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Abstract

We analyze the data about casualties in Italy in the period 01/01/2015 to 30/09/2020 released by the Italian
National Institute of Statistics (ISTAT). Aim of this article is the description of a statistically robust methodology
to extract quantitative values for the seasonal excesses of deaths featured by the data, accompanying them with
correct estimates of the relative uncertainties. We will describe the advantages of the method adopted with respect
to others listed in literature. The data exhibit a clear sinusoidal behavior, whose fit allows for a robust subtraction
of the baseline trend of casualties in Italy, with a surplus of mortality in correspondence to the flu epidemics in
winter and to the hottest periods in summer. The overall quality of the fit to the data turns out to be very good,
an indication of the validity of the chosen model. We discuss the trend of casualties in Italy by different classes of
ages and for the different genders. We finally compare the data-subtracted casualties, as reported by ISTAT, with
those reported by the Italian Department for Civil Protection (DPC) relative to the deaths directly attributed to
COVID-19, and we point out the differences in the two samples, collected under different assumptions.

1 Introduction

Last year has seen an enhanced global attention concerning the death rates in various countries, a fact due to the
outbreak of the COVID-19 pandemics at the beginning of 2020 and the ensuing alarm it generated worldwide. A
first visual inspection of the historical data archives[l], publicly made available by the Italian Istituto Nazionale di
Statistica (ISTAT)[2], shows a periodic variation of the death rate depending upon seasons, well represented by a
stable and regular sinusoid. Superimposed to the sinusoid trend there may be additional death excesses, most likely
due to seasonal diseases like influenza in winter or to very intense heat waves in the summer [3, [4].

The approach adopted here for an estimate of the seasonal excess of deaths is an interpolation of the data with a
fit function exhibiting an ad hoc modeling of the main features of the curve. While the excess peaks are symmetric
in shape, the peak in coincidence with the COVID-19 pandemics is asymmetric and more pronounced. We fit the
former with a Gaussian function and the latter with a Gompertz function, in order to quantify number of casualties,
the duration and the position of all causes of excess deaths. Focus of this paper is the method to compute the number
of deaths from the data rather than a discussion about the particular functional model chosen for this task or an
interpretation of the outcomes of such an evaluation. A least-squares fit of a single function, encompassing both the
background (the periodical seasonal variation of deaths) and the specific additional excesses above this background,
allows for a very robust evaluation of the latter, both for the numerical values and for the relative uncertainties. We
present results of this method applied to the data provided by ISTAT in the period 2015-2020. A comparison is then
carried out with a different data sample[5], provided by the Dipartimento della Protezione Civile (DPC) [6], which
provides counts for deaths directly attributed to the COVID-19 disease.



2 The data sample

This study is based on publicly available data provided by ISTAT [I] as time series of recorded deaths by the National
Registry Office. The data, collected from all the 7903 districts located in the 20 Italian regions, covers the period
from January 1%, 2015 to September 30", 2020. We have collected these data in histograms where each bin contains
the number of deaths for a single day.
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Figure 1: The distribution of deaths collected by ISTAT [1] from 7903 districts in Italy between January 15* 2015 to
September 30" 2020. These data include both genders and all ages. An annual modulation of the counts is evident
with maxima corresponding to winter seasons and minima to summer.

The data are collected by gender, age and location for each individual death. Figure [I] shows the number of
deaths in all the categories in the considered period. What is already striking by a simple visual inspection of the
distribution is a periodic seasonal variation that behaves approximately like a sinusoidal wave of constant amplitude
on top of an equally constant offset valudﬂ This feature remains partly confirmed also by disentangling the data
using age as a selection criteria. Fig. [2] shows the distribution of deaths for people in three different age classes: in
blue those below 50 years, in green those in range 50 to 79; in red those above 80 and in magenta the sum of all these
three classes. It is evident from these distributions that people with an age below 50 die, to a good approximation,
with a constant average probability in any given day of the year while those above that age tend to have a varying,
periodic probability of death with a maximum in winter and a minimum in summer. The older the age, the larger the
excess of death in particular periods of the year, appearing in the form of Gaussian-like excesses over the sinusoidal
wave. Disentangling the data by gender, see Fig. [3] there seems to be a slight prevalence of female deaths with
respect to males, except for the COVID-19 peak, where the situation happens to be reversed. These are just raw
values, though, not corrected to take into account the ratio between males and females in the Italian population.
Later on, in this paper, we will quantify and appropriately weight these data.

