-BF 
Posterior 
Odds (H0)

M-BF 
Posterior 

p(H0)

Symmetrical

Bayes

Factor

S-BF 
Posterior 
Odds (H0)

S-BF

Posterior 
p(H0)

0.1 1.2816 0.4399 0.75 3 1.31973 0.56891 0.62591 1.87772 0.6525

0.1 1.2816 0.4399 0.5 1 0.43991 0.30551 0.62591 0.62591 0.38496

0.1 1.2816 0.4399 0.17 0.2048 0.0901 0.08265 0.62591 0.1282 0.11363

0.05 1.6449 0.2585 0.75 3 0.77557 0.4368 0.40716 1.22149 0.54985

0.05 1.6449 0.2585 0.5 1 0.25852 0.20542 0.40716 0.40716 0.28935

0.05 1.6449 0.2585 0.26 0.3514 0.09083 0.08327 0.40716 0.14306 0.12515

0.03 1.8808 0.1706 0.75 3 0.51167 0.33848 0.28595 0.85786 0.46175

0.03 1.8808 0.1706 0.5 1 0.17056 0.14571 0.28595 0.28595 0.22237

0.03 1.8808 0.1706 0.33 0.4925 0.08401 0.0775 0.28595 0.14084 0.12346

0.01 2.3264 0.0668 0.75 3 0.20042 0.16696 0.12518 0.37554 0.27302

0.01 2.3264 0.0668 0.5 1 0.06681 0.06262 0.12518 0.12518 0.11125

0.01 2.3264 0.0668 0.6 1.5 0.10021 0.09108 0.12518 0.18777 0.15809

0.001 3.0902 0.0084 0.75 3 0.02532 0.02469 0.01878 0.05633 0.05333

0.001 3.0902 0.0084 0.5 1 0.00844 0.00837 0.01878 0.01878 0.01843

0.001 3.0902 0.0084 0.92 11.5 0.09706 0.08847 0.01878 0.21594 0.17759

Table 1 of the Goodman’s paper [34] has to be corrected as 
the following Table 1 shows for the part on the left regarding the 
Minimum Bayes Factor column and those that the M-BF Posterior 
odds and M-FB Posterior p(H0). It has to be stressed that, in this 
case, the five values of the minimum Bayes Factor shown in Table 1 
have been defined as a “weak”, “moderate”, “moderate”, “moderate 
to strong”, and “strong to very strong”. It is an obvious consideration 
that a Bayes Factor equal to 1/10 for the null hypothesis against 
to the alternative hypothesis, it means that these study results 
have decreased the relative odds of the null hypothesis by 10-fold. 
Furthermore, it has also to consider that, the minimum Bayes factor 
described above does not involve a prior probability distribution 
over the non-null hypotheses and, consequently, it is a global 
minimum for all prior distributions. However, there is also a simple 
formula for the minimum Bayes factor in the situation where the 
prior probability distribution is symmetric and descending around 
the null value. This is given by: 

( ) ( )1  ·  · exp p ln p                                                                       (4)

Where p is the p-value associated to the statistical significance 
obtained from the experimental data[3]. This symmetrical Bayes 
factor has been used in Nuzzo’s paper [30] the last three columns of 
the above Table 1 report the values of the “minimum Bayes Factor 
for a symmetric prior probability distribution (Symmetrical); it 
has to be noted that the decrease of the probability is lower than 
that obtained by the minimum Bayes factor. Finally, it has also to 
mention the “objective” posterior probabilities that can be obtained, 

according to Jeffreys as reported by Berger [51]. For a Bayes factor 
calculated according to the above equation 2, the probabilities for 
H0 and H1 are respectively: 

OBS
0 OBS

OBS

1 OBS
OBS

BF(x ) P(H x )
1 BF(x )

1P(H x )
1 BF(x )

=
+

=
+

|

|
                                                             (5)

