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Abstract: Electron Cyclotron Resonance Ion Sources are currently the most efficient ion sources 

among those used in facilities dedicated to nuclear physics. The need for a more flexible magnetic 

field and RF injection system suggested to design and develop a different type of plasma trap, named 

Flexible Plasma Trap (FPT). The magnetic field of FPT is generated by means of three coils while 

microwaves in the range 4–7 GHz can be injected by three different inputs, one placed along the 

axis and two placed radially. FPT can work in different plasma heating schemes so it will be an 

ideal tool for studies of plasma and multidisciplinary physics. Moreover, a microwave launcher has 

been designed and installed to the FPT for launching microwaves with a variable tilt angle with 

respect to the magnetic field. This paper describes the characteristics of the FPT along with the 

preliminary results of plasma diagnostics. 
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1 Introduction 

The Electron Cyclotron Resonance Ion Sources (ECRIS) are used to generate high intensity highly 

charged ion beams characterized by high stability and high reliability. The improvement of ECRIS 

performances followed up to now the so called Geller’s scaling laws: both extracted current Iextr. 

and mean charge state < q > depend on the microwaves frequency as [1]: 

Iextr. ∝ ω2
 

< q > ∝ log ω 
7 
) 

(1.1) 

(1.2) 

Additional limitations are given by the high B-mode (HBM) concept [2] that sets a rule of 

thumb for the value of confining magnetic field, above 2BECR. Any further step forward in terms of 

extracted current and charge states needs a further increase of microwaves frequency and magnetic 

field strength, involving a considerable impact on the design complexity and cost. Moreover, 

from a technological point of view, the required superconducting magnets are close to the limit of 

current technology. 

The use of new schemes of plasma heating, and in particular the excitation and absorption of 

Electron Bernstein Waves (EBW) [3], could be an alternative to overcome the present limitations. 

Preliminary tests, carried out with a fixed field plasma reactor, have shown that it is possible to 

increase by a factor 5 to 10 the electron density above the density cut-off [4, 5]. The tests have 

shown that the tuning of the magnetic field profile and of microwaves frequency plays a key role in 

boosting the plasma density and temperature. 

The experience gained over the last years led to the development of Flexible Plasma Trap 

(FPT), characterized by a huge flexibility in terms of magnetic field configuration, microwaves 
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frequency and possibility to launch microwaves with different frequency, propagation directions 

and polarization. The tuning of the magnetic field profile and microwaves’ frequency makes possible 

the generation of plasmas characterized by different density, temperature and ion lifetime, thereby 

optimizing the production of high currents of protons, light ions or H+ and H+ beams. 
2 3 

The large range of electron density and temperature of the generated plasmas makes FPT the 

proper set-up for studies of astrophysical, nuclear physics and multidisciplinary physics. In last 

years, in fact, the interest of the scientific community for studies of fundamental physics in a plasma  

environment has been growing. The plasma is not only a source of ions to be accelerated, but also 

a fertile environment for studies of fundamental and applied physics. In this perspective, a special 

attention has been paid to the diagnostics issues, to make possible the full characterization of the 

electron energy distribution function in all energetic domains of the electron and ion populations. 

 
2 Alternative mechanisms of plasma heating 

 
An option to overcome the limits of the ECR heating consists in the use of plasma waves, having no  

cutoffs in a plasma environment. A plasma wave is a rarefaction-compression wave whose electric 

field is parallel to the propagation direction. Typically, a large number of plasma oscillation modes 

can be excited in a plasma; among them, the EBW are the most promising because they are strongly 

absorbed by the plasma at cyclotron harmonics [6]. Due to their electrostatic nature, EBWs must 

be generated inside the plasma from electromagnetic (EM) waves. In particular, an extraordinary 

wave (usually named as X wave) converts in an EBW at the upper hybrid resonance. 

There exist three different conversion mechanisms to convert EM waves to EBWs: “the high 

field side launching conversion”, the “Fast X- EBW (FX-B) conversion” and “the O- Slow X- EBW 

(O-SX-B) conversion” [7]. 