3 Methodology of the data analysis

We perform a global fit of the data, where we simultaneously estimate the sinusoidal baseline of the distribution, the
seasonal death excesses and the 2020 peak in correspondence of the COVID-19 pandemic. This method significantly
differs from other methods often reported in literature[7].

n the following we will discuss how we established that there is no significant slope of the average value of this wave.
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Figure 2: Distribution of number of deaths along six years for specific age intervals.
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Figure 3: Distribution of number of deaths for males and females in the same time period of Fig [2]




In particular we quote analyses [, [ [0 1T}, 12} 13}, 14}, [15] in which the background is subtracted by computing
the average number of counts in the same period of the past 5 years. In this way the excesses of seasonal pandemics,
like flu, are expressed against the average counts of the same pandemics in the previous years and not in absolute
terms.

In [I6] the sinusoidal baseline is computed by fitting the data during periods of time where the excesses are not
evident, like in spring or autumn. While this approach can be easily automated, it is subject to a certain degree of
arbitrariness due to the specific choice of the periods included in the fit.

A global fit to the time series has, instead, the merit of simultaneously using all the available data to shape both
the excesses and the baseline, without any degree of arbitrariness. Furthermore the least-squares method provides
a complete and fully correct covariance matrix that allows to compute the uncertainties involved in the final result.
Eventually the goodness of the fit and the absence of biases can be quantified by the final x? of the interpolation
and by the pulls distribution respectively.

We therefore used a x? fit to interpolate the data with an appropriate function meant to model the data in
order to determine the value of the unknown parameters of the model along with their uncertainties. The actual
minimization is carried out by the MINUIT [I7] package, while the adopted statistical methodology is described
in [I8].

The overall fit function has been defined as the sum of individual components in the following form:

k
F(t)=s(t)+ Y gi(t) + G(t) (1)
i=1

where s(t), gi(t) end G(t) are defined and described below.

The s(t) function is meant to model the wave-like variation of deaths with seasons, the g;(t) function describes
the excess peaks visible above the wave and G(t) represents the rightmost excess peak (spring 2020), which, unlike
the others, is asymmetrical. The index 4 runs from 1 up to k, the number of excess peaks featured by the data
distribution except the last one on the far right (k = 13 peaks in this particular case).

The general wave-like behavior of the data is modeled by a sinusoidal function of the form:

s(t) = c(t) + asin <2T7Tt + w) (2)

where ¢ is the day number starting from ¢y = 1/1/2015. The parameter ¢(t) represents the slowly-varying offset
from zero deaths, a the amplitude of the oscillation, T" is the period of variation (the time delay between consecutive
maxima) and finally ¢ the phase. We tried to model ¢(¢) allowing for a linear dependence on ¢, as ¢(t) = ¢ + 1,
but the fit determines a slope ¢; compatible to zero within uncertainty. We therefore decided to maintain the ¢ term
constant and independent of time in the final fit.

Each individual excess above this s(¢) wave can be modeled by a Gaussian distribution of the canonical form:

() = i =) /207
Gi (t) mai € (3)

The choice of a Gaussian function here is only justified by being the simplest symmetrical function to describe
these excesses representing, at the same time the distribution of a random variable. Modeling the excess peaks in the
described way has the advantage that the individual g; fit parameters correspond to a Gaussian with the background
contribution already taken into account in the overall fit model. The N; parameter of each Gaussian, corresponds to
the number of excess deaths with respect to the wave-like background, whose values are also determined optimally
by the fit itself. An advantage of this approach is that in the case of adjacent, overlapping Gaussians (as can be seen
in Fig. [4]in the case of the gg end g7 peaks but also the g11 and the big peak on the far right of the distribution),
each individual area is computed correctly by taking into account the nearby contributing ones.

While the excess peaks look highly symmetrical around their maximum and can thus be reasonably well modeled
with Gaussians, as described before, the peak of the spring 2020, associated with the COVID-19 pandemic, is clearly
asymmetric. We have tried several possible parametrizations for that distribution, such as bifurcated Gaussians with
a common peak, generalized logistics, or else, to reflect the asymmetry, but in the end we resolved to adopt the
derivative of a Gompertz function[I9, 20] simply because it is customarily adopted by epidemiologists to describe
epidemic evolution’s over time and we therefore considered it more suitable to our purpose.

