Supplementary Information for

High-throughput evaluation of organic contaminant removal efficiency in a wastewater treatment plant using direct injection UHPLC-Orbitrap-MS/MS

Zhe Li, *^a Emma Undeman, ^b Ester Papa, ^c Michael S. McLachlan^a

^a Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden

^b Baltic Sea Centre, Stockholm University, 10691 Stockholm, Sweden

^c QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy

^{*} Corresponding author: Phone: +46 8 674 7188. E-mail: zhe.li@aces.su.se

Table of Contents

UHPLC-Orbitrap-MS/MS analysis	6
Quality Assurance	6
HRMS data post-processing workflow parameters in CompoundDiscoverer	6
Evaluation of uncertainty in the removal efficiency calculation	7
Identification of the target compounds	9

List of Tables

Table S1. List of the native standards and their physical-chemical properties.	4
Table S2. List of the isotope-labeled standards and their physical-chemical properties	5
Table S3. Identification of the target standard compounds in the calibration standard samples.	8
Table S4. Concentrations of the target compounds detected in the influent and effluent water	22

List of Figures

Figure S1. Identification of 2-chlorobenzoic acid in the calibration standard.	9
Figure S2. Identification of 4-hydroxybenzotriazole in the calibration standard.	9
Figure S3. Identification of 1H-benzotriazole in the calibration standard.	9
Figure S4. Identification of acesulfame in the calibration standard.	10
Figure S5. Identification of acetaminophen in the calibration standard.	10
Figure S6. Identification of aniline in the calibration standard.	10
Figure S7. Identification of atenolol in the calibration standard.	11
Figure S8. Identification of atorvastatin in the calibration standard	11
Figure S9. Identification of bezafibrate in the calibration standard	11
Figure S10. Identification of bicalutamide in the calibration standard	12
Figure S11. Identification of caffeine in the calibration standard.	12
Figure S12. Identification of carbamazepine in the calibration standard	12
Figure S13. Identification of carbamazepine-10,11-epoxide in the calibration standard	
Figure S14. Identification of chlorothiazide in the calibration standard	
Figure S15. Identification of chlorthalidone in the calibration standard	
Figure S16. Identification of climbazole in the calibration standard	14
Figure S17. Identification of clofibric acid in the calibration standard.	14

Figure S18. Identification of diclofenac in the calibration standard	14
Figure S19. Identification of fluconazole in the calibration standard	15
Figure S20. Identification of furosemide in the calibration standard.	15
Figure S21. Identification gabapentin in the calibration standard	15
Figure S22. Identification glimepiride in the calibration standard.	16
Figure S23. Identification of hydrochlorothiazide in the calibration standard	16
Figure S24. Identification of irbesartan in the calibration standard	16
Figure S25. Identification of ketoprofen in the calibration standard.	17
Figure S26. Identification of MCPA in the calibration standard	17
Figure S27. Identification of metformin in the calibration standard.	17
Figure S28. Identification of methotrexate in the calibration standard	18
Figure S29. Identification of metoprolol in the calibration standard	18
Figure S30. Identification of metoprolol acid in the calibration standard	18
Figure S31. Identification of oxazepam in the calibration standard.	19
Figure S32. Identification of pravastatin in the calibration standard	19
Figure S33. Identification of propranolol in the calibration standard.	19
Figure S34. Identification of ranitidine in the calibration standard.	20
Figure S35. Identification of sotalol in the calibration standard.	20
Figure S36. Identification of sulfamethoxazole in the calibration standard	20
Figure S37. Identification of tramadol in the calibration standard.	21
Figure S38. Identification of valsartan in the calibration standard.	21
Figure S39. Identification of venlafaxine in the calibration standard.	21
Figure S40. Distribution of the peak areas of all the identified compounds.	23
Figure S41. Comparison of the RE (%) values for the tested target compounds calculated using the target and non-target approaches with direct injection.	1 23
Figure S42. PCA analysis of chemical domain	24
Figure S43. Chemical domain in the space of PC1-PC2-PC3.	25

