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The estimation of diagonal elements of a Wiener model kernel is a well-known problem. The new operators and notations pro-
posed here aim at the implementation of efficient and accurate nonparametric algorithms for the identification of diagonal points.
The formulas presented here allow a direct implementation of Wiener kernel identification up to the nth order. Their efficiency is
demonstrated by simulations conducted on discrete Volterra systems up to fifth order.
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1. INTRODUCTION

Among the identification techniques based on input-output
correlations, the one proposed by Lee and Schetzen [1] is the
most widely adopted due to its versatility, even if more recent
techniques and up-to-date insights on these arguments can
be found in [2] andmore references in [3]. The application of
the Lee-Schetzen technique on discrete nonlinear systems is
straightforward and also gains some validity advantages ver-
sus the continuous time version, as stated rigorously in [4]
and in [5]. In [6], the authors describe some characteristic
behaviors of the Lee-Schetzen method for discrete systems
and propose practical suggestions on its use.

The estimation of diagonal elements of a Wiener model
kernel is a well-known problem. Such problem can be found
documented in [6, 7, 8]. It arises from the higher estimation
error variance exhibited by the estimation process of the ker-
nel points having at least two equal coordinates. In [6], some
explanations for this phenomenon, which augments increas-
ing the number of equal coordinates, are given. The original
Lee-Schetzen identification technique was particularly sub-
ject to this kind of errors. Goussard et al., in [9], made a ma-

jor contribution to the solution of the diagonal point estima-
tion problem, although their work contains explicit solutions
and proofs only up to the third order.

Koukoulas and Kalouptsidis, in [10], using the results on
the calculation of cumulants due to the work of Leonov and
Shiryaev [11], proposed a proof of the nth-order case valid
also for inputs drawn from nonwhite Gaussian distributions.
In the white Gaussian input case, the general formulas in [10]
can be shown to reduce to Goussard’s method. Other for-
mulas using cumulants to estimate Wiener kernels directly
have been proposed in [12]. Unfortunately, no implementa-
tion problems or any simulated efficiency tests were consid-
ered in [10, 12] because they were not among the purposes
of the authors.

In this paper, we propose alternative formulas for the
identification of nth-order Wiener kernels in the case of
white Gaussian inputs, which avoid the explicit use of cu-
mulants and are a useful shortcut to the proof of Goussard’s
method for higher orders. Moreover, the proposed formulas
constitute an efficient way for the automatic generation of
algorithm code for every order kernel identification, whereas
the writing of efficient computer code is a very difficult task
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as the kernel order increases. Some results on implementa-
tion tests are supplied to show the efficiency of the proposed
method.

2. THE LEE-SCHETZENMETHOD

The Volterra series constitute amodel for systems which yield
generalized Taylor series expansions [1]. Under appropriate
system class requirements [1, 2, 4, 13, 14, 15, 16, 17, 18],
the input/output relationship for a discrete-time causal time-
invariant nonlinear system can be expressed as

y(n) = h0 +
∞∑

m=1

∞∑
τ1,...,τm≥0

hm
(
τ1, . . . , τm

) m∏
j=1

x
(
n− τj

)
. (1)

To enhance model convergence and to allow identification by
Lee-Schetzen method, the series (1) must be rearranged in
terms of nonhomogeneous G operators [1, 2]. An operator
is said to be a Wiener G operator if it satisfies the following
definitions and conditions [1, 2]:

Gp
[
kp(p), kp−1(p), . . . , k0(p); x(n)

]

= k0(p) +
p∑

r=1

∞∑
τ1=0

· · ·
∞∑

τr=0
kr(p)

(
τ1, . . . , τr

)

× x
(
n− τ1

) · · · x(n− τr
)
,

(2)

E
{
Hm
[
hm; x(n)

]
Gr
[
kr(r), kr−1(r), . . . , k0(r); x(n)

]} = 0, (3)

for m < r, n = 0, 1, 2, . . .; kp � kp(p) is the Wiener kernel of
pth order; Hm is a homogeneous mth-order Volterra opera-
tor, defined as

Hm
[
hm; x(n)

]
=

∞∑
τ1,...,τm=0

hm
(
τ1, . . . , τm

)
x
(
n− τ1

) · · · x(n− τm
)
,

(4)

where x(n) must be a zero-mean Gaussian white process (i.e.,
an independent identically distributed (i.i.d.) sequence from
a zero-mean Gaussian distribution) with E{x(n)x(n + t)} =
Aδ(t), where E{·} is the statistical expectation operator, δ(t)
is the unitary impulse sequence, and A is the second-order
moment of the input x.

The Lee-Schetzen method for nondiagonal point estima-
tion of a pth-order Wiener kernel is described by [1, 6]:

kp
(
σ1, . . . , σp

)
= 1

p!Ap E
{
y(n)x

(
n− σ1

) · · · x(n− σp
)}
.