A Gompertz function is parametrized in the following way:
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G(t) = Nge b (4)

Equation [ represents a cumulative distribution. Since our data represent instead daily counts, we used its
derivative, given by:

G(t) = — = Ngbhe e " et (5)
where the parameter N¢ is the value of the integral of this function. It is worthwhile to note that a global fit can
correctly take into account contributions from partially overlapping peaks, like g6 and ¢7 or gl1 and G in Figure
something that no other method can accomplish correctly.

4 Results and discussion

In Figure [4) and Tables([T] to [3] we report the results of a fit to the whole data sample, comprising both genders for all
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Figure 4: The whole data sample with a superimposed fit function obtained as specified in the text. The plot at the
bottom shows the pulls (a quantity defined later on in the text) of the fit: their mean value, being compatible with
zero and the absence of remarkable localized deviations from this value along the whole time series, is a testimony of
the appropriate choice of the particular model adopted. Numerical values for the integral of each individual Gaussian
are provided in Table[l] The g1 to ¢g13 labels indicate the 13 Gaussians introduced to describe the data (see eq. [3).

ages in the six years from 2015 to 2020. The column labeled ‘y;’, in Table [T} indicates the day when the maximum
of an excess has been reached while those labeled ‘u; + 20;” indicate, respectively, the day of onset and demise from
the average background, a time interval in which occur 95% of the death cases (expressed with calendar dates). The
column labeled ‘ Duration’ is the time difference between onset and demise (namely 4o, expressed as number of days).
The pulls, p;, are defined as:
_ G- P (6)
€
where d; is the number of death counts in a given day i and ¢; the corresponding amount of statistical fluctuation.
The data, being outcomes of counting values, are assumed to follow a Poisson distribution, hence ¢; = 1/d;.
The XQ/nDOF of the fit turns out to be 3.271.

Di



H gi N; ‘ w; (days) ‘ o; (days) ‘ Wi — 20; (date) ‘ w; (date) ‘ Wi + 20; (date) ‘ Duration (days) H
1 [ 50706 £ 3092 | 109 +34 [47.1+23]| 9/10/2014 | 10/1/2015 | 15/4/2015 189
2 | 13005 +361 | 201.1+04 | 120404 | 25/6/2015 | 20/7/2015 | 13/8/2015 49
3 4455 £ 527 381.6 £2.0 | 17.7 £ 2.1 12/12/2015 16/1/2016 21/2/2016 71
4 34015 £ 534 743.5 £0.2 | 159 £ 0.3 11/12/2016 12/1/2017 13/2/2017 64
5 5959 £ 210 950.1 £ 0.1 | 3.9+0.2 30/7/2017 7/8/2017 14/8/2017 15
6 19120 + 704 | 11049 £ 0.6 | 16.5 £ 0.8 6/12/2017 8/1/2018 11/2/2018 67
7 7862 + 616 1155.0 £ 1.0 | 12.5 £ 1.2 3/2/2018 28/2/2018 24/3/2018 49
8 | 40844256 |13133+£04 | 6.0+05 | 24/7/2018 | 5/8/2018 | 17/8/2018 24
9 | 26850 + 685 | 1492.5 + 0.6 | 26.1 = 0.6 | 10/12/2018 | 31/1/2019 |  24/3/2019 104
10 | 9299 + 504 | 1642.3 + 1.4 | 232+ 1.3 | 15/5/2019 | 30/6/2019 |  15/8/2019 92
11 9020 £+ 613 1853.3 £ 1.7 | 21.8 £ 1.5 14/12/2019 27/1/2020 10/3/2020 87
12 | 2841 +£217 | 20075 +04 | 51+04 | 19/6/2020 | 29/6/2020 |  9/7/2020 20
13 | 6546 £ 362 | 2046.3 £ 0.7 | 11.9 £ 0.8 14/7/2020 7/8/2020 31/8/2020 48

Table 1: Results of the fit for individual parameters (and their associated error) for each Gaussian, as modeled
by equation number The columns header indicates the Gaussian number (g;), the yield (its area, N;), its peak
position (p;), the width (the one standard-deviation duration expressed in number of days, ¢;) and the duration
within 4o (the difference between the values of column 7 and 5, also expressed as number of days).

H c ‘ a ‘ T (days) ‘ @ (rad) H

[ 1678 £ 1.5 [ 139.4 & 2.593 | 364 + 0.4 [ -5.27 + 0.02 |

Table 2: Results of the fit to the whole data set (no selection applied) for the baseline sinusoidal wave, as modeled
by eq.[2l The columns header indicates the average value of the sinusoid C, the amplitude, a, the period, T and the
phase, ¢ as further explained in the text.