Chemicals and reagents

native standard	CAS No.	molecular	exact	ESI	log Kow ^a	pKa ^b	corresponding IS
2 chlorobonzoic acid	118 01 2	C-H-ClO-	mass 155 0078	FSI	2 23	3.07	2 chlorobenzoic acid
2-cilioropenzoic aciu	26725_51_9	$C_7H_5ClO_2$	135.0433	ESI-	1.00	7.70	4-bydroxybenzotriazole
1H-benzotriazole	95-14-7	C ₆ H ₅ N ₃ O	110 0484	ESI+	1.00	8.63	1H_benzotriazole_d/
acosulfamo	33665-90-6	C ₆ H ₅ NO ₄ S	162 0030	ESI-	0.25	3.02	acesulfame_d/
accountaine	103-90-2	C ₂ H ₂ NO ₂	151.0633	ESI+	0.23	9.46	acetaminophen-d4
anastrozole	120511-73-1	C17H10N5	293 1640	ESI+	3.03	2.00	anastrozole-d12
aniline	62-53-3	C ₄ H ₅ NH ₂	93 0578	ESI+	1 14	4 64	aniline-d5
atenolol	29122-68-7	C14H22N2O2	266 1630	ESI+	-0.03	9.67	atenolol-d7
atorvastatin	134523-03-8	C22H25FN2O5	558 2530	ESI+	6 36	4 31	atorvastatin-d5
bezafibrate	42859-67-0	C10H20CINO4	361 1081	ESI+	4 25	3.83	bezafibrate-d4
bicalutamide	90357-06-5	C19H120CH104	430.0610	ESI+	2.30	12.0	bicalutamide-d4
caffeine	58-08-2	C8H10N4O2	194.0804	ESI+	0.16		caffeine-d9
carbamazepine	298-46-4	$\frac{C_{15}H_{12}N_2O}{C_{15}H_{12}N_2O}$	236.0950	ESI+	2.25	13.9	carbamazepine-d8
carbamazepine-10.11-	26507.20.0		252 0000	EQ1.	0.50	5.10	1.6 1.16
epoxide	36507-30-9	$C_{15}H_{12}N_2O_2$	252.0899	ESI+	2.58	5.13	venlataxine-d6
chlorothiazide	58-94-6	$C_7H_6ClN_3O_4S_2$	294.9488	ESI-	-0.44	9.19	hydrochlorothiazide-13C- d2
chlorthalidone	77-36-1	C ₁₄ H ₁₁ ClN ₂ O ₄ S	338.0128	ESI-	1.60	8.76	fluconazole-d4
climbazole	38083-17-9	C15H17ClN2O2	292.0979	ESI+	3.76	6.49	climbazole-d4
clofibric acid	882-09-7	C10H11ClO3	214.0397	ESI-	2.84	3.37	clofibric acid-d4
diclofenac	15307-86-5	$C_{14}H_{11}Cl_2NO_2 \\$	295.0167	ESI+	4.02	4.00	diclofenac-13C6
fluconazole	86386-73-4	$C_{13}H_{12}F2N_6O$	306.1041	ESI+	0.25	1.70	fluconazole-d4
