
Research Article
Modeling and Estimation of Thermal Flows Based on Transport
and Balance Equations

Angelo Alessandri , Patrizia Bagnerini, Roberto Cianci, and Roberto Revetria

University of Genoa (DIME), Via Opera Pia 15, I-16145 Genoa, Italy

Correspondence should be addressed to Angelo Alessandri; alessandri@dime.unige.it

Received 10 October 2019; Accepted 10 January 2020; Published 1 February 2020

Academic Editor: Andrei D. Mironov

Copyright © 2020 Angelo Alessandri et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Heat transfer in counterflow heat exchangers is modeled by using transport and balance equations with the temperatures of cold
fluid, hot fluid, and metal pipe as state variables distributed along the entire pipe length. Using such models, boundary value
problems can be solved to estimate the temperatures over all the length by means of measurements taken only at the
boundaries. Conditions for the stability of the estimation error given by the difference between the temperatures and their
estimates are established by using a Lyapunov approach. Toward this end, a method to construct nonlinear Lyapunov
functionals is addressed by relying on a polynomial diagonal structure. This stability analysis is extended in case of the presence
of bounded modeling uncertainty. The theoretical findings are illustrated with numerical results, which show the effectiveness of
the proposed approach.

1. Introduction

The mathematical modeling of heat exchangers is really
important since these devices are employed in chemical pro-
cesses, petroleum refineries, power systems, and heating/refri-
geration of air-conditioning plants [1, 2]. In this paper, we
address the modeling of a counterflow heat exchanger based
on transport and balance PDEs and use such models for the
purpose of monitoring the thermodynamic process by solving
boundary value problems that exploit only few temperature
measurements at the boundaries. A rigorous stability analysis
is addressed to prove the effectiveness of the resulting temper-
ature estimates from the theoretical and numerical points of
view in line with the widespread methods based on the Lya-
punov approach in a number of different applications [3–6].

Heat exchangers for industrial processes allow recovering
lost energy from hot fluid streams or to heat a cold fluid for
the purpose of air conditioning. Finite-dimensional models
of such processes are used for fouling detection by using
Kalman filtering methods [1, 2]. As compared with these
models, the proposed modeling framework is in an infinite
dimension since it relies on hyperbolic PDEs. Based on such

equations, first we will focus on a model with the dynamics of
the temperatures of cold fluid, hot fluid, and metal pipe. In
addition, a reduced model is considered with only the tem-
peratures of cold and hot fluid as state variables in line with
[7]. Since such temperatures cannot be determined by direct,
distributed measurements, it is fundamental to estimate
them by using a few numbers of measures. Toward this
end, using such models, we address the solution of boundary
value problems to estimate the distributed state, which pro-
vides such estimate by having at our disposal measurements
of temperature only at the boundaries. We will refer to them
also as boundary-output Luenberger observers or simply
state observers (see [8] and the references therein). Stability
conditions on the estimation error (i.e., the difference
between the temperatures and their estimates) will be pre-
sented to construct such estimators in case of perfect model-
ing and assuming bounded uncertainty. In such a case, we
will rely on the notion of quadratic boundedness (QB, for
short) [9]. Finally, numerical results will be given to showcase
the theoretical findings.

The stability of the estimation error is analyzed in two
different settings. First, we will consider perfect modeling
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and hence asymptotic stability results will be provided. Next,
we will assume the presence of additive noises, which account
for bounded modeling uncertainties and stability is studied
by using QB. Generally speaking, QB allows dealing with
positively invariant sets and derive upper bounds on the tra-
jectories of the state of a dynamic system subject to bounded
disturbances [9]. Thus, QB has been successfully used for
both output feedback control [10] and state estimation [11].
Here, we will extend the use of QB for the purpose of estima-
tion in the considered infinite dimensional context. It is
worth noting that, in lieu of searching for exact solutions of
the flow equations (see, e.g., [12, 13]), here we deal with the
construction of boundary-output observers with guaranteed
stability properties on the estimation error.