We report the distribution of the pulls in Fig. [5] fitted with a Gaussian function. The mean value of the fit is
—0.01 4 0.04, compatible with zero, while the standard deviation of the Gaussian fit turns out to be 1.75 £ 0.04,
confirming the significant underestimate of the uncertainties. This deviation from unity, of about 75%, gives an
approximate amount of the increase that could be applied to the data errors to make them compatible with Poissonian
values.

The area of each Gaussian function i is given by the fit parameter N; defined in eq. [3] while the area of the
Gompertz derivative is the fit parameter N¢ in eq. [4

H Yield ‘ From ‘ Peak ‘ To ‘ Duration (days) H

[ 54387 £ 557 | 20/2/2020 | 24/3/2020 | 11/5/2020 | 81 |

Table 3: Results of the fit to the whole data set (no filters applied) for the Gompertz derivative function. The
meaning of the columns labeled From, Peak and To is explained in the text.

The width of the Gompertz is computed from the first day in which the integral of the function exceeds 2.5% of
the total to the day in which the integral reaches 97.5% of the total. These two days are reported in Table [3| under
the columns labeled From and To.

The value of the period T" = 364.0 & 0.4 days of the sinusoidal wave is compatible with a full year cycle within
about three standard deviations. The offset value ¢ = 1678 + 1.5 can be assumed to represent the average number of
deaths per day (the overall vertical offset of the sinusoid with respect to the zero value). Finally, from the results of
Table [2} it turns out that the peak of the sinusoid (the maximum number of deaths) falls on January 315 of every
year.

These results highlight an interesting feature of the COVID-19 deaths excess. As already noted, almost every
winter there is a surplus of deaths with respect to the baseline, with the notable exception of the years 2015-2016
(a period with a particularly balm winter[21], with a relatively small value of 4455 excess of casualties). The peak
in the spring of 2020, instead, shows characteristics markedly different from the winter excesses of previous year in
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Figure 5: Distribution of the pulls (depicted as a time series in the bottom plot of Fig. |4 fitted with a Gaussian
function. The peak of the Gaussian is at g = —0.01 £0.04 (therefore compatible with zero) while the width id given
by o = 1.75 £ 0.04.

terms of amplitude, width and day of the year when the maximum is reached. In the following we will mention the
possible implications of these differences.

As far as we could investigate in literature, we didn’t find any mention of usage of the interpolation methodology
we indicate in this paper, whereas the most common approach adopted is a subtraction of the baseline from previous
years.

5 Age and gender mortality

We have also disentangled the data by age and gender and fit the distributions in these different categories to obtain
accurate numerical values.

We start with a cumulative plot for all people aged between 50 (included) and 60 years (excluded) who died
between 2015 and 2020, shown in Fig. [f] This plot shows that the average value of daily deaths for people in this
age range is about 70 casualties/day. In order to get a fit comparable with the one in Fig. |4] we are forced to adopt
a somewhat more stringent fit strategy. The wave parameter corresponding to the phase has been fixed to the value
established for the full data sample (the other three are left free to float in the s(¢) function). This guarantees that
maxima are reached in the winter and minima in the summer and no spurious time translation is introduced by the
fit procedure when a local minima can eventually be found. Also the peak position and the width of the 13 Gaussians
have been fixed to the values established by a fit to the whole data sample while the Gompertz parameters are all
left free. The corresponding fit results are listed in Tables |4 and

The picture shows two categories of age at the same time: those in the range 0—49 (in gray) do not show any sign
of seasonal variation around the mean value of ~ 32/day (they were fit with a simple constant term). A sinusoidal
variation begins to be noticeable only in the range 50 — 59 (blue dots), along with the presence of the corresponding
death excesses indicating a continuous increase in magnitude with age starting around 50. The results are affected
by larger uncertainties with respect to the full sample of Fig. |4} reflecting the smaller size of population in this range.

The excess peaks and the sinusoid amplitude become more evident in a sample of even higher ages, namely
60 < age < 80. The average number of deaths in this category is much larger, due to an enhanced health fragility
for people of progressively higher age, as seen in Fig. [}

The fit is again pretty similar, in shape but not in amplitude of course, to the full sample shown in Fig. ] The
pulls feature a mean value compatible with zero also in this case. The fit strategy is the same as the one described
before for Fig. [6] Values obtained in this case are listed in Tables[6]and [7] The average death rate in this category is
~ 72/day. Increasing the age threshold further up, by collecting deaths of people aged > 80, we get a sample with
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Figure 6: Casualties of people with age in the range 50 < age < 59 with a superimposed fit based on function 6
(blue points) while gray points are the category 0 < age < 49. Numerical results are listed in Table Ié-_ll and [5| The
plots at the bottom show the pulls of the two samples.