fluoxetine	54910-89-3	$C_{17}H_{18}F_3NO$	309.1340	ESI+	4.65	9.80	fluoxetine-d5
furosemide	54-31-9	$C_{12}H_{11}ClN_2O_5S$	330.0077	ESI+	2.32	4.25	furosemide-d5
gabapentin	60142-96-3	$C_9H_{17}NO_2$	171.1259	ESI+	-1.27	4.63	gabapentin-d6
glimepiride	93479-97-1	$C_{24}H_{34}N_4O_5S$	490.2250	ESI+	4.70	4.32	glimepiride-d5
hydrochlorothiazide	58-93-5	$C_7H_8ClN_3O_4S_2$	296.9645	ESI-	-0.10	9.09	hydrochlorothiazide-13C- d2
irbesartan	138402-11-6	$C_{25}H_{28}N_6O$	428.2325	ESI+	5.39	5.85	irbesartan-d6
ketoprofen	22071-15-4	C ₁₆ H ₁₄ O ₃	254.0943	ESI+	3.00	3.88	ketoprofen-13C-d3
МСРА	94-74-6	C ₉ H ₉ ClO ₃	200.0240	ESI-	2.41	3.36	MCPA-d6
metformin	657-24-9	$C_4H_{11}N_5$	129.1014	ESI+	-2.64	10.27	metformin-d6
methotrexate	59-05-2	$C_{20}H_{22}N_8O_5$	454.1713	ESI+	-0.24	3.25	methotrexate-d3
metoprolol	51384-51-1	C ₁₅ H ₂₅ NO ₃	267.1834	ESI+	1.69	9.67	metoprolol-d7
metoprolol acid	56392-14-4	C ₁₄ H ₂₁ NO ₄	267.1471	ESI+	-1.24	3.54	metoprolol acid-d5
oxazepam	604-75-1	$C_{15}H_{11}N_2O_2Cl$	286.0509	ESI+	1.65	4.21	oxazepam-d5
pravastatin	81093-37-0	C ₂₃ H ₃₆ O ₇	424.2461	ESI-	1.65	4.21	pravastatin-d3
propranolol	13013-17-7	C ₁₆ H ₂₁ NO ₂	259.1572	ESI+	2.60	9.67	propranolol-d7
ranitidine	66357-35-5	C ₁₃ H ₂₂ N ₄ O ₃ S	314.1413	ESI+	0.29	7.12	ranitidine-d6
sotalol	3930-20-9	$\frac{C_{12}H_{20}N_2O_3S}{C_{12}H_{20}N_2O_3S}$	272.1195	ESI+	0.37	9.43	sotalol-d6
sulfamethoxazole	/23-46-6	$\frac{C_{10}H_{11}N_3O_3S}{C_{10}H_{11}N_3O_3S}$	253.0521	ESI+	0.48	6.16	sultamethoxazole-d4
tramadol	27203-92-5	C ₁₆ H ₂₅ NO ₂	263.1885	ESI+	3.01	9.23	tramadol-d6
triclosan	3380-34-5	$C_{12}H_7Cl_3O_2$	287.9512	ESI-	4.66	7.68	triclosan-d3
valsartan	13/862-53-4	$C_{24}H_{29}N_5O_3$	435.2270	ESI-	3.65	4.61	valsartan-d3
venlafaxine	93413-69-5	$C_{17}H_{27}NO_{2}$	277.2042	ESI+	2.74	8.91	venlataxine-d6