All the stability conditions that will be presented demand
the selection of nonlinear Lyapunov functionals. In this
paper, we will address this task by using the SOS (sum-of-
squares) approach [14, 15], which was originally developed
for the analysis and control of polynomial systems described
by ODEs (see [16] and the references therein) and recently
applied also to systems described by PDEs [17–19]. SOS
methods are quite computationally efficient since they are
based on semidefinite programming (SDP) [20, 21]. In this
respect, the SOS approach allows finding Lyapunov func-
tionals just like the methods based on LMIs (linear matrix
inequalities) enable computing Lyapunov functions for linear
systems based on ODE models [22]. As compared with the
search of classical Lyapunov functions to investigate local
stability [23], we do not rely on linearized models but provide
conditions of global stability.

The paper is organized as follows: Section 2 reports the
basic definitions that will be used in the following discus-
sions. Modeling of thermal flows in one-dimensional heat
exchangers is given in Section 3. The proposed estimation
approach is presented in Section 4, where stability is ana-
lyzed in a noise-free modeling framework. This analysis is
extended to models affected by bounded disturbances in Sec-
tion 5. A brief account on the use of the SOS method to find
the Lyapunov functionals and thus ensure stability is given in
Section 6. Section 7 illustrates the numerical results, while
conclusions are drawn in Section 8.

2. Notations and Definitions

The set of real numbers is denoted by ℝ and hence ℝ+
will be used for the set of strictly positive real numbers.
The set of the integer numbers equal to or greater than
zero is denoted by ℕ.

The minimum and maximum eigenvalues of a symmetric
matrix P ∈ℝn×n are denoted by λminðPÞ and λmaxðPÞ, respec-
tively. Moreover, P > 0 (P < 0) means that it is also positive
(negative) definite. Given a generic matrix M, jMj≔
ðλmaxðM⊤MÞÞ1/2 = ðλmaxðMM⊤ÞÞ1/2, and hence, for a vector
x = ðx1, x2,⋯, xnÞ ∈ℝn, ∣x∣ ≔ ðx⊤xÞ1/2 is its Euclidean norm.

ℝ½x� denotes the ring of real polynomials in x ∈ℝn; ℝ½x�d
is the set of real polynomials of a degree equal or less than
d ∈ℕ.

Given the compact set Ω ⊂ℝn, L2ðΩÞ denotes the
Hilbert space of square integrable functions γ : Ω × ½0, +∞Þ
⟶ℝm with the norm jγð·, tÞjL2

= ðÐ
Ω
jγðx, tÞj2dxÞ1/2 <∞

for all t ≥ 0. The solution ϕðx, tÞ ∈L2ðΩÞ of a PDE with the
initial condition ϕðx, 0Þ = ϕ0ðxÞ ∈L2ðΩÞ is said to be

(i) L2 is stable (to zero) if, for all ε > 0, there exists
δε > 0 such that

ϕ0j jL2
< δε ⇒ ϕ ·, tð Þj jL2

< ε, ð1Þ

for all t ≥ 0
(ii) L2 is asymptotically stable (to zero) if it is stable and

lim
t→+∞

ϕ ·, tð Þj jL2
= 0 ð2Þ

(iii) L2 is exponentially stable (to zero) if there exists
λ > 0 such that

ϕ ·, tð Þj jL2
≤ c, ϕ0j jL2

exp −λtð Þ, ð3Þ

for some c > 0 and all t ≥ 0

3. Modeling Heat Transfer in Heat Exchangers

Consider the one-dimensional model of counterflow heat
exchangers with three distributed state variables, i.e., Tcðx,
tÞ, Thðx, tÞ, and Tmðx, tÞ for x ∈ ½0, L� and t ≥ 0, as depicted
in Figure 1; such variables represent the temperatures of cold
fluid, hot fluid, and pipe, respectively (the subscript indicat-
ing that it is made of some metal in such a way to maximize
the heat transfer). Based on the balance of enthalpy for the
hot fluid, we get

ρhchSh
∂Th

∂t
+ _mhch

∂Th

∂x
=Uhph Tm − Thð Þ, ð4Þ

where ρh is the density (in kg/m3), ch is the specific heat (in
J/(kgK)), _mh is the mass flow rate (in kg/s), Uh is the transfer
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Figure 1: Sketch of the heat exchanger model.
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coefficient (in W/(m2K)), Sh (in m2) is the internal surface of
the pipe, and ph is its perimeter (in m). Concerning the cold
fluid, the balance of enthalpy is given by