1 | 2252 £ 154
2 417 £ 58
3 508 £ 71
4 910 £ 71
5 166 £+ 34
6 724 £ 71
7 373 £ 60
8 80 = 39
9 1105 £ 90
10 | 413 £ 78
11 | 603 £ 79
12 71 + 37
13 | 276 £ 57

Table 4: Results of the fit to the data set of people aged between 0 and 60 (excluded). These values correspond to
the fit depicted in Fig. []

H Yield ‘ From ‘ Peak ‘ To ‘ Duration (days) H
[ 1373 + 87 | 28/2/2020 | 24/3/2020 | 1/5/2020 | 63

Table 5: Results of the fit to the whole data set (no filters applied) for the Gompertz derivative function. These
values correspond to the fit depicted in Fig. [6}
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Figure 7: Casualties of people with 60 < age < 80 (with a superimposed fit based on eq. Numerical results are
listed in Table [6] and [

H i Yield H
1 [ 18225 + 473
2 | 4916 £ 204
3 100 + 8
4 | 8432 + 215
5 | 1591 + 110
6 | 5851 £ 218
7 | 1704 + 153
8 | 921 + 117
9 | 6131 £ 239
10 | 1319 + 200
11 | 1161 + 203
12 | 320 + 89
13 | 657 + 131

Table 6: Results of the fit for the category of 50 < age < 80 . These values correspond to the fit depicted in Fig. [7]

H Yield ‘ From ‘ Peak ‘ To ‘ Duration (days) H
[ 15951 £ 242 | 25/2/2020 | 22/3/2020 | 25/4/2020 | 60 |

Table 7: Results of the fit for the category of 60 < age < 80 for the Gompertz derivative function. These values
correspond to the fit depicted in Fig. [7]
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Figure 8: Casualties of people with age > 80 (with a superimposed fit based on function 6). Numerical results are
listed in Table B and

H gi Yield ‘ Peak ‘ Duration (days) H
1 | 28324 + 721 | 10/1/2015 176
2 | 8844 + 254 | 21/7/2015 45
3| 6304220 |17/1/2016 42
4 | 23732 + 344 | 13/1/2017 60
5 | 4655 £179 | 9/8/2017 20
6 | 11978 &+ 343 | 11/1/2018 63
7 | 4367 +£267 | 3/3/2018 41
8 | 3607 £ 233 | 8/8/2018 33
9 | 18217 4+ 425 | 4/2/2019 105
10 | 8981 +£379 | 4/7/2019 107
11 | 6648 £389 | 31/1/2020 95
12 | 3208 + 238 | 4/7/2020 37
13 | 6396 + 270 | 11/8/2020 53

Table 8: Results of the fit to the data set of people aged over 80. These values correspond to the fit depicted in
Fig.

H Yield ‘ From ‘ Peak ‘ To ‘ Duration (days) H
[ 37357 & 365 | 22/2/2020 | 25/3/2020 | 5/5/2020 | 73 I

Table 9: Results of the fit to the data set of people aged over 80 for the Gompertz derivative function. These values
correspond to the fit depicted in Fig. [§]

10



very pronounced peaks, see Fig.|8] The average death rate in this last category reaches the high value of ~ 1070/day.
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Figure 9: Number of daily casualties for males and females of all ages.

Another information that can be extracted from the data is the relative amount of deaths between genders. Fig[J]
shows the distribution of males and females (summed over all ages) superimposed with the relative fits. In this case,
since the two samples have a rather large statistical amount, both fits have been performed with all parameters free
to vary. These numbers need to be corrected by the relative number of males and females in the Italian population.
The fraction of males in 2020 was 48.7% while females were 51.3% [22]: we compute a mortality factor (for each
gender) by normalizing the yields to 29050096 and 30591392 (the respective number of males and females of the
total Ttalian population by January 15¢ 2020). The resulting values (multiplied by 100000) are listed in Table
under the columns Mortality. While the absolute number of female deaths is higher than the males one in every
year of the time series, the opposite seems true for the 2020 peak. After re-weighting this small discrepancy between
genders this assertion remains basically true for all peaks except the 2020 one, where the mortality turns out to be
larger for males than for females.

The fraction of casualties for the two genders turns out to be about the same, at the level of one standard
deviation in all the years, till 2019 included.