Table S1. List of the native standards and their physical-chemical properties.

^{*a*} $logK_{OW}$ values were predicted for the non-charged form of the molecule using the EPI SuiteTM software;

^b pKa values were predicted within the pH range of 0-14 using the MarvinSketch software from ChemAxon.

isotope-labeled standard	molecular formula	exact mass	ESI mode	log K _{OW} ^a	pKa ^b
1H-benzotriazole-d4	C ₆ HD ₄ N ₃	123.0735	ESI+	1.30	8.63
2-hydroxy-ibuprofen-d6	$C_{13}H_{12}D_6O_3$	228.1633	ESI-	2.37	4.63
acesulfame-d4	C ₄ HD ₄ NO ₄ S	167.0190	ESI-	0.25	3.02
acetaminophen-d4	$C_8H_5D_4NO_2$	155.0884	ESI+	0.27	9.46
anastrozole-d12	$C_{17}H_7D_{12}N_5$	305.2394	ESI+	3.03	2.00
aniline-d5	$C_6D_5NH_2$	98.0892	ESI+	1.14	4.64
atenolol-d7	$C_{14}H_{15}D_7N_2O_3\\$	273.2070	ESI+	-0.03	9.67
atorvastatin-d5	$C_{33}H_{30}D_5FN_2O_5\\$	563.2844	ESI+	6.36	4.31
bezafibrate-d4	$C_{19}H_{16}D_4ClNO_4\\$	365.1332	ESI+	4.25	3.83
bicalutamide-d4	$C_{18}H_{10}D_4F_4N_2O_4S\\$	434.0862	ESI+	2.30	12.0
caffeine-d9	$C_8HD_9N_4O_2$	203.1369	ESI+	0.16	
carbamazepine-d8	$C_{15}H_4D_8N_2O$	244.1452	ESI+	2.25	13.9
carboxy-ibuprofen-d3	$C_{13}H_{13}D_3O_4$	239.1237	ESI-	2.78	3.97
climbazole-d4	$C_{15}H_{13}D_4ClN_2O_2$	296.1230	ESI+	3.76	6.49
clofibric acid-d4	$C_{10}H7D_4ClO_3$	218.0648	ESI-	2.84	3.37
diclofenac-13C6	$C_8{}^{13}C_6H_{11}Cl_2NO_2$	301.0368	ESI+	4.02	4.00
fluconazole-d4	$C_{13}H_8D_4F_2N_6O$	310.1292	ESI+	0.25	1.70
fluoxetine-d5	C ₁₇ H ₁₃ D ₅ F ₃ NO	314.1654	ESI+	4.65	9.80
furosemide-d5	$C_{12}H_6D_5ClN_2O_5S$	335.0391	ESI+	2.32	4.25
gabapentin-d6	$C_9H_{11}D_6NO_2$	177.1636	ESI+	-1.27	4.63
glimepiride-d5	$C_{24}H_{29}D_5N_4O_5S$	495.2564	ESI+	4.70	4.32
guanyl urea-15N4	C ₂ H ₆ ¹⁵ N ₄ O	106.0423	ESI+	-2.03	5.81
hydrochlorothiazide-13C-d2	$C_6{}^{13}CH_6D_2CIN_3O_4S_2$	299.9804	ESI-	-0.10	9.09
irbesartan-d6	$C_{25}H_{22}D_6N_6O$	434.2701	ESI+	5.39	5.85
ketoprofen-13C-d3	C ₁₅ ¹³ CH ₁₁ D ₃ O ₃	258.1165	ESI+	3.00	3.88
MCPA-d6	C ₉ H ₃ D ₆ ClO ₃	206.0617	ESI-	2.41	3.36
metformin-d6	$C_4H_5D_6N_5$	135.1391	ESI+	-2.64	10.27
methotrexate-d3	$C_{20}H_{19}D_3N_8O_5$	457.1902	ESI+	-0.24	3.25
metoprolol acid-d5	$C_{15}H_{20}D_5NO_3$	272.1784	ESI+	-1.24	3.54
metoprolol-d7	C14H14D7NO4	274.2274	ESI+	1.69	9.67
oxazepam-d5	$C_{15}H_6D_5N_2O_2Cl$	291.0823	ESI+	1.65	4.21
pravastatin-d3	$C_{23}H_{33}D_3O_7$	427.2649	ESI-	1.65	4.21
propranolol-d7	$C_{16}H_{14}D_7NO_2$	266.2012	ESI+	2.60	9.67
ranitidine-d6	$C_{13}H_{16}D_6N_4O_3S$	320.1789	ESI+	0.29	7.12
sotalol-d6	$C_{12}H_{14}D_6N_2O_3S$	278.1571	ESI+	0.37	9.43
sulfamethoxazole-d4	$C_{10}H_7D_4N_3O_3S$	257.0772	ESI+	0.48	6.16
tramadol-d6	$C_{16}H_{19}D_6NO_2$	269.2262	ESI+	3.01	9.23
triclosan-d3	$C_{12}H_4D_3Cl_3O_2$	290.9700	ESI-	4.66	7.68
valsartan-d3	$C_{24}H_{26}D_3N_5O_3$	438.2459	ESI+	3.65	4.61
venlafaxine-d6	$C_{17}H_{21}D_6NO_2 \\$	283.2418	ESI+	2.74	8.91

Table S2. List of the isotope-labeled standards and their physical-chemical properties.

^{*a*} $logK_{OW}$ values were predicted for the non-charged form of the molecule using the EPI SuiteTM software;

^b pKa values were predicted within the pH range of 0-14 using the MarvinSketch software from ChemAxon.

UHPLC-Orbitrap-MS/MS analysis

Orbitrap-MS/MS method: Full MS was operated with a resolution of 120000, AGC target of 3.0E6 and a maximum IT of 200 ms; scan range was 80 to 1000 m/z, profile spectrum data were acquired. Datadependent MS/MS (dd-MS²) was operated with a resolution of 15000, AGC target of 1.0E5 (min. 8.0E3), maximum IT of 30 ms, top 5 precursor ions were selected for MS/MS, profile spectrum was acquired. The spray voltage was 3.5 kV for positive mode and 3.0 for negative mode.