ρcccSc
∂Tc

∂t
− _mccc

∂Tc

∂x
=Ucpc Tm − Tcð Þ, ð5Þ

where ρc is density (in kg/m3), cc is the specific heat (in
J/(kgK)), and Uc is the transfer coefficient (in W/(m2)).
Moreover, Sc (in m2) is the external surface of the pipe
and pc is its perimeter (in m). Finally, for the metal pipe
it follows that

ρmcmSm
∂Tm

∂t
=Uhph Th − Tmð Þ +Ucpc Tc − Tmð Þ, ð6Þ

where ρm is the density (in kg/m3) of the metal, cm is the
specific heat (in J/(kgK)) of the metal, and Sm ≔ Sc − Sh
(in m2) is the surface of the pipe section.

After dividing each of the three previous equations for
the first coefficient in each respective l.h.s., we get

∂Th

∂t
+ a1

∂Th

∂x
= b1 Tm − Thð Þ, ð7Þ

∂Tc

∂t
− a2

∂Tc

∂x
= b2 Tm − Tcð Þ, ð8Þ

∂Tm

∂t
= b3 Th − Tmð Þ + b4 Tc − Tmð Þ, ð9Þ

where

a1 =
_mh

ρhSh
,

a2 ≔
_mc

ρcSc
,

b1 ≔
Uhph
ρhchSh

,

b2 ≔
Ucpc
ρcccSc

,

b3 ≔
Uhph

ρmcmSm
,

b4 ≔
Ucpc

ρmcmSm
,

ð10Þ

or, more concisely, as follows:

∂tT + A1∂xT = B1T , ð11Þ

where Tðx, tÞ≔ colðThðx, tÞ, Tcðx, tÞ, Tmðx, tÞÞ ∈ℝ3 and

A1 ≔

a1 0 0
0 −a2 0
0 0 0

0
BB@

1
CCA,

B1 ≔

−b1 0 b1

0 −b2 b2

b3 b4 −b3 − b4

0
BB@

1
CCA:

ð12Þ

The system (11) is solved with initial conditions

Th x, 0ð Þ = T0
h xð Þ,

Tc x, 0ð Þ = T0
c xð Þ,

Tm x, 0ð Þ = T0
m xð Þ,

 x ∈ 0, L½ �,

ð13Þ

and Dirichlet boundary conditions

Th 0, tð Þ = �Th 0, tð Þ,
Tc L, tð Þ = �Tc L, tð Þ,

ð14Þ

for all t ≥ 0. The boundary conditions on Tm are not neces-
sary since equation (9) does not contain spatial derivatives
of Tm.

Likewise, in [7], a reduced model can be easily derived
from (11) by neglecting the dynamics of the temperature in
the pipe, i.e., assuming that such a temperature is fixed by
the values of the temperatures of cold and hot fluids, i.e.,
imposing that the r.h.s. of (6) is null. Therefore, we obtain

∂Th

∂t
+ a1

∂Th

∂x
= −

b1b4
b3 + b4

Th +
b1b4
b3 + b4

Tc,

∂Tc

∂t
− a2

∂Tc

∂x
= b2b3
b3 + b4

Th −
b2b3
b3 + b4

Tc,
ð15Þ

or, more compactly,

∂tT + A2∂xT = B2T , ð16Þ

where Tðx, tÞ≔ colðThðx, tÞ, Tcðx, tÞÞ ∈ℝ2 and

A2 ≔
a1 0
0 −a2

 !
,

B2 ≔
1

b3 + b4

−b1b4 b1b4

b2b3 −b2b3

 !
,

ð17Þ
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with initial conditions

Th x, 0ð Þ = T0
h xð Þ,

Tc x, 0ð Þ = T0
c xð Þ,

 x ∈ 0, L½ �,
ð18Þ

and Dirichlet boundary conditions

Th 0, tð Þ = �Th 0, tð Þ,
Tc L, tð Þ = �Tc L, tð Þ,

ð19Þ

for all t ≥ 0.
Model (11) is of a hyperbolic type but not strictly hyper-

bolic since matrix A1 has a zero eigenvalue. By contrast, (16)
is strictly hyperbolic since the eigenvalues of A2 have a non-
null-real part. In Section 4, we will consider the problem to
reconstruct all the temperatures by using a generic hyper-
bolic model.