• High field side launching (arrow 1 in figure 1): X waves are launched by regions where 

B/BECR > 1. X waves are here not screened by the R cut-off, reach the UHR crossing the 

ECR from the high field side, then being converted into EBW. Because of the characteristics 

of the magnetic field of FPT (see section 3.1), this mechanism can not be applied to our device. 

 
• Fast-X-B conversion (arrow 2 in figure 1): the fast X-mode (FX) tunnels through the evanes- 

cent region between the R-wave cut-off and the UHR and couples to the slow X-mode (SX) 

that, in turn, converts to EBWs at UHR. 

Direct FX-B conversion heating is used in experiments with relatively low magnetic field, 

where the normalized gradient length k0Ln is ∼ 0.3 (k0 being the wave number of the incident 

wave in vacuum ad Ln = ne/(∂ne/∂ x) the length-scale of the electron density) [7, 8]. 

• O-Slow X-B conversion (arrow 3 in figure 1): the R cut-off is crossed by the O wave that, 

if the conditions for O-SX conversion are valid at the O cut-off, is converted into SX waves 

which are in turns converted into Bernstein waves at UHR. 

The efficiency of O-SX transition process is maximized for k0Ln ∼ 1–20, i.e. for flattened 

density profiles [7, 9]. 
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Figure 1. Main conversion mechanisms from X wave to EBW. 

 
As it will be described in the next sections, the flexibility of the FPT magnetic field, as well as 

of the RF launching systems, will allow to explore both XB or OXB conversion mechanisms. The 

first results from ongoing experiments are expected within 2017. 

 
3 The flexible plasma trap 

 
The FPT has been successfully installed at INFN-LNS and the commissioning phase is almost 

complete. In this section the main characteristics of the FPT are highlighted. 

 
3.1 The magnetic field 

The FPT magnetic field is generated by means of three solenoids which allow the tuning of the 

magnetic field profile. The solenoids have been developed in order to allow the generation of the 

following three magnetic field profiles: 

• The Off-Resonance configuration (dashed-dot line in figure 2) permits to study the plasma 

dynamics in a configuration like that of Microwave Discharge Ion Source (MDIS) [10]. The 

typical shape of the magnetic field for MDIS machines is a quasi-flat profile everywhere 

above the resonance value. This ensures electron densities around the density cut-off and 

temperatures sufficient for hydrogen ionization (Te ∼ 15–20 eV). Such plasma parameters 

require RF power around 0.5 to 1.5 kW and background pressures down to 10−5–10−4 mbar. 

The main advantage stays in the high stability of the extracted beam and in its low emittance. 
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Figure 2. Off-resonance, simple mirror and magnetic beach field profiles generated by the three coils of FPT. 

 
• The Simple mirror configuration (dotted line in figure 2) permits to increase the ion lifetime 

for multiply charged ions production. Ion lifetime τi, in fact, depends on the ratio between 

Bmax and Bmin as: 

τi ∝ log 
Bmax 

Bmin 

 
(3.1) 

Studies about balance equations of the different species within plasma for proton beams 

production (H+, H+, H+) or for multicharged ions from light elements like Li or C, reveal that 

the reciprocal abundance is regulated by the relative lifetimes. In a quasi-flat magnetic field, 

under normal operational pressure conditions, ions lifetime is only governed by collisional 

diffusion across the magnetic field, which is a rather fast process. The increase of ion lifetime, 

obtained when using the simple-mirror configuration, will increase the ionization efficiency 

thus allowing the production of 2+ or 3+ ions already at moderate RF power. Simple mirror 

configuration enables also to generate an almost flat plasma density that can be used to excite 

an overdense plasma via O-SX-B conversion. 

• The Magnetic Beach configuration (dashed line in figure 2) enables to study the mechanisms 

of electromagnetic to electrostatic conversion. The electromagnetic waves requires a rapidly 

dropping magnetic field and a high density gradient which makes possible either upper 

hybrid resonance and second harmonic absorption [7] thus making possible the conversion 

from electromagnetic wave to Bernstein wave via the FX-B conversion. 