Quality Assurance

None of the target analytes was detected in the blanks (i.e., methanol and Milli-Q water). The intraday coefficient of variation of the analytical instrument was <11% for all the compounds, derived from the quality control samples including four calibration standards. The SPE method recovery was tested by spiking deionized water with the target analytes at a final concentration of 10 μ g L⁻¹. The recoveries of the analytes ranged from 42% for climbazole to 99% for gabapentin (n=3). Relative standard deviations in the triplicate wastewater samples were <18%, calculated for all the target analytes with the detected concentration in influent samples above their LOQ.

HRMS data post-processing workflow parameters in CompoundDiscoverer

Step I – Peak Picking

- RT range: 0.2 15 min
- m/z range: 80 1000 Da
- S/N threshold: 5
- Minimum scan number: 5
- Minimum intensity: 5000

Step II – Retention Time Alignment

- Alignment model: adaptive curve
- Maximum shift: 0.5 min
- Mass tolerance: 5 ppm

Step III – Compound Detection

- Considered elements: C50, H100, Br5, Cl6, F10, I5, N10, O15, P5, S5
- Isotope grouping:
 - mass tolerance: 5 ppm; intensity tolerance: 40%; minimum isotopes: 2
- Considered adducts:
 - Positive mode: [M+ACN+H]¹⁺, [M+H]¹⁺, [M+K]¹⁺, [M+Na]¹⁺

Negative mode: [2M+FA-H]¹⁻; [2M-H]¹⁻; [M-2H+K]¹⁻; [M-H]¹⁻; [M-H-H₂O]¹⁻

- Adduct grouping:

Mass tolerance: 5 ppm; intensity tolerance: 30%

- Step IV Background Subtraction
 - Maximum sample/blank ratio*: 3

* The maximum allowed peak area ratio of a compound in sample vs. blank (Milli-Q and methanol) to be considered as background.

- Mass tolerance: 5 ppm

Step V – Database (mzCloud) Searching

- Compound classes: all
- Match ion activation type: true
- Match ion activation energy: match tolerance
- Ion activation energy tolerance: 30
- Apply intensity threshold: true
- Identity search: HighChem HighRes
- Similarity search: none
- Mass tolerance: 5 ppm
- Match score threshold: 70

Evaluation of uncertainty in the removal efficiency calculation

RE (%) of a compound was calculated as the abundance change between influent and effluent:

$$RE = \left(1 - \frac{C_{\rm EFF}}{C_{\rm IN}}\right) \times 100\% \tag{1}$$

The uncertainty of the mean \overline{RE} is determined by $\frac{C_{\text{EFF}}}{C_{\text{IN}}}$. Define C_{EFF} as A and C_{IN} as B. The mean value and standard deviation of A and B are: \overline{A} and $s_{\overline{A}}$, and \overline{B} and $s_{\overline{B}}$, respectively. The standard deviation of $\frac{C_{\text{EFF}}}{C_{\text{IN}}}$ can be then calculated as:

$$s_{\frac{\overline{A}}{\overline{B}}} = \frac{\overline{A}}{\overline{B}} \cdot \sqrt{\left(\frac{s_{\overline{A}}}{\overline{A}}\right)^2 + \left(\frac{s_{\overline{B}}}{\overline{B}}\right)^2}$$
(2)

The 95% confidence intervals for RE is 1 - A/B (1 + 1.96 s) and 1 - A/B (1 - 1.96 s).

The same method was applied to the uncertainty analysis for the *RE* calculated from the non-target analysis data. The measured peak areas were used instead of concentrations.