4. Estimation for Heat Exchangers with Stable
Estimation Error

Consider the hyperbolic equation

∂tT + A∂xT = BT , ð20Þ

where Tðx, tÞ ∈ℝn, A ∈ℝn×n diagonal, and B ∈ℝn×n. Con-
sider also the observer for (20) given by

∂t T̂ + A∂xT̂ = BT̂ , ð21Þ

where T̂ðx, tÞ ∈ℝn is the estimate of Tðx, tÞ. Such PDEs need
some suitable boundary conditions, which will be given later.
The stability of the estimation error can be guaranteed under
suitable conditions as follows.

Theorem 1. The estimation error eðx, tÞ≔ Tðx, tÞ − T̂ðx, tÞ
∈ℝn is L2 asymptotically stable if there exists a diagonal
matrix PðxÞ ∈ℝn×n with PðxÞ > 0 for all x ∈ ½0, L� such that

e 0, tð Þ⊤AP 0ð Þe 0, tð Þ − e L, tð Þ⊤AP Lð Þe L, tð Þ ≤ 0, ð22Þ

and

A∂xP xð Þ + B⊤P xð Þ + P xð ÞB < 0, ð23Þ

for all x ∈ ½0, L�.

Proof. Consider the Lyapunov functional

V tð Þ≔
ðL
0
e x, tð Þ⊤P xð Þe x, tð Þdx, ð24Þ

and note that the asymptotic stability of the estimation error
is ensured if

_V tð Þ < 0, ð25Þ

for all eðx, tÞ ∈ℝn since PðxÞ > 0 for all x ∈ ½0, L�. Since P does
not depend on time, we get

_V tð Þ =
ðL
0
− ∂xe

⊤AΤPe − e⊤PA ∂xe + e⊤ B⊤P + PB
� �

edx,

ð26Þ

and, owing to the diagonal structure of A and P,

−∂xe
⊤A⊤Pe − e⊤PA∂xe = −∂x e⊤APe

� �
+ e⊤A∂xPe: ð27Þ

Thus, it follows

_V tð Þ = −e L, tð Þ⊤AP Lð Þe L, tð Þ + e 0, tð Þ⊤AP 0ð Þe 0, tð Þ

+
ðL
0
e⊤ A∂xP + B⊤P + PB
� �

edx,
ð28Þ

and hence (25) holds owing to (22) and (23).

Note that if, instead of (23), we consider

A∂xP xð Þ + B⊤P xð Þ + P xð ÞB + αP xð Þ < 0, ð29Þ

with α > 0 for all x ∈ ½0, L�, the estimation error is L2 expo-
nentially stable with a rate of decrease equal to α. Thus, a
design goal may consist in maximizing α, which can be
regarded as a sort of generalized eigenvalue problem for Lya-
punov functionals instead of Lyapunov functions [22].

In case of the reduced model (16) (i.e., with A = A2 and
B = B2), the stability conditions of Theorem 1 can be greatly
simplified according to [7] by using

P xð Þ≔ diag exp μ1xð Þ, exp μ2xð Þð Þ, ð30Þ

and boundary conditions

T̂h 0, tð Þ = Th 0, tð Þ + ℓ1 Tc 0, tð Þ − T̂c 0, tð Þ� �
, ð31Þ

T̂c L, tð Þ = Tc L, tð Þ + ℓ2 Th L, tð Þ − T̂h L, tð Þ� �
, ð32Þ

for all t ≥ 0 with ℓ1, ℓ2, μ1, μ2 ∈ℝ to be suitably chosen. More
specifically, in [7] it is proposed to satisfy (23) by using an
LMI-based discretized approach to get μ1, μ2 and then select
ℓ1, ℓ2 such that

a2ℓ
2
2 exp μ2Lð Þ − a1 exp μ1Lð Þ ≤ 0,

a1ℓ
2
1 − a2 ≤ 0,

ð33Þ
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by choosing, for example,

ℓ1 =
ffiffiffiffiffi
a2
a1

r
,

ℓ2 =
ffiffiffiffiffi
a1
a2

r
exp μ1 − μ2ð ÞL

2

� �
:

ð34Þ

The construction of Lyapunov functionals is not an
easy task to solve in general and will be addressed later in
Section 6.