 
3.2 The plasma chamber 

A particular attention was paid to the design of the plasma chamber. It gives the chance to couple 

three different waveguide inputs, each one perpendicular to the other (figure 3) and to have an 

adequate water cooling in the microwave windows location permitting at the same time to host 

different type of diagnostics. 
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Figure 3. Plasma chamber and microwave inputs in FPT. 

 

 
Figure 4. Render view of the FPT plasma chamber. 

 
The plasma chamber is shown in figure 4. Its dimensions are 82.0 mm in diameter and 260.1 mm 

in length. It is made of oxygen free high conductivity copper and the tolerances of the different 

pieces are dictated by the needs of microwave to plasma coupling, in any case better than 0.1 mm. 

The plasma chamber has been equipped by a stainless-steel made “pre-chamber” in order to 

host the vacuum system and the diagnostics tools. In this way, the vacuum pumping is performed 

through a 60 mm DN flange placed drilled in the lateral walls of the pre-chamber, while the three 

DN40 flanges placed on the endplate are free to host the diagnostic tools that will be described in 

section 4. 
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Figure 5.   The microwave launcher showing the power divider, phase shifter, and two-cut waveguide 

array [11]. 

 
3.3 The injection system 

The FPT plasma can be generated by means of three different microwave systems, through a parallel  

and two perpendicular microwaves injection. The axial injection is operated at frequencies ranging 

in the range of 4–7 GHz. The signal is generated by a Rohde & Schwarz generator, amplified by a 

TWT and sent to the FPT by WRD350 waveguides. 

A directional coupler enables the measure of forward and reflected power, while an insulator 

safeguards the TWT by the power reflected backwards. 

The perpendicular microwaves’ injection, working at 14 GHz frequency, consists of an Anritsu  

generator and a CPI klystron and the launcher shown in figure 5. (The other perpendicular microwave 

injection is not used at this moment) 

The use of two different microwave frequencies enables exploring also the aspects of resonant 

absorption of waves’ energy by electrons at the second-harmonic of the cyclotron resonance. 

The contemporary use of the two microwaves’ input allows operating with a double mode: 

a fraction of power provided to the plasma by means of the usual ECR-heating process by a 

standard double-ridge rectangular waveguide, and the remaining amount of power injected along 

the perpendicular direction with respect to the axis-symmetric magnetic field, in order to excite 

EBW through O-SX-B conversion mechanism. 

In reference [7], H. Laqua shows that the injection angle plays a key role for modal conversion 

from the Ordinary to SX wave. The perspective of modifying the injection angle in FPT led us to the 

development and construction of an innovative launcher for the injection along the perpendicular 

direction [11]. 

It consists of an array of two properly phased rectangular WR62 with their small side parallel to  

the magnetic field direction of the plasma chamber of FPT. The two waveguides are driven in TE10 

mode with relative phase controlled by a calibrated phase shifter, a loaded four-port power divider, 

and two flexible and twistable WR62 waveguide complete the launcher layout. The antenna has 

been fixed inside the transversal microwave injection camera port. The microwaves’ transmission 

line is shown in figure 5. 

The antenna pattern was investigated both theoretically and experimentally. The experimental 

characterization is in good agreement with the numerical simulations (see figure 6) and it has shown 
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Figure 6. Experimental measurements vs simulation for a phase shift ∆ϕ = 30◦ and ∆ϕ = 48◦. 

 
that, setting up a suitable phase difference, it is possible to tilt the angle of maximum radiation up 

to 48◦ in order to direct the microwaves towards the different areas of the plasma chamber. 

 
4 The diagnostics 

A special attention has been paid to diagnostics issues. This is a critical point for developing future 

highly performing ion sources. Several ion beam features directly follow from plasma parameters, 

and they can be optimized by modifying “on-line” the plasma properties, if such a properties are 

known with great accuracy. 