Table S3. Identification of the target standard compounds in the calibration standard samples (concentration range: $0.05-100 \ \mu g \ L^{-1}$) using non-target analysis. The limit of detection for non-target analysis (NLOD) and both limit of detection and limit of quantification for target analysis (LOD and LOQ) are also provided.

	molecular	exact	exnected	NLOD		mzCloud	$ \mathbf{Am}/\mathbf{z} ^{a}$	
compound	formula	mass	RT (min)	$(\mu g L^{-1})$	(µg L ⁻¹)	match	(ppm)	(min)
2-chlorobenzoic acid	C ₂ H ₅ ClO ₂	155 9978	4 65	0.25	0.05/0.05	89.9	4 85	0.02
4-hydroxybenzotriazole	C ₆ H ₅ N ₂ O	135.0433	1.88	0.25	0.05/0.05	90.8	0.98	0.02
1H-benzotriazole	C6H5N3	119 0484	2.65	0.10	0 10/0 10	98.2	1 24	0.07
acesulfame	C ₄ H ₅ NO ₄ S	162,9939	1.12	0.05	0.05/0.05	93.1	4.59	0.03
acetaminophen	CeHoNO2	151 0633	2.93	0.10	0 10/0 25	88.4	0.98	0.07
anastrozole	C17H19N5	293.1640	4.78	0.25	0.05/0.05	93.5	0.67	0.09
aniline	C ₆ H ₅ NH ₂	93.0578	0.79	0.10	0.10/0.25	91.8	1.71	0.08
atenolol	C14H22N2O3	266.1630	1.71	0.05	0.05/0.05	98.8	1.10	0.09
atorvastatin	C33H35FN2O5	558.2530	6.53	0.50	0.25/0.50	95.3	1.50	0.03
bezafibrate	C19H20CINO4	361.1081	5.69	0.10	0.10/0.10	99.0	0.27	0.11
bicalutamide	C18H14F4N2O4S	430.0610	5.95	0.05	0.05/0.05	95.4	0.35	0.02
caffeine	C8H10N4O2	194 0804	2.23	0.50	0.50/0.50	95.3	1 78	0.10
carbamazepine	C15H12N2O	236.0950	4.60	0.10	0.05/0.05	96.6	0.94	0.08
carbamazepine-10,11-		252 0800	2 07	0.10	0.10/0.10	05.0	0.47	0.00
epoxide	$C_{15}\Pi_{12}N_2O_2$	232.0899	5.07	0.10	0.10/0.10	93.0	0.47	0.09
chlorothiazide	$C_7H_6ClN_3O_4S_2$	294.9488	1.86	0.10	0.10/0.10	92.3	0.93	0.02
chlorthalidone	$C_{14}H_{11}CIN_2O_4S$	338.0128	3.37	0.50	0.25/0.25	96.0	1.37	0.01
climbazole	$C_{15}H_{17}CIN_2O_2$	292.0979	5.08	0.25	0.10/0.10	88.7	0.91	0.09
clofibric acid	$C_{10}H_{11}ClO_3$	214.0397	5.41	0.10	0.05/0.05	97.3	1.18	0.03
diclofenac	$C_{14}H_{11}Cl_2NO_2$	295.0167	6.52	0.25	0.05/0.05	97.6	0.49	0.06
fluconazole	$C_{13}H_{12}F2N_6O$	306.1041	2.99	0.50	0.50/0.50	97.3	0.28	0.10
fluoxetine	$C_{17}H_{18}F_3NO$	309.1340	5.39	0.25	0.05/0.05	92.0	1.06	0.08
furosemide	$C_{12}H_{11}CIN_2O_5S$	330.0077	4.44	0.50	0.10/0.10	93.9	1.39	0.04
gabapentin	C9H17NO2	171.1259	1.95	0.10	0.10/0.10	98.3	1.57	0.10
glimepiride	$C_{24}H_{34}N_4O_5S$	490.2250	6.77	5.00	2.50/2.50	90.1	0.55	0.08
hydrochlorothiazide	$C_7H_8ClN_3O_4S_2$	296.9645	2.00	0.25	0.25/0.25	94.7	0.96	0.02
irbesartan	$C_{25}H_{28}N_6O$	428.2325	5.05	0.25	0.05/0.05	96.4	0.93	0.01
ketoprofen	$C_{16}H_{14}O_3$	254.0943	5.46	0.25	0.10/0.25	97.6	0.17	0.07
МСРА	C ₉ H ₉ ClO ₃	200.0240	5.20	0.10	0.10/0.25	95.3	2.01	0.03
metformin	$C_4H_{11}N_5$	129.1014	0.66	0.10	0.05/0.05	95.7	1.90	0.05
methotrexate	$C_{20}H_{22}N_8O_5$	454.1713	2.27	0.50	0.50/0.50	99.3	1.35	0.02
metoprolol	C15H25NO3	267.1834	3.08	0.05	0.05/0.05	97.4	1.21	0.01
metoprolol acid	$C_{14}H_{21}NO_4$	267.1471	2.17	0.25	0.05/0.05	95.8	0.82	0.08
oxazepam	$C_{15}H_{11}N_2O_2Cl$	286.0509	4.84	0.50	0.25/0.25	95.8	0.30	0.03
pravastatin	$C_{23}H_{36}O_7$	424.2461	4.60	0.25	0.10/0.10	93.0	1.36	0.02
propranolol	$C_{16}H_{21}NO_2$	259.1572	4.11	0.05	0.05/0.05	98.4	1.35	0.08
ranitidine	$C_{13}H_{22}N_4O_3S$	314.1413	1.69	0.05	0.05/0.05	97.4	1.69	0.08
sotalol	$C_{12}H_{20}N_2O_3S$	272.1195	1.57	0.10	0.05/0.05	93.8	0.75	0.09
sulfamethoxazole	$C_{10}H_{11}N_3O_3S$	253.0521	3.26	0.25	0.10/0.25	97.8	0.44	0.09
tramadol	C ₁₆ H ₂₅ NO ₂	263.1885	3.09	0.05	0.05/0.05	88.8	0.95	0.09
triclosan	$C_{12}H_7Cl_3O_2$	287.9512	7.56	0.25	0.05/0.25	96.7	1.66	0.03
valsartan	$C_{24}H_{29}N_5O_3$	435.2270	5.91	0.10	0.10/0.10	98.7	0.90	0.03
venlafaxine	C17H27NO2	277.2042	3.77	0.05	0.05/0.05	94.0	1.04	0.08