5. Estimation under Modeling Uncertainties

Let us focus on estimation in the presence of bounded distur-
bances. More specifically, instead of (20) we consider

∂tT + A∂xT = BT +Dw, ð35Þ

where D ∈ℝn×q and wðx, tÞ ∈ℝq such that jwiðx, tÞj ≤ 1, i =
1,⋯, q for all x ∈ ½0, L� and t ≥ 0 without loss of generality
(different upper bounds can be taken into account by suitably
scaling the coefficients ofD), where q is an integer number no
larger than n. Estimation will be performed by using the same
observer adopted in the noise-free case, i.e., (21).

The presence of the system noises prevents from
ensuring asymptotic stability, but since such disturbances
are bounded, an invariant set for the estimation error exists
and can be studied by using QB [9].

Toward this end, first of all we need to define QB in the
L2 sense. More specifically, the estimation error is said to
be L2 quadratically bounded with the Lyapunov functional
VðtÞ as defined in (24) if

V tð Þ > L⇒ _V tð Þ < 0,
∀w ∈ −1, 1½ �q:

ð36Þ

As a matter of fact, any positive constant can be chosen
instead of L, but with such a choice we reduce the nota-
tional burden. This does not entail loss of generality since
the conditions ensuring QB are homogeneous in the design
parameters, which scales with L and thus allows for this
simplification.

Owing to (36), the set

E ≔ e ∈L2 0, L½ �ð Þ:
ðL
0
e xð Þ⊤P xð Þe xð Þdx ≤ L

� �
, ð37Þ

turns out to be positively invariant and it is attractive (i.e., if
the error is out of E, it approaches E asymptotically).

Theorem 2. The estimation error is quadratically bounded if
there exists a diagonal matrix PðxÞ ∈ℝn×n with PðxÞ > 0 for
all x ∈ ½0, L� and α ∈ℝq

>0, β > 0 such that (22) and

A∂xP xð Þ + B⊤P xð Þ + P xð ÞB + βP xð Þ P xð ÞD
D⊤P xð Þ −diag αð Þ

 !
< 0, ð38Þ

〠
q

i=l
αi − β ≤ 0, ð39Þ

hold for all x ∈ ½0, L�.

Proof. Likewise in the proof of Theorem 1, we easily compute
the time derivative of the Lyapunov functional (24) and get
that _VðtÞ < 0 subject to (22) is equivalent to

e⊤ A∂xP + B⊤P + PB
� �

e +w⊤D⊤Pe + e⊤PDw < 0: ð40Þ

Since −e⊤Pe + 1 > 0 implies VðtÞ > L and −w2
i + 1 > 0

holds, using the well-known S-procedure (see [22], p. 23)
we obtain that QB holds if

e⊤ A∂xP + B⊤P + PB + βP
� �

e +w⊤D⊤Pe

+ e⊤PDw − 〠
q

i=1
αiw

2
i + 〠

q

i=1
αi − β < 0,

ð41Þ

for some α ∈ℝq
>0 and β > 0 or equivalently if (38) and (39)

hold.

Clearly, (38) implies

A∂xP xð Þ + B⊤P xð Þ + P xð ÞB + βP xð Þ < 0, ð42Þ

for all x ∈ ½0, L�, which ensures that the estimation error in
the absence of noises is L2 exponentially stable with a rate
of decrease equal to β. Thus, a convenient design goal may
consist in maximizing β, as pointed out in [7]. Another, quite
popular objective of design is related to theL2 gain between
disturbance and estimation error.

Theorem 2 provides conditions ensuring that the set E is
attractive. Thus, one can design the estimator in such a way
to keep E as small as possible. Toward this end, note that

λmin P xð Þð Þ ej j2 ≤ e⊤P xð Þe, x ∈ 0, L½ �, ð43Þ

for all e ∈E and hence, as a design objective, we may maxi-
mize the minimum eigenvalue of PðxÞ since

e x, tð Þj j ≤ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmin P xð Þð Þp , ð44Þ

for all t ≥ 0, x ∈ ½0, L�. The inequality above allows proving
the boundedness in the L2 sense as

e ·, tð Þj jL2
≤

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
x∈ 0,L½ �

λmin P xð Þð Þq , ð45Þ

for all t ≥ 0.
To compare the effectiveness of a given observer in terms

of rejection of the noise, it is quite popular to rely on the
notion of the L2 gain by assuming finite-energy noises, i.e.,
wð·, tÞ ∈ L2ðΩÞ. More specifically, we say that the proposed
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observer admits and L2 gain between disturbance and esti-
mation error is equal to γ > 0 if