FPT diagnostics includes both invasive and non-invasive diagnostics. The goals of the authors, 

however, is to develop non-invasive diagnostics in order to avoid, in a few years, any use of invasive 

diagnostics, which could affect the results of the measurement or be damaged in presence of high 

density plasmas, in case of EBW plasmas generations. 

Hereinafter, the diagnostics tools already implemented in FPT: 

• Langmuir probe (LP) diagnostics allows obtaining electron density and temperature mea- 

surements of bulk electrons (1–100 eV) from the numerical analysis of the resistivity curve. 

Data are numerically analysed by means of different LP models validated in different density 

ranges of interest [4]. LP diagnostics feature some limitations: the probe undergoes plasma 

damage in high density, high temperature plasmas (ne > 5 · 1017 m−3, te > 100 eV) as the 

ones expected in case of EBW heating. Furthermore, the LP perturbs the plasma chamber, 

especially by the electromagnetic point of view and the values of electron density and 

temperature depend strongly by the physical model used to determine them from resistivity 

curve. Because of these limits, further diagnostics have been developed. 
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• Volume-integrated X-ray spectroscopy in low energy domain (2–30 keV, by using SDD de- 

tectors) or highly energetic regimes (> 30 keV, by using HpGe detectors). It allows obtaining 

electron temperature and density in the energy domain of the warm and hot electron popula- 

tion [12]; 

• A pin-hole camera is being used for the direct detection of the spatially-resolved spectral 

distribution of X-rays produced by the electronic motion. This diagnostics has been already 

applied to ECRIS plasmas [13]. This diagnostics is particularly suitable in case of EBW 

generation, since it permits to evaluate the plasma regions where microwaves are coupled to 

plasmas, and indeed to identify the resonance regions (see also reference [4]) . 

• Optical emission spectroscopy has been developed in order to characterize the extremely low 

energy part (< 10 eV) of the electron energy distribution function. It allows obtaining not 

only the electron density and temperature of cold electrons in the plasma bulk, but also the 

relative percentage of the ion species within the plasma [14]. 

• Microwave interferometry enables measuring the overall density of the whole plasma. The 

frequency-sweep interferometer, named VESPRI, has been already tested in the plasma 

reactor [15] and allowed the measurement of overdense plasma density generated by EBW 

by means of the so-called frequency-sweep method [5]. 

Two conical-horn antennas launch into the plasma chamber a probing signal in the range 18.5– 

26.5 GHz. The signal is synthesized by a frequency-sweep oscillator. The superposition of 

the reference and plasma leg signals produces a beating signal, whose Fourier transform gives  

the information about electron density [5] 

Figure 7 shows a render view of the FPT during the commissioning phase with three diagnostics  

connected to the “diagnostics flange”, in particular the optical spectrometer, the X-ray detector and 

the LP are visible in the picture. 

 
5 Preliminary results 

During the commissioning phase, we started to characterize FPT in simple mirror and B-flat 

configuration, modifying source parameters as microwave power and frequency, neutral pressure 

and magnetic configuration. 

Characterization started by using LP and non-invasive diagnostics. However we plan to avoid 

the LP use soon, and characterize plasma only by means of non-invasive tools. 

Figure 8 shows the electron density of an Argon plasma, calculated by means of OML model [4] 

in simple mirror configuration and 6.8 GHz microwaves frequency, when increasing microwave 

power from 10 to 60 W (neutral pressure 8 · 10−5 mbar). Plasma is well-confined within the ECR 

layer and density does not overcome the density cut-off in any point (ncutoff = 5.8 · 1017 m−3). 

Preliminary results from X-ray diagnostics are labelled in figure 9 and show the amount of X 

radiation collected by the SDD detector versus microwaves’ power in the range 1–30 keV. X-rays 

have been collimated by means of a 1 mm aluminium collimator, in order to make possible the 

measurement of the solid angle covered by the detector. 
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Figure 7. A view of the FPT and three diagnostics system. 

