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A micromechanical procedure is used in order to evaluate the initiation of damage and failure of masonry with in-plane loads.
Masonrymaterial is viewed as a compositewith periodicmicrostructure and, therefore, a unit cell with suitable boundary conditions
is assumed as a representative volume element of the masonry.The finite element method is used to determine the average stress on
the unit cell corresponding to a given average strain prescribed on the unit cell. Finally, critical curves representing the initiation
of damage and failure in both clay brick masonry and adobe masonry are provided.

1. Introduction

Materials used in civil engineering such as cement concrete
[1–4] and masonry are subject to deterioration; moreover,
constructions built in the past need to carry increasing seis-
mic horizontal as well as vertical loads, leading to the need for
strengthening interventions. Fibre reinforced plastics (FRP),
polymeric nets embedded in the plaster, and other more
classical materials and techniques are effectively used to
strengthen existing structures [5–8]. More complex tech-
niques require the insertion of seismic isolation bearings
made of rubber, usually modelled as a hyperelastic material
[9–16]. New materials are being tested for civil engineering
applications; recently, carbon nanotubes (CNTs) are being
used in various research works in order to improve the
mechanical properties of cement mortar (usable also in
strengthening existing structures); therefore many authors
are investigating the behaviour of structures at nanoscalewith
nonlocal material models [17–21].

Numerical methods for determining the structural re-
sponse of unreinforced and reinforced masonry construc-
tions, such as arches, wall, and dome, are available in the
literature [22–27]. It is important to have available methods
for estimating not only the structural response but also
the material behaviour. To this end, micromechanics and
homogenization methods have been applied to the masonry

material. In this work, a micromechanical procedure is used
in order to evaluate the initiation of damage and failure of
masonry panels with in-plane loads following the approach
developed in [28–30].

2. Micromechanical Analysis and
Material Model

The masonry material is composed of two constituents:
the brick and the mortar. These constituents have different
mechanical properties and the resulting masonry material
can be viewed as a composite so that classical techniques
based on micromechanics and homogenization are used in
order to determine the local and overall response of the
masonry material. The overall mechanical properties of the
composite are derived from the geometric and mechanical
properties of the constituents, the microstructure of the
composite, and so forth. Such information is contained in
a reference volume element (RVE), which is statistically
representative of the masonry under consideration. The fol-
lowing analyses are performed on the representative volume
element. Instead of modelling the masonry as a random
composite material (see, e.g., [31–36]), it is assumed that the
constituents are arranged in a periodic way [37–45] and a
unit cell is adopted as the representative volume element.The

Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2016, Article ID 2959038, 6 pages
http://dx.doi.org/10.1155/2016/2959038



2 Modelling and Simulation in Engineering

Brick Mortar joint

Figure 1: A masonry wall.

masonry considered in this work is shown in Figure 1, where
a wall is depicted. The aim is to determine the strength of the
masonry when it is subjected to in-plane loads.

The wall in Figure 1 is a three-dimensional structure
whose three-dimensional unit cell is shown in Figure 2(a),
where 2𝑎1, 2𝑎2, and 2𝑎3 are the dimensions of the unit cell
along the 𝑥1-, 𝑥2-, and 𝑥3-axes of the coordinate system with
origin in the centre of the unit cell.

In micromechanical and homogenization analyses of
periodic microstructure, the three-dimensional unit cell is
subjected to the following periodic boundary conditions:

𝑢𝑖 (𝑎1, 𝑥2, 𝑥3) − 𝑢𝑖 (−𝑎1, 𝑥2, 𝑥3) = 2𝐸𝑖1𝑎1
∀𝑥2 ∈ [−𝑎2, 𝑎2] , ∀𝑥3 ∈ [−𝑎3, 𝑎3] ,

𝑢𝑖 (𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖 (𝑥1, −𝑎2, 𝑥3) = 2𝐸𝑖2𝑎2
∀𝑥1 ∈ [−𝑎1, 𝑎1] , ∀𝑥3 ∈ [−𝑎3, 𝑎3] ,

𝑢𝑖 (𝑥1, 𝑥2, 𝑎3) − 𝑢𝑖 (𝑥1, 𝑥2, −𝑎3) = 2𝐸𝑖3𝑎3
∀𝑥1 ∈ [−𝑎1, 𝑎1] , ∀𝑥2 ∈ [−𝑎2, 𝑎2] ,

(1)

where 𝑢𝑖 is the displacement along the 𝑥𝑖-axis and 𝐸𝑖𝑗 are the
components of the average strain prescribed to the unit cell.
Together with (1), the following constraint must be imposed
in order to avoid the rigid-body translations:

u (x∗) = 0, (2)

where x∗ is the position vector of the centre of the unit cell.
Since the in-plane behaviour must be investigated, the plane
unit cell shown in Figure 2(b) can be used as representa-
tive volume element for a two-dimensional (2D) analysis.
In the homogenization analysis, the boundary conditions
prescribed to the plane unit cell are