ðT
0
e ·, tð Þj jL2

dt ≤ γ2
ðT
0
w ·, tð Þj jL2

dt, ð46Þ

for T > 0. It is straightforward to show that the bound of the
L2 gain holds if

A ∂xP xð Þ + B⊤P xð Þ + P xð ÞB + 1
γ2

I P xð ÞD

D⊤P xð Þ −I

0
BB@

1
CCA < 0:

ð47Þ

Note also that this condition is quite similar to (38).
Moreover, minimizing γ is equivalent to maximizing 1/γ2
in accordance with the goal of maximizing β.

6. Search of Lyapunov Functionals Using the
SOS Approach

Stability conditions such as (23), (29), (38), or (47) (each
together with PðxÞ > 0) demand the satisfaction of LMIs in
PðxÞ for all x ∈ ½0, L�, i.e., the solution of semi-infinite pro-
gramming problems. Such problems arise in a variety of
applications and are usually approximately solved in discre-
tized form on a sufficiently fine mesh of points (see, e.g.,
[24]). The main difficulty to address semi-infinite program-
ming problems concerns both the choice of a sufficiently
large number of points and especially the local minima trap-
ping, by which nonlinear programming solvers may be
affected in trying to find the solution. A more appealing
way to solve such problems consists in resorting to the SOS
paradigm, which enables turning the construction of a Lya-
punov functional into a convex problem that can be effi-
ciently solved by using SDP without encountering such
issues due to local minima.

The idea behind such an approach is the SOS decompo-
sition of a candidate Lyapunov functional as well as of the
opposite of its time derivative by using a positivity certifica-
tion, which does not depend on the characteristics of the cho-
sen polynomial [21, 25]. More specifically, the following
result holds.

Theorem 3. A polynomial pðxÞ ∈ℝ½x�2d in x = ðx1,⋯, xnÞ ∈
ℝn has sum-of-squares decomposition (or is said to be SOS)
if and only if there exists a real symmetric and positive semide-
finite matrix Q ∈ℝsðdÞ×sðdÞ such that pðxÞ = vdðxÞΤQvdðxÞ,
where vdðxÞ is the vector of all the monomials in the compo-
nents of x ∈ℝn of degree equal to or less than d ∈ℕ, i.e.,

vd xð Þ≔ 1, x1,⋯, xn, x1x2,⋯, xn−1xn, x2n,⋯, xd1 ,⋯, xdn
	 


,

ð48Þ

of dimension

s dð Þ≔
n + d

d

 !
: ð49Þ

Proof. See Proposition 2.1 in [26] (p. 17).

Consider, for example, the estimation of the state vari-
ables of (7), (8), and (9) by using the results of Theorem 1.
Based on Theorem 3, a procedure can be adopted to find
suitable SOS polynomials as diagonal elements of PðxÞ =
diag ðP11ðxÞ, P22ðxÞ, P33ðxÞÞ, all to be taken in ℝ½x�2d with
x ∈ℝ for increasing values of d. Toward this end, we say
that pðxÞ ∈ℝ½x�2d is ε-SOS polynomial if pðxÞ − ε∑n

i=1x
2
i ∈

ℝ½x�2d with d ∈ℕ, d ≥ 1 is SOS for some “small” tolerance
ε > 0 [27]. In addition, a polynomial, square matrix MðxÞ
with MijðxÞ ∈ℝ½x�2d for i, j = 1,⋯,m is said to be an ε-SOS

matrix if yΤMðxÞy is ε-SOS in ℝ½x, y� with x ∈ℝ and
y ∈ℝm.

Given d ∈ℕ with d ≥ 1 and ε > 0, the problem to solve
when dealing, for example, with the stability conditions of
Theorem 1 is the following:

Problem 4. Find P11ðxÞ, P22ðxÞ, P33ðxÞ ∈ℝ½x�2d such that

P11 xð Þ, P22 xð Þ, P33 xð Þ are ε‐SOS ð50Þ

−A diag P11′ xð Þ, P22′ xð Þ, P33′ xð Þ
	 


− BT diag P11 xð Þ, P22 xð Þ, P33 xð Þð Þ,
− diag P11 xð Þ, P22 xð Þ, P33 xð Þð ÞB is a ε‐SOSmatrix,

ð51Þ

for all x ∈ ½0, L�.