 

The rate of X rays increase strongly with microwaves’ power, putting in evidence the increasing 

of the higher energy electron component. 

Interesting information has been carried out by means of the optical spectrometry. Figure 10 

shows the spectrum of a hydrogen plasma when modifying the magnetic field configuration. The 

ratio Bmax/Bmin has been changed from 1.14 (almost flat magnetic field) to 1.48 (simple mirror 

configuration) in order to study the influence of the mirror ratio on the ion and neutral species 

(H, H2, H+ and H+) composing the plasma. The spectrum has been analysed by means of the 

radiative collisional model, which allows to relate the intensity of Balmer lines and Fulcher band 

to the relative abundances of the atomic versus molecular hydrogen nH/nH2 [14]. In particular, 

nH/nH2 can be calculated by the ratio between the Balmer γ line and the integral of Fulcher 

band in the range 600–650 nm. Also, information about electron density and temperature can be 

obtained by the ratio between Balmer α and β lines or Balmer β and γ lines. A detailed description 

of the line ratio method for hydrogen can be found in reference [15] Figure 10 shows a typical 

spectrum obtained in FPT with the over mentioned diagnostics. Balmer lines and Fulcher band are 

highlighted. Figure 11 shows the preliminary results in different source conditions. Figure 11a 

shows the dependence of nH/nH2 on the mirror ratio Bmax/Bmin of the magnetic field, when FPT 

is operated in simple mirror configuration. As Bmax/Bmin increases, nH/nH2 increases too. This 

results can be explained by the increase of confinement times τconf. due to the increase of the mirror 

ratio (τconf. ∝ Bmax/Bmin). Figure 11b show the dependence of nH/nH2 on the neutral pressure in 

simple mirror configuration. As expected, larger values of H2 pressure within FPT corresponds to 

lower values of nH/nH2 . The experimental OES campaign is currently in progress and new results 

will be published soon. 

The microwave launcher has been already tested and characterized in empty chamber condi- 

tions [11]. Preliminary tests for coupling the 14 GHz microwaves by launcher to plasma by means 
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Figure 8. Electron density with respect to the probe position for different microwave powers in simple 

mirror configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Overall X ray emission in the range 1–30 keV, in simple mirror configuration (6.8 GHz frequency, 

8 · 10−5 mbar pressure) when increasing microwave power up to 120 W. 

 
of OXB modal conversion are being carried out in these months. 
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Figure 10. Hydrogen spectrum obtained for Bmax Bmin = 1.2. The Balmer lines and the Fulcher band 

are highlighted. 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
Figure 11. A) nH /nH2 ratio versus the ratio Bmax/Bmin · B) nH /nH2 ratio versus the neutral pressure. 
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6 Conclusions 

A multi-purpose plasma trap has been designed and constructed at INFN-LNS. The commissioning 

phase confirmed the possibility to generate a plasma in different magnetic configurations and 

microwave frequencies. 

Its flexibility permits the deeper study of the mechanisms for overdense plasmas generation and 

to investigate new strategies for improving the plasma-wave coupling. A novel microwave launcher 

has been installed for tilting the microwave launching angle within FPT in order to permit the OXB 

conversion and indeed the generation of overdense plasmas by EBW heating. The installation of 

different diagnostics permits to investigate the electron energy distribution function in different 

energy domains, from a few eV (O.E.S. and Langmuir probe diagnostics) to tens or hundreds of keV 

(X-ray diagnostics, pin-hole cameras), while the interferometric technique allows to characterize 

the whole plasma population along a sight line. 

In perspective, FPT represents a “full-optional” test bench for the development of innovative 

plasma heating schemes, and testing of new kinds of diagnostics to be exported to microwave 

discharge ion source and ECRIS. 

The use of different types of diagnostics, furthermore shall improve our knowledge of plasma 

heating and help to further develop the techniques of plasma heating already tested in the plasma 

reactor, aimed to the generation of higher brightness beams and multiply charged ions build up in 

absence of confining radial magnetic field. 
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