𝑢𝑖 (𝑎1, 𝑥2) − 𝑢𝑖 (−𝑎1, 𝑥2) = 2𝐸𝑖1𝑎1 ∀𝑥2 ∈ [−𝑎2, 𝑎2] ,
𝑢𝑖 (𝑥1, 𝑎2) − 𝑢𝑖 (𝑥1, −𝑎2) = 2𝐸𝑖2𝑎2 ∀𝑥1 ∈ [−𝑎1, 𝑎1] . (3)

The average stress in the unit cell is denoted byΣ, whereas
the local stress in a point of the constituent of the unit cell
is the microstress 𝜎 and, for simplicity, will be called stress
in the following. The constituents (brick and mortar) are
considered linear elastic before their damage and failure. The
bond between the constituents is considered perfect. It is

assumed that the plane unit cell and the constituents are
subject to a plane stress state. Therefore, the principal stress
perpendicular to the plane unit cell is equal to zero whereas
the principal stresses parallel to the plane of the unit cell can
be different from zero. The failure in a point of a constituent
occurs when one of the following three failure criteria is
satisfied.

First Criterion. If the two principal stresses parallel to the
plane of the unit cell are nonnegative the failure occurs when
themaximum principal stress in a point is equal to the tensile
strength of the constituent.

Second Criterion. If the two principal stresses parallel to the
plane of the unit cell are nonpositive the failure occurs when
the following equation is satisfied:

𝐶𝐽2 + (1 − 𝐶) 𝐼1 + 𝐶𝐼2 = 1, (4)

where 𝐶 = 1.6,
𝐽2 = 1𝑓2𝑐 (𝜎2 − 𝜎3)

2 ,

𝐼1 = 1𝑓𝑐 (𝜎2 + 𝜎3) ,
𝐼2 = 𝜎2𝜎3𝑓2𝑐 ,

(5)

where 𝜎2 and 𝜎3 are the two nonpositive principal stresses
parallel to the plane of the unit cell and 𝑓𝑐 is the compressive
strength of the material of the constituent.

Third Criterion. When a principal stress 𝜎1 parallel to the
plane of the unit cell is nonnegative and the other principal
stress 𝜎3 parallel to the plane of the unit cell is nonpositive,
the failure occurs when the following equation is satisfied:

𝜎1𝑓𝑡 +
𝜎3𝑓𝑐 = 1, (6)

where 𝑓𝑡 is the tensile strength of the material of the
constituent.

Next, the average strain E (which is a tensor with
components 𝐸𝑖𝑗) is imposed on the plane unit cell by means
of the conditions (2) and (3). Then, the average stress Σ
corresponding to the prescribed average strain E is evaluated
and the critical curves of the masonry are determined with a
finite element homogenization technique. The critical curves
may be plotted in the plane defined by Σ11- and Σ22-axes
or in the plane defined by Σ11- and Σ12-axes. There are
two kinds of critical curves: a generic critical curve may
be related to the brick or to the mortar. The generic point
of the critical curve related to a constituent represents the
average stresses corresponding to the initiation of failure
of that constituent. Specifically, the initiation of failure of
a constituent is evaluated by prescribing a linear load path
E = 𝜆E0, whereE0 is a constant tensor, which does not vary in
the loading process, and the scalar 𝜆 is an increasing loading
positive parameter. Considering both constituents linear
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Figure 2: (a) Three-dimensional unit cell; (b) plane unit cell.

elastic, there exists a value 𝜆cr,𝑖 such that the microstresses
in a constituent 𝑖 (𝑖 = brick or mortar) of the unit cell subject
to the average strain E = 𝜆cr,𝑖E0 satisfy some of the above-
mentioned criteria in the same constituent 𝑖, whereas failure
criteria are not satisfied in the same constituent 𝑖 when the
unit cell is subject to E = 𝜆E0 for 0 ≤ 𝜆 < 𝜆cr,𝑖. The average
stress of the unit cell subject to the average strainE = 𝜆cr,𝑖E0 is
denoted byΣcr,𝑖. In the plane defined byΣ11- andΣ22-axes, the
components (Σcr,𝑖11 , Σcr,𝑖22 ) of Σcr,𝑖 define a closed curve which
represents the masonry critical curve related to the initiation
of failure of the constituent 𝑖. An analogous critical curve can
be plotted in the plane defined by Σ11- and Σ12-axes.