If Problem 4 admits a solution, we can follow the same
reasoning that leads to (34) to ensure the satisfaction of
(22) by choosing

ℓ1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2P22 0ð Þ
a1P11 0ð Þ

s
,

ℓ2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1P11 Lð Þ
a2P22 Lð Þ

s
:

ð52Þ

Similar problems may be formulated by replacing the
SOS description of (52) with those corresponding to (29),
(38), and (47).

7. Numerical Results

For the sake of brevity, in the following discussion, we will
describe only the numerical solution of the boundary value
problem that results from the discretization of the model
(11) since this includes that of the reduced model (16) as a
special case. We have discretized the domain ½0, L� with M
equally spaced points xj for j = 1,⋯,M, and both (16) and
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(21) are treated by using a finite difference method. Equa-
tions (7) and (8) composed of an advection term (a1∂xTh
and −a2∂xTc) and a reaction one (the right side of the equal-
ities) are semidiscretized in space by an upwind finite differ-
ence scheme [28–30]. The choice of an upwind scheme is
more appropriate for the convective term in which there is
a propagation direction. The boundary conditions (19) for
(16) (and (31) and (32) for (21)) are given for Th and Tc only
in the left (x = 0) and right (x = L) parts of the domain,
respectively. The term a1∂xTh in (7) is therefore discretized
by using backward finite difference since a1 is positive,
whereas the term −a2∂xTc in (8) is discretized by a forward
one since −a2 is negative.

Setting by ðThÞjðtÞ the solution at the discretization point
xj at time t (and analogously for Tc and Tm), we obtain the
following system of ODEs:

Thð Þj′ tð Þ = −a1 Thð Þj tð Þ − Thð Þj−1 tð Þ
h i

+ b1 Tmð Þj tð Þ − Thð Þj tð Þ
h i

, j = 2,⋯,M,

Tcð Þj′ tð Þ = a2 Tcð Þj+1 tð Þ − Tcð Þj tð Þ
h i

+ b2 Tmð Þj tð Þ − Tcð Þj tð Þ
h i

, j = 1,⋯,M − 1,

Tmð Þj′ tð Þ = b3 Thð Þj tð Þ − Tmð Þj tð Þ
h i

+ b4 Tcð Þj tð Þ − Tmð Þj tð Þ
h i

, j = 1,⋯,M,

Thð Þ1′ tð Þ = 0,

Tcð ÞM′ tð Þ = 0,
ð53Þ

with initial conditions

Thð Þj 0ð Þ = T0
h xj
� �

,

Tcð Þj 0ð Þ = T0
c xj
� �

:
ð54Þ

The boundary conditions in (19) are translated in the sys-
tem by setting

Thð Þ1 tð Þ = �Th 0, tð Þ,
Tcð ÞM tð Þ = �Tc L, tð Þ:

ð55Þ

The temperatures Th and Tc at the initial time are chosen
constant and equal to the values at the boundary points
where their measures are available, i.e., equals to �Th in x = 0
and �Tc in x = L such as

T0
h xj
� �

= �Th 0, 0ð Þ,
T0
c xj
� �

= �Tc L, 0ð Þ,
 j = 1,⋯,M,

ð56Þ

with a constant value belonging to the interval ½Th, Tc� taken
as initial conditions for Tm, i.e.,

T0
m xj
� �

= �Tm,  j = 1,⋯,M: ð57Þ

The scheme for the observer (21) is the same by replacing
ðThÞjðtÞ with ðT̂hÞjðtÞ, ðTcÞjðtÞ with ðT̂cÞjðtÞ and so on,
except for the boundary conditions, which are the following:

T̂h

� �
1 tð Þ = �Th tð Þ + l1 Tcð Þ1 tð Þ − T̂c

� �
1 tð Þ� �

,

T̂c

� �
M

tð Þ = �Tc tð Þ + l2 Thð ÞM tð Þ − T̂h

� �
M

tð Þ� �
:

ð58Þ

For the observer, the initial conditions in the simulation
are chosen as:

T̂
0
h xð Þ = �Th 0, 0ð Þ + 3 sin 1:2πxð Þ,

T̂
0
c xð Þ = 6 sin 1:2πxð Þ − 9:539x + 0:535x2 + 18,

T̂
0
m xð Þ = �Tm:

ð59Þ

The system of ODEs (52) is solved by using a fourth-
order Runge-Kutta method (implemented in the ode45 func-
tion of MATLAB) with variable time step. In the first instants
of the simulation, the fast dynamics of the convective part
prevails, while later the reaction term predominates. To accu-
rately simulate the model, it is therefore necessary to select a
very small time step in the first time instants, while it may be
chosen larger afterwards, but of course, always respecting
the stability condition of the numerical scheme. Implicit
methods (e.g., the scheme implemented in the routine ode15s
of MATLAB) are tested, since they generally allow using a
larger time step. This resulted in a longer running time, due
to the higher complexity to complete each iteration. Then,
explicit methods seem to be the most appropriate choice for
this problem.

In the numerical case study, we have fixed L = 5m,
a1 = 1m/s, a2 = 1m/s, b1 = 0:01 1/s, b2 = 0:01 1/s, b3 = 0:01
1/s, and b4 = 0:01 1/s. Concerning the proposed estimation
approach with (11) and (16), we have solved Problem 4 by
using the SOS toolbox [27] and the numerical solver Yalmip
[31] with ε = 10−6. In the first case (i.e., A = A1 and B = B1),
we have got a solution to such a problem with d = 1 given by

P xð Þ = diag
	

1:096 · 10−4x + 1:017
� �2

+ 0:0017x − 1:096 · 10−4
� �2,

2:8477 · 10−4x + 0:9864
� �2
+ 0:0017x + 2:8477 · 10−4
� �2,

1:4496 · 10−4x + 1:0093
� �2
+ 0:0017x + 1:4496 · 10−4
� �2
,

ð60Þ
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and select ℓ1, ℓ2 according to (52). The same has been done
for the reduced model with A = A2 and B = B2 by obtaining

P xð Þ = diag
	

1:9955 · 10−4x + 0:9546
� �2

+ 0:001x + 1:9955 · 10−4
� �2,

4:1525 · 10−4x + 0:9124
� �2
+ 0:001x + 4:1525 · 10−4
� �2
,

ð61Þ

and taking ℓ1, ℓ2 again according to (52). We have chosen
M = 500, �Thð0, 0Þ = 55, �TcðL, 0Þ = −15, and �Tm = 50.

Figure 2 shows the behavior of the temperatures Th, Tc,
and Tm and their estimates given by T̂h, T̂c, and T̂m at differ-
ent time instants, all based on (11). Figure 3 shows the behav-

ior of the temperatures Th, Tc and the corresponding
estimates T̂h, T̂c, based on the reduced model (16).

8. Conclusions

Two models have been presented to account for the temper-
ature dynamics in heat exchangers. Such models are based on
hyperbolic PDEs with the most complete having the temper-
atures of cold fluid, hot fluid, and pipe as state variables,
whereas the reduced one relies only on the temperatures of
cold and hot fluids. Estimators resulting from the solution
of boundary value problems based on such models have been
proposed and provided with a rigorous stability analysis with
the Lyapunov approach. To this end, the existence of nonlin-
ear polynomial Lyapunov functionals has been addressed by
using the SOS approach.

60
t = 0 t = 50 t = 100

t = 150 t = 200 t = 250

t = 300 t = 400 t = 600

50
40
30
20
10

0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

–10
–20

60
50
40
30
20
10

0
–10
–20

60
50
40
30
20
10

0
–10
–20

60
50
40
30
20
10

–10
–20

60
50
40
30
20
10

00
–10
–20

60
50
40
30
20
10

0
–10
–20

60
50
40
30
20
10

–10
–20

60
50
40
30
20
10

00
–10
–20

60
50
40
30
20
10

0
–10
–20

⌃Th
⌃Tc
⌃Tm

Th

Tc

Tm

Figure 2: Simulation run in a noise-free case at different time steps for the model (11).
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Future work will concern the investigation on the stabil-
ity of systems described by nonlinear hyperbolic equations
(see, e.g., [32]). Another direction of research is the study of
stability of cascaded hyperbolic and other nonlinear PDEs
such as the normal flow equation to deal with multiphase
problems, which turn out to be increasingly difficult but with
a wide range of potential applications [33].
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