 a The mzCloud match score, difference between theoretical and detected m/z, and difference between expected and

detected RT represent average values calculated from all the calibration standard samples.

Identification of the target compounds

Figure S1. Identification of 2-chlorobenzoic acid (mzCloud match score: 89.9) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S2. Identification of 4-hydroxybenzotriazole (mzCloud match score: 90.8) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S3. Identification of 1H-benzotriazole (mzCloud match score: 98.2) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S4. Identification of acesulfame (mzCloud match score: 93.1) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S5. Identification of acetaminophen (mzCloud match score: 88.4) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S6. Identification of aniline (mzCloud match score: 91.8) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S7. Identification of atenolol (mzCloud match score: 98.8) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S8. Identification of atorvastatin (mzCloud match score: 95.3) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S9. Identification of bezafibrate (mzCloud match score: 99.0) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S10. Identification of bicalutamide (mzCloud match score: 95.4) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S11. Identification of caffeine (mzCloud match score: 95.3) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S12. Identification of carbamazepine (mzCloud match score: 96.6) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S13. Identification of carbamazepine-10,11-epoxide (mzCloud match score: 95.0) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S14. Identification of chlorothiazide (mzCloud match score: 92.3) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S15. Identification of chlorthalidone (mzCloud match score: 96.0) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S16. Identification of climbazole(mzCloud match score: 88.7) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S17. Identification of clofibric acid (mzCloud match score: 97.3) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S18. Identification of diclofenac (mzCloud match score: 97.6) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S19. Identification of fluconazole (mzCloud match score: 97.3) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S20. Identification of furosemide (mzCloud match score: 93.9) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S21. Identification gabapentin (mzCloud match score: 98.3) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S22. Identification glimepiride (mzCloud match score: 90.1) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S23. Identification of hydrochlorothiazide (mzCloud match score: 94.7) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S24. Identification of irbesartan (mzCloud match score: 96.4) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S25. Identification of ketoprofen (mzCloud match score: 97.6) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S26. Identification of MCPA (mzCloud match score: 95.3) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S27. Identification of metformin (mzCloud match score: 95.7) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S28. Identification of methotrexate (mzCloud match score: 99.3) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

RAWFILE(top): 20170927-32-SPE-Eff-pos (F29) #1384, RT=3.262 min, MS2, FTMS (+), (HCD, DDF, 268.1905@30, +1) REFERENCE(bottom): mzCloud library, Metoprolol, C15 H25 N O3, MS2, FTMS, (HCD, 268.1907@10)