The above expressions are pertinent to the case of a prior 
probability equal to 0.5, leading to calculated prior odds of 1. So, the 
posterior odds are just equal to the Bayes factor and then, it has to 
apply the usual formula already shown for obtaining a probability 
value from odds. The formula for calculating the posterior 
probability of the alternative hypothesis (p (H1)) is obtained by 
considering that it has to be use the reciprocal of the Bayes factor 
calculated for the null hypothesis. By substituting BF(xOBS) with 1/
BF(xOBS) in the first formula the second is easily obtained. To this 
regards, it can be said that a p-value of 0.005 gives M-BF = 0.03625 
and a S-MF = 0.07201 instead of 0.25852 and 0.40716 respectively 
obtained by a p-value = 0.05. This fact has an important consequence 
on the posterior H0 probability of being true that for a p-value = 
0.005 remains <0.05 until a prior p(H0) ≤0.55 (at least) against H0 
instead of p(H0) ≤0.15 (at least) in the case of p = 0.05. For sake of 
clarity, the above calculations have been done with the values of 
the minimum Bayes factor and with an increase of p(H0) in steps of 
0.05 from 0.05 to 0.95. Finally, it has to be noted that a probability 
against H0 is actually in favor until a value of 0.5
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The case of a greater significance level
Phase II clinical trials in Oncology tend to consider higher 

significance levels (ranging from 0.05 to 0.20) for reducing the 
number of the patients to be enrolled and, consequently for having a 
faster screening of the drugs potentially interesting for being tested 
for efficacy in a larger Phase III trial [54]. Furthermore, according 
to Jung [55], phase II trials in order to lower the sample size “use 
a surrogate outcome rather than a confirmatory endpoint and 
one-sided α of 0.05 to 0.20 and a power of 0.80 to 0.90, compared 
to two-sided α of 0.05 and a power of 0.90 or higher in phase III 
trials”. Also the threshold for declaring a pharmacodynamics effect, 
as in the Phase 0 trials, is preferably put at 0.10 [56]; it has to be 
considered that Phase 0 trials allow to establish feasibility and 
to refine the trial methodology for anticancer drugs in a limited 
number of patients before a large number of patients are exposed 
to toxic doses of the study agent. 

The importance of reducing the number of the patients to be 
enrolled in Phase II trials is well documented also by the proposal 
of Khan, Sarker and Hackshaw [57] consisting in accepting an “α 
level that is ‘around’ 10% and a power ‘around’ 80%”, by exploiting 
the sawtooth behavior of the α and power function of the exact 
binomial statistical test [58]. For example, for demonstrating a 
difference from 0.10 to 0.20 with significance level (α) of 0.05 and 
power (1-β) of 0.80, the calculated sample size is of 78 subjects with 
13 successes as the critical number for not accepting H0. However, 
owing to the above mentioned sawtooth behavior, the actual values 
of α and 1-β are 0.0453 and 0.8081, respectively. Moreover, by 
accepting α = 5.67% and power = 77.7%, both close to the required 
levels of 0.05 and 0.80, the sample size is of 65 with a relevant 
saving of 13 subjects (16.7%). 

A useful and exhaustive review on Phase II designs is from 
Mariani & Marubini [59]; this review is relevant also from the 
historical point of view since it summarizes all the main statistical 
methodology until the year of its publication. Finally, it has to 
be remembered, almost like a curiosity, that the FDA guidance 
[60] reports that the Center for Veterinary Medicine “generally 
considers a significance level of α = 0.10 useful as a conservative 
screen for identifying potential treatment-related safety concerns 
among endpoints in Target Animal Safety studies”. In addition, also 
“Pairwise mean comparisons between each treatment against the 
control group are also performed using an unadjusted α = 0.10.” 
So, as a conclusion, in preliminary trials of anticancer drugs the 
proposal of lowering the significance threshold seems rather 
questionable and problematic. 

The sample sizes aspect
It is obvious that moving the significance threshold from 0.05 to 

0.005 there is an important increase in the sample sizes necessary 
to be enrolled in a trial, keeping fixed the other ingredients of the 
sample size calculation that are the effect size or difference and 
variability for continuous variables, the difference and the baseline 
proportion for qualitative variables, the power and the statistical 
significance test. The paper from Benjamin et al. [1] reports that 
“for a wide range of common statistical tests, transitioning from a 

P-value threshold of α = 0.05 to α = 0.005 while maintaining 80% 
power would require an increase in sample sizes of about 70%”. 