6 Comparison between different data sets

The data set provided by ISTAT [I] and used for the present analysis is not the only one publicly available: the
Dipartimento della Protezione Civile (DPC) data set [5] provides a somewhat different kind of information regarding
the number of deaths in the context of the COVID-19 pandemic. In particular, the data record, which begins
February 24", 2020, contains the number of daily deaths directly attributed to the current pandemic, whereas the
ISTAT one only refers to recorded deaths regardless of their cause.

A plot of the data from these two disparate sources is shown in Fig. The magenta points (and the accompanying
fit result of a Gompertz derivative function in red) correspond to the ISTAT data sample: these data are a subset of
those displayed in Fig. [4| specifically those between the dates of February 24*" and September 30" 2020, with the
entries in each bin replaced with the difference between the actual counts and the contribution due to the underlying
wave. This subtraction of the background of the data allows for a direct comparison between the ISTAT and DPC
data, the latter doesn’t requires a subtraction procedure being unaffected by a background.

11



Males Females
gi Yield Mortality ‘ Peak ‘ Duration Yield Mortality ‘ Peak ‘ Duration
1 | 20279 4+ 788 69.8 10/1/2015 178 32405 + 929 105.9 10/1/2015 206
2 | 5132 £ 258 17.7 21/7/2015 53 8401 + 266 27.5 21/7/2015 49
3 | 1734 + 394 6.0 17/1/2016 76 3198 + 441 10.5 17/1/2016 80
4 | 13907 + 357 47.9 13/1/2017 62 20281 + 404 66.3 13/1/2017 66
5 | 2252 4+ 156 7.8 9/8/2017 19 3976 + 174 13.0 9/8/2017 21
6 | 8875 £ 468 30.6 11/1/2018 83 11830 + 415 38.7 11/1/2018 71
7 | 2192 + 268 7.5 3/3/2018 33 4139 + 305 13.5 3/3/2018 43
8 | 1612 4+ 194 5.5 8/8/2018 31 2473 + 203 8.1 8/8/2018 27
9 | 11066 + 462 38.1 4/2/2019 99 15273 + 509 49.9 4/2/2019 109
10 | 3728 + 341 12.8 4/7/2019 99 5224 + 352 17.1 4/7/2019 87
11 | 4112 + 443 14.2 31/1/2020 99 5124 + 439 16.7 31/1/2020 93
12 | 964 + 182 3.3 4/7/2020 29 1764 4+ 182 5.8 4/7/2020 27
13 | 2489 + 236 8.6 11/8/2020 47 3826 + 253 12.5 11/8/2020 49

Table 10: Results of the fit to the data set divided in a sample of males and another of females (of all ages) in Fig. [9}
The meaning of the Mortality column is described in the text.

Males Females
‘ Yield ‘ Mortality ‘ Peak ‘ Duration Yield ‘ Mortality ‘ Peak ‘ Duration
[ 27240 £366 | 93.8 [22/3/2020 ] 63  [26079£395 | 852 [26/3/2020 [ 72 |

Table 11: Results of the fit to the data set (for the Gompertz peak only) divided in two samples of males and females
(of all ages) in Fig. @} The meaning of the Mortality column is described in the text.

The DPC sample is shown as blue dots (with the corresponding Gompertz fit superimposed in green). A clear
peak is visible around spring 2020 together with a second one during fall 2020, corresponding, respectively, to the
first and the second wave of the 2020 pandemic. It is worthwhile to note that the DPC data reports the day when
the death was finally registered, unlike the case of the ISTAT data, which records the actual day of death, thus
introducing a potential delay of a few days between the two samples, visible as a translation of the green line with
respect to the red one.

The DPC data shows a spike corresponding to August 15", due to the fact that a certain number of deaths
were not correctly reported in the preceding weeks and were recovered assigning that day as the actual death date.
In order to compare the yield returned by the fit to the value provided by the ISTAT data we had to exclude the
contributions from the second pandemic peak: we decided to introduce a cutoff value while computing the sum of
entries of the DPC sample in correspondence to August 16", a day when the minimum number of casualties was
reached between the two pandemic waves, therefore including also the spike. The cutoff date is shown in Fig. as
a vertical green arrow.

The sum in that period (the blue dots) results to be 35468.