3. Numerical Examples

If the constituents have the same mechanical properties and
the bond between the brick and the mortar is perfect, the
masonry behaves like a homogeneous material and the
homogenization procedure is not required. Critical cases
occur when the mechanical properties of one constituent are
significantly different from the mechanical properties of the
other constituents. For example, in adobe masonry (AM),
bricks and mortar have similar elastic properties, whereas in
some kinds of clay brickmasonry (CBM) Young’s modulus of
the brickmay be significantly different fromYoung’smodulus
of the mortar. The masonry critical curves are very sensitive
to the ratio𝐸𝑏/𝐸𝑚, where𝐸𝑏 and𝐸𝑚 are Young’smoduli of the
brick and the mortar, respectively. This is shown in Figure 3,
where the masonry critical curve related to the initiation of
failure of the constituent 𝑖 is denoted by “𝑏” for 𝑖 = brick and
by “𝑚” for 𝑖 = mortar in the legend of the figure.

The critical curves in Figure 3 are obtained by prescribing
the following average strain:

E = [𝐸11 𝐸12𝐸21 𝐸22] = 𝜆[
cos𝜑 0
0 sin𝜑] for 𝜑 ∈ [0, 2𝜋] . (7)
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Figure 3: CBM and AM critical curves, in the Σ11-Σ22 plane, related
to the initiation of failure of brick and mortar.

In this section, the mechanical properties of the con-
stituents of CBM are ]𝑏 = 0.23, ]𝑚 = 0.15, 𝐸𝑏 = 10𝐸𝑚 =
10000MPa, 𝑓𝑐𝑏 = 10𝑓𝑡𝑏 = 1MPa, 𝑓𝑐𝑚 = 𝑓𝑐𝑏, and 𝑓𝑡𝑚 = 𝑓𝑡𝑏;
the mechanical properties of the constituents of AM are ]𝑏
= ]𝑚 = 0.15, 𝐸𝑏 = 2𝐸𝑚 = 100MPa, 𝑓𝑐𝑏 = 10𝑓𝑡𝑏 = 1MPa, 𝑓𝑐𝑚
= 𝑓𝑐𝑏, and 𝑓𝑡𝑚 = 𝑓𝑡𝑏. In this work, ]𝑏 and ]𝑚 are Poisson’s
ratios of the brick and themortar, respectively,𝑓𝑡𝑏 and𝑓𝑡𝑚 are
the tensile strengths of the brick and the mortar, and 𝑓𝑐𝑏 and𝑓𝑐𝑚 are the compressive strengths of the brick and themortar.
Both CBM and AM have the following geometric properties:𝑏 = 400mm (width of the bricks), ℎ = 100mm (height
of the bricks), 𝑡 = 10mm (thickness of mortar joints), and



4 Modelling and Simulation in Engineering

0.0

0.2

0.4

0.0 0.5−1.5
−0.4

−0.2

−1.0 −0.5

CBM, b
CBM, m

AM, b
AM, m

Σ12

Σ11

Figure 4: CBM and AM critical curves, in the Σ11-Σ12 plane, related
to the initiation of failure of brick and mortar.

𝜌 = ℎ/40 (each brick corner was approximated as arc of circle
with radius 𝜌).

In Figure 3, two different values of the ratio 𝑐 = 𝐸𝑏/𝐸𝑚
are considered: 𝑐 = 10 for the CBM critical curves and𝑐 = 2 for the AM critical curves. Greater values of 𝑐
determine greater concentration of the local stress and, as
a consequence, smaller critical areas (the critical area is the
area bounded by the critical curve related to the initiation of
failure of a constituent). A similar behaviour is observed in
Figure 4, where the critical curves are obtained by prescribing
the following average strain:

E = [𝐸11 𝐸12𝐸21 𝐸22] = 𝜆[
cos𝜑 sin𝜑
sin𝜑 0 ] for 𝜑 ∈ [0, 2𝜋] . (8)

The contrast 𝑐 between the masonry constituents also
influences the deformed shape of the unit cell and the
distribution of local stress in the unit cell, as shown in Figures
5 and 6, where the local stress 𝜎12 on the deformed unit cell
subject to the average strain (8) with 𝜑 = 𝜋/2 and 𝜆 = 1 is
plotted for CBM (𝑐 = 10) and AM (𝑐 = 2), respectively.
4. Conclusions

In this work, masonry is viewed as a composite constituted of
two components (namely, brick and mortar) so that classical
techniques based on micromechanics and homogenization
are used in order to determine the local and overall response
of the masonry material. The critical curves of the masonry
are determined with a finite element homogenization tech-
nique. The generic point of the critical curve related to a
constituent represents the average stresses corresponding to
the initiation of failure of that constituent. The numerical
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Figure 5: Local stress 𝜎12 on the deformed CBM unit cell subject to
a pure shear average strain 𝐸12 = 𝐸21 = 1.
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Figure 6: Local stress 𝜎12 on the deformed AM unit cell subject to
a pure shear average strain 𝐸12 = 𝐸21 = 1.

analyses show that the critical curves are sensitive to the con-
trast 𝑐 = 𝐸𝑏/𝐸𝑚 between brick and mortar: greater contrast
involves earlier initiation of damage in the constituents.
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