It is worthwhile to underline that it could be argued that the 
switching from 0.05 to 0.005 actually refer to a switch from 0.025 to 
0.0025 since the ICH E guideline [61] refers to a two-sided statistical 
test. It had to be noted that in the case of a sample size calculation 
for an unpaired Student’s t test, power of 0.80 and effect size values 
ranging from 0.25 to 2.5 by step of 0.01, the increase of the sample 
size is globally of about the 65.97% for a power of 0.80. Then there 
is a decrease for increasing values of the power; for instance, it is of 
63.62% for a power of 0.85 and becomes of 59.60% for a power of 
0.90, as a further demonstration of the non-linearity relationships 
between the two functions of the statistical significance (α) and 
of the power (1-β). In any case the sample size increase has to be 
judged as relevant and, maybe, not ethically acceptable given the 
current limitations of the number of patients who can be actually 
enrolled in clinical trials and of the economic resources available.

Benjamin et al. [1] recognized that only fewer studies could 
be effectively conducted using current experimental designs and 
budgets. Furthermore in Figure 2, they showed the benefit of this 
p-values switching and its consequences; particularly, they stated 
without any further explanation that the “false positive rates would 
typically fall by factors greater than two”. Then, Benjamin et al. [1] 
concluded with a series of documented claims such as “Increasing 
sample sizes is also desirable because studies with small 
sample sizes tend to yield inflated effect size estimates [62], and 
publication and other biases may be more likely in an environment 
of small studies [63]” and self-citations such as “considerable 
resources would be saved by not performing future studies based 
on false premises” and “We believe that efficiency gains would far 
outweigh losses” that, of course, have to be demonstrated. In any 
case, the huge increase in sample size calculation has a dramatically 
economic impact, and, above all, a series of ethical consequences 
that have to be appropriately considered and resolved.

An intriguing case
Recently Combes et al. [64,65] published on a top medical 

journal an international controlled trial comparing venovenous 
extracorporeal membrane oxygenation (ECMO) with the usual 
standard of care, but allowing for the patients in the control group 
the crossover to ECMO if they had refractory hypoxemia. The 
primary end point was mortality at 60 days. The key secondary 
end point was treatment failure, which was defined as crossover 
to ECMO or death in patients in the control group and as death in 
patients in the ECMO group. It is very well known that the acute 
respiratory distress syndrome (ARDS) is a very severe disease 
associated with a high mortality exceeding 60%. Then it is very 
understandable the expectation that this trial had aroused in the 
medical world, particularly in physicians working in the Intensive 
Care Unit.

The sample size calculation was based on a very sophisticated 
statistical methodology such as group sequential analysis, 
triangular test, etc. that it is not possible to comment in depth 
here. However it has to be said that the trial had the ambitious 
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aim of demonstrating a 20% reduction in the expected mortality 
at 60 days (60% in the group receiving conventional ventilation vs. 
40% among those receiving early ECMO support). Accordingly, it 
has be stated: “for a 80% power, at an alpha level of 5% and with 
a group sequential analysis occurring after the randomization 
of every 60 participants, the maximum sample would need to be 
331 participants.” Furthermore the statistical analysis was very 
complicated by the fact that 28% of the patients in the control 
group crossed over to ECMO for refractory hypoxemia. About this 
it has to report what the authors very correctly wrote “We were 
aware of this potential problem when we started the trial, but many 
investigators felt that it would have been unethical to prohibit 
crossover to ECMO in patients with very severe hypoxemia”.

Unlikely, the statistical analysis on the primary end point at 
60 days showed a relative risk of 0.76; 95% confidence interval 
[CI], 0.55 to 1.04; P = 0.09. Also an additional statistical analysis 
(log-rank test), actually carried out according to a not justifiable 
criterion in my opinion, showed a result not statistically significant: 
“the hazard ratio for death within 60 days after randomization 
in the ECMO group, as compared with the control group, was 
0.70 (95% CI, 0.47 to 1.04; P = 0.07)” Finally, also a multivariable 
analysis gave not statistically significant results, as the authors 
wrote: “Adjustment for important prognostic factors did not change 
the results.” However, the fact that it is has not clearly stated how 
these results have been obtained and, consequently, that they 
cannot be reproduced is, in my opinion, particularly disturbing. 
For example if we carry out a simple χ 2 analysis of the 44/124 
vs. 57/125 proportions of events in the ECMO and control group, 
respectively as the Table 1 of Combes et al. [64] shows, we obtain: 
Chi-Square = 2.6423 with p = 0.1041 and a Continuity Adjusted 
Chi-Square = 2.2393 with p = 0.1345, very different from the p = 
0.09 reported. Finally, at the Fisher’s exact test the two-tailed p is 
0.1217. Of course, also the relative risk is different: 0.7782 95%CI: 
0.5736 - 1.0556 instead of: 0.76 (0.55 to 1.04) shown in Table 1. 