On the other hand, the yield obtained for the ISTAT sample is the one reported in Table[3] namely 54 387 + 557,
resulting from the integral of the Gompertz peak (the yields of two peaks at around July and August are therefore not
included). The difference in the number of deaths from these two samples amounts to 18919 4 557. This strikingly
large difference could be due to several different reasons, such as an excessive pressure on the Italian health system in
the early stages of the pandemic which prevented a certain number of patients with diseases other than COVID-19
to be safely treated in hospitals and emergency rooms. We have no elements in the data that can allow us to discern
the different contributions to this discrepancy and an exhaustive discussion about this outcome is beyond the scope
of this article.
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Figure 10: Comparison between ISTAT and DPC data samples

7 Additional considerations

The rich data sample provided by ISTAT allows for various additional visualizations. In Fig. [T1] we display data
for ages in groups of 4 years to visualize the increase of death probability with age: it becomes more evident what
was already shown in Fig. [2 namely the fact the young people tend to die with a rather flat probability along each
year, while progressively higher age tend to suffer more from illnesses in specific seasonal periods. Each bin in this
plot contains the number of deaths lumped together from six contiguous days. In Fig[I2] we present a scatter plot of
death rates as a function of the day of the year (for the six years from 2015 to 2020) versus the age category. This
graphical representation clearly illustrates the higher probability of death for the age category 70-95 with respect to
the others.

‘Age groups
—100+
9599
—90-94
—8589
—80-84
7579
—7074
1 |—65869
—60-64
55-59
—5054
— 4549
— 4044
35-39
—3034
—2529
—2024
—15-19
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—14
01
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Figure 11: ISTAT data set with disentangled age categories. The data are binned in groups of six days each for an
enhanced visualization clarity.
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Each value in the ISTAT data sample comes with a geographical tagging marker, allowing for a categorization of
the number of deaths in different parts of Italy.
Fig. [13| shows the fits for each of the four zones in Italy, namely North, Center, South and Islandﬂ The fits in
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Figure 12: Scatter plot of the class age versus day of death. The dark red spots show the age and the date
corresponding to highest values of deaths incidence.
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0-1

these plots correspond to minimization procedures with all parameters free.

Table [I2] reports the value of the Gaussian and Gompertz integral for these different regions. In order to compare
these values between different zones, in Table [13| we report the same values but normalized to the relative amount
of registered inhabitants [23].

A visual inspection of Fig.|13|shows the magnitude of the peak in the winter/spring of 2020 for the North of Italy
which is not matched by a comparably populated peak for the Center, South and Islands. Table [13] confirms this
impression numerically: while values of each column, for a given row (normalized by population), are comparable
between zones, the value of the Gompertz peak in the North remains much bigger (actually by a factor from 10 to
over 20).

2The subdivision is arbitrary and we have defined North as the sum of values for the following regions: Piemonte, Valle d’Aosta,
Liguria, Lombardia, Trentino-Alto Adige, Veneto, Friuli- Venezia Giulia, Emilia-Romagna. Center comprises Toscana, Umbria, Marche,
Lazio, Abruzzo and Molise, South includes Campania, Puglia, Basilicata and Calabria. Finally Islands corresponds to Sicilia and
Sardegna
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Figure 13: ISTAT data set with the Italian geographical areas disentangled (their definition is detailed in the text).

H Gi North Central South Islands H
1 23046 £ 518 | 13293 £ 366 | 10670 £+ 333 | 5730 £ 249
2 5520 £ 193 | 3409 £ 139 | 2995 £+ 126 999 + 91
3 1333 £235 | 1501 + 166 | 1250 & 151 | 1120 4+ 115
4 14924 + 254 | 9184 + 183 | 7058 &£ 165 | 3135 £+ 121
5 1143 £ 106 2078 + 85 1716 + 77 1066 £ 58
6 9393 £ 246 | 4027 £ 170 | 3676 £ 156 | 2344 + 119
7 3213 £203 | 2233 £ 144 | 1576 £ 129 | 1451 + 102
8 2511 + 135 876 + 93 511 4+ 82 274 + 61
9 10692 + 302 | 6865 + 213 | 6620 & 197 | 3884 £ 150
10 3711 £ 255 | 2631 £ 180 | 2168 £ 161 | 1374 £ 122
11 3737 £264 | 2505 £ 186 | 2033 £ 171 | 1361 + 130
12 836 £ 119 898 + 87 871 £ 79 300 + 57
13 2477 £ 182 | 1286 +£ 131 | 1188 +£ 117 | 1026 + 90