Figure S29. Identification of metoprolol (mzCloud match score: 97.4) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

RAWFILE(top): 20170927-14-CalMix10-pos (F47) #696, RT=2.335 min, MS2, FTMS (+), (HCD, DDF, 268.1544@30, +1)

Figure S30. Identification of metoprolol acid (mzCloud match score: 95.8) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S31. Identification of oxazepam (mzCloud match score: 95.8) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S32. Identification of pravastatin (mzCloud match score: 93.0) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S33. Identification of propranolol (mzCloud match score: 98.4) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S34. Identification of ranitidine (mzCloud match score: 97.4) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S35. Identification of sotalol (mzCloud match score: 93.8) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S36. Identification of sulfamethoxazole (mzCloud match score: 97.8) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S37. Identification of tramadol (mzCloud match score: 88.8) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S38. Identification of valsartan (mzCloud match score: 98.7) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

Figure S39. Identification of venlafaxine (mzCloud match score: 94.0) in the calibration standard. Shown is the matching of the detected MS/MS of the compound (top) to the library record (bottom).

	influent (µg l ⁻¹) ^a	effluent (µg l ⁻¹) ^a
1H-benzotriazole	0.91	0.53
2-chlorobenzoic acid	0.22	n.d.
4-hydroxy-benzotriazole	0.82	0.76
acesulfame	51	4.3
acetaminophen	68	0.25
anastrozole	n.d.	n.d.
aniline	1.9	0.25
atenolol	0.70	0.25
atorvastatin	0.30	n.d.
bezafibrate	0.37	n.d.
bicalutamide	0.24	0.22
caffeine	273	0.062
carbamazepine	0.63	0.64
carbamazepine-10,11-epoxide	0.24	0.22
chlorothiazide	n.d.	0.056
chlorthalidone	n.d.	n.d.
climbazole	0.14	0.050
clofibric acid	n.d.	n.d.
diclofenac	1.2	0.75
fluconazole	0.21	0.18
fluoxetine	n.d.	n.d.
furosemide	0.72	0.51
gabapentin	6.1	4.7
glimepiride	n.d.	n.d.
hydrochlorothiazide	1.9	1.6
irbesartan	0.22	0.52
ketoprofen	0.85	0.16
МСРА	n.d.	n.d.
metformin	98	3.0
methotrexate	n.d.	n.d.
metoprolol	2.2	1.8
metoprolol acid	8.4	2.3
oxazepam	0.42	0.41
pravastatin	0.49	n.d.
propranolol	0.11	0.090
ranitidine	0.062	n.d.
sotalol	0.35	0.32
sulfamethoxazole	0.37	n.d.
tramadol	0.55	0.48
triclosan	0.34	n.d.
valsartan	1.6	0.56
venlafaxine	0.52	0.43

Table S4.	Concentrations	of the	target	compounds	detected i	in the	influent	and eff	luent v	vater.

^a n.d. indicates the compound was not detected (<LOD).

Figure S40. Distribution of the peak areas of all the compounds identified in the influent (left) and effluent water (right) using the non-target analysis. The results are from the direct injection approach.

Figure S41. Comparison of the RE (%) values for the tested target compounds calculated using the target and non-target approaches with direct injection.

Figure S42. PCA analysis of chemical domain covering all the compounds identified by the mzCloud database (red circles) as well as the 34 isotope-labelled standards for which matrix effect was similar between influent and effluent (green triangles): (a) Score plot of PC1 and PC2 (showing chemical positions in relation to PC1 and PC2); (b) Score plot of PC2 and PC3 (showing chemical positions in relation to PC2 and PC3. Blue diamonds represent the random distribution of the six isotope-labelled standards that had significant differences in matrix effects.

Figure S43. Chemical domain in the space of PC1-PC2-PC3 (cumulative explained variance: 47%). Green circles represent the chemicals that are inside of the structural domain of the standards; violet circles represent the chemicals for which the structures are scarcely represented by the standards; red circles represent the chemicals that are severely out of domain (unreliable RE%) (PEG n8-n15 and PPG 10).