Furthermore, even if the secondary end points turned out to 
be statistically significant in favour of the ECMO treatment (“the 
relative risk of treatment failure, defined as death by day 60 in 
patients in the ECMO group and as crossover to ECMO or death 
in patients in the control group, was 0.62 with 95% Confidence 
Interval of: 0.47 to 0.82; P<0.001, for example), the authors had 
to sadly and sharply write that: “In conclusion, the analysis of the 
primary end point … showed no significant benefit of early ECMO, 
as compared with a strategy of conventional mechanical ventilation, 
which included crossover to ECMO (used by 28% of the patients 
in the control group).” The impact of this result that, according to 
the Evidence Based Medicine (EBM), does not allow to recommend 
the ECMO treatment in these very severely ill patients is, of course, 
very frustrating for the physicians working in the Intensive Care 
Units. So, the question that arises almost spontaneously is whether 
a difference of a few cents (4 or 2, depending on the statistical test 
carried out and on the exact at the fourth decimal figure p-values 
obtained) should be considered so relevant  as to make inconclusive 
such a clinically important result.

To this regards, it has to do some clarifications. Firstly, it is 
often misunderstood that the statistical significance threshold of 
0.05 has to be always considered, in the clinical trials settings as 
two-tailed, and, consequently the significance threshold is of 0.025; 
so the difference is of 65 or 45 thousandths since the statistical 
significance in the paper [64] has been reported only at the second 
decimal figure. In any case, if the statistical significance threshold 
had been settled at 0.10 during the planning of the study, would not 
have had the current problems in the interpretation of its results 
and in accepting an innovative strategy of treatment. Secondly, it 
has to critically reconsider the rigid position of the regulatory 
authorities to judge a controlled clinical trial as inconclusive 
if the primary outcome has not been demonstrated by means 
of a statistically significant result. Even if this position can be 
considered as justifiable for trials aimed to a drug registration 
for its commercialization, I think that it has to be assumed a more 
flexible attitude in the case of a treatment such as the ECMO in the 
Intensive Care settings. Indeed, it has also to consider: 

a)	 The clinical context in which the trial has been carried 
out; 

b)	 The potential for care of the current treatment; 

c)	 The methodological statistical aspects such as the real 
difficulties in doing a direct and easy comparison owing to 
the crossover from the control to the experimental group (or, 
generally, a crossover even for both the treatment groups); 

d)	 The limitations of the trial that have been clearly and 
exhaustively reported by Combes et al. [64] at the end of the 
paper; and, lastly, 

e)	 Some pitfalls in the planning of the controlled clinical 
trials those subsequent amendments (this trial had as many as 
ten amendments) try to fix more or less successfully and the 
remarkable duration of the trial that was approved in 2010 and 
published 8 years after. So, I think that it is possible to consider 
the trial as adequately supportive of the ECMO treatment [65]. 

Conclusion
The recent proposal of moving down to 0.005 the statistical 

significance threshold is, of course, well-motivated in the Benjamin 
et al. [1] and also in the previous paper from Johnson [13]. However, 
it has to say that accepting such a proposal is involves such a 
change in the scientific world, in the mentality of researchers, in 
drug development by the pharmaceutical companies that could 
have negative consequences at least in the first years following. 
I think that it is mandatory that researchers have an adequate 
knowledge of the statistical method and also of the meaning of 
the p-values in order to appropriately consider the results of the 
research and to be absolutely aware of their use. One could begin 
to request that p-values be accompanied by considerations about 
the probability that the null hypothesis (and / or the alternative) is 
true. These considerations should have an appropriate prominence 
perhaps even in the context of the conclusions of the abstract of the 
published papers.
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