H Gompertz \ 45350 £+ 33 \ 6063 £+ 201 \ 3559 + 205 \ 2158 + 150 H

Table 12: Integral of the various peaks of Fig[T3] detailed for the 4 Italian geographical areas defined in the text
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H Ji North (%) ‘ Central (%) ‘ South (%) ‘ Islands (%) H
1 0.0835 £+ 0.0019 | 0.0990 + 0.0027 | 0.0881 + 0.0027 | 0.0883 + 0.0038
2 0.0200 £ 0.0007 | 0.0254 £ 0.0010 | 0.0247 £ 0.0010 | 0.0154 + 0.0014
3 0.0048 £ 0.0009 | 0.0112 £ 0.0012 | 0.0103 £ 0.0012 | 0.0173 &+ 0.0018
4 0.0540 £ 0.0009 | 0.0684 £ 0.0014 | 0.0583 £ 0.0014 | 0.0483 % 0.0019
b) 0.0041 £ 0.0004 | 0.0155 £ 0.0006 | 0.0142 + 0.0006 | 0.0164 + 0.0009
6 0.0340 £+ 0.0009 | 0.0300 £ 0.0013 | 0.0303 £ 0.0013 | 0.0361 + 0.0018
7 0.0116 £ 0.0007 | 0.0166 £ 0.0011 | 0.0130 £ 0.0011 | 0.0224 + 0.0016
8 0.0091 £ 0.0005 | 0.0065 £ 0.0007 | 0.0042 £ 0.0007 | 0.0042 %+ 0.0009
9 0.0387 £ 0.0011 | 0.0511 £ 0.0016 | 0.0547 £ 0.0016 | 0.0599 + 0.0023
10 0.0134 £ 0.0009 | 0.0196 £ 0.0013 | 0.0179 £ 0.0013 | 0.0212 £+ 0.0019
11 0.0135 £+ 0.0010 | 0.0187 + 0.0014 | 0.0168 + 0.0014 | 0.0210 + 0.0020
12 0.0030 £ 0.0004 | 0.0067 £ 0.0006 | 0.0072 &£ 0.0007 | 0.0046 + 0.0009
13 0.0090 £ 0.0007 | 0.0096 £ 0.0010 | 0.0098 + 0.0010 | 0.0158 4 0.0014

[ Gompertz | 0.164 £ 0.001 [ 0.045 £0.001 [ 0.029 £0.002 | 0.033 + 0.002 |

Table 13: Mortality in the four Italian zones: the quoted values are obtained by normalizing the values of Table [12]
to the number of inhabitants in those same regions taken from [23], corresponding to the population registered at
December 315¢, 2020.

8 Conclusions

The data provided by ISTAT allow for a detailed quantitative estimate of the number of deaths excesses with respect
to a baseline. This baseline is represented by a sinusoidal variation of the number of deaths which turns out to
be almost perfectly in phase with the yearly seasonal cycle. We presented a study of these excesses evaluated by
a statistical interpolation of the data based on a x? minimization method using a function which is the sum of
a sinusoidal wave, a number of Gaussian distributions to represent the excesses above the sinusoid and, finally, a
Gompertz derivative to model the asymmetric peak of spring 2020. The overall fit resulted satisfactory in terms
of the final x? and pull distributions, describing the 2014 data points with just 46 parameters. This allows for a
quantitative definition of the properties of all the peaks, along with a precise determination of the errors. In this
study we discussed the methodology adopted for the interpolations and analyze different samples by disentangling
genders, ages and locations. A comparison has also been carried out between the number of deaths provided by
ISTAT in the period corresponding to the first wave of the pandemic and the numbers provided by DPC in the
same period for the deaths directly attributed to COVID-19. We found a rather large discrepancy, amounting to
18919 + 557 deaths over a total of 54387 4+ 557. We have no elements in the data that can allow us to discern the
different contributions to this discrepancy and an exhaustive discussion about it is beyond the scope of this article.

As a final remark, we think this study once more underlines the importance of a unified protocol of data collection
and the online availability of these same data under a sheared Open Data international agreement. Open Data
repositories with useful data already exist (ISTAT and DPC are good examples) but they are not exhaustive in
the number of information provided. Other repositories, containing valuable data for improved analyses are usually
restricted or not compliant with the FAIR [24] approach, one of the prerequisites of the Open Data paradigm. These
shortcomings hamper the possibility of further in-depth studies of the pandemics effects and its evolution by a large
number of scholars. INFN is very active in this field and has recently implemented an Open Access/Open Data
repository[25], containing also, among many other documents and data sets, the whole ensemble of results produced
by our group.
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