(5)

For the diagonal point case, a more complicated form is
needed to account for the lower-order kernel contribu-
tions. The exact expressions for the second- and third-order
Wiener kernels are [1]

2!A2k2
(
σ1, σ2

)=E
{
y(n)x

(
n− σ1

)
x
(
n− σ2

)}− Ak0δσ1σ2 ,

3!A3k3
(
σ1, σ2, σ3

)=E
{
y(n)x

(
n− σ1

)
x
(
n− σ2

)
x
(
n− σ3

)}
−A2(k1(σ1

)
δσ2σ3+k1

(
σ2

)
δσ1σ3+k1

(
σ3

)
δσ1σ2

)
,

(6)

where δσiσj � δ(σi − σj) is the unitary impulse sequence de-
layed by σi − σj . For higher orders, this kind of explicit ex-
pression becomes unwieldy, due to the great number of cor-
rection terms in the diagonal point case. To overcome this
difficulty, Lee and Schetzen [1] proposed the general identi-
fication formula [1, 6]

kp
(
σ1, . . . , σp

) = 1
p!Ap E

{(
y(n)−

p−1∑
m=0

Gm
[
km; x(n)

])

× x
(
n− σ1

) · · · x(n− σp
)}

,

(7)

where Gm[km; x(n)] is the mth G-functional of the white
Gaussian input x(n) [1, 2, 6]. Unfortunately, this way of
proceeding results in poor performances of the identifica-
tion algorithm. In a practical situation, the limitations due to
the finite length of input sequences and the departure from
ideal statistical properties bias the identification procedure.
In the implementation of (7), the identification errors of ev-
ery point of the lower-order identified kernels are summed
up by the Gm operator and they all contribute to the output
error. On the contrary, only pointwise lower-order kernel er-
rors affect expressions like (6). Indeed, we found that the de-
velopment of nth-order compact expressions of the form (6)
leads to some implementation advantages, while the numer-
ical results remain the same with respect to the method of
Goussard et al. in [9] which featured a similar kind of im-
provement of the original Lee-Schetzen method.

3. EFFICIENT nTH-ORDER FORMULAS FOR THE
IDENTIFICATION OF DIAGONAL POINTS

In the major literature concerning the identification of
Volterra systems, the examples supplied often do not exceed
the third order. This is due to the fact that the identification
algorithms become very cumbersome for higher orders. To
extend the identification algorithms to higher orders in an
easy way, we introduced new notations and operators which
permit to handle, in a short and recursive form, the compli-
cated expressions involved by algorithm generation. Actually,
a manual generation of the code may be a very tedious and
difficult task still for relatively low-order problems.

3.1. Preliminaries

Let M be a set of m distinct naturals, Q ⊆ M, and q = |Q|
and m = |M| the cardinalities of Q and M, respectively. If
P(M) is the power set of M (i.e., the set of all subsets of M)
and M is the set of all n-tuples of formal variables of integer
values, a relationship between the elements of P(M) and M
follows:

σ : P(M) −→M, (8)

such that σ(Q) = (σi1 , . . . , σiq) ∈ M, where Q ⊆ P(M), i j ∈
Q, j = 1, . . . , q.
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Furthermore, it will come in handy to define σM(Q) =
σ(M−Q) as the function σ applied to the complementary set
ofQ with respect toM. Also, it will be necessary to generalize
the definition of a qth-order Wiener kernel in the following
way:

k
(
σ(Q)

)
� kq

(
σi1 , . . . , σiq

)
, (9)

with Q �= ∅ and k(σ(∅)) � k0, where k0 is the Wiener
zeroth-order kernel. Moreover, we define

D
[
x(n);σ(Q)

] = x
(
n− σi1

) · · · x(n− σiq
)
, (10)

with Q �= ∅, and D[x(n);σ(∅)] = 1.
We now give a definition analogous to that given by

Schetzen for the homonym
∑∏

operator in [1]. For our pur-
poses, the operator

∑∏
will be redefined as

∑∏
σ(Q) � A−q/2

∑∏
Lee-Schetzen

= A−q/2E
{
D
[
x(n);σ(Q)

]}
.

(11)

In [1], Schetzen reported that when x(n) is a sta-
tionary zero-mean jointly Gaussian random sequence
E{D[x(n);σ(Q)]} = 1, when q = 0, E{D[x(n);σ(Q)]} = 0
for odd q and it is equal to the sum of products of factors
E{x(n−σi)x(n−σj)} with i, j ∈ Q for even q, resulting from
all completely distinct ways of partitioning the set {x(n−σh) :
h ∈ Q} into pairs. If x(n) is white Gaussian, under the ergod-
icity hypothesis, it holds that E{x(n− σi)x(n− σj)} = Aδσiσj .

In particular, for q = 0, we have
∑∏

(∅) = 1, and for
q = 2 and q = 4, we have, respectively,

∑∏(
σi1 , σi2

)
� 1

A
E
{
D
[
x(n);σ

({
i1, i2

})]} = δσi1σi2 ,

∑∏(
σi1 , σi2 , σi3 , σi4

)
� 1

A2
E
{
D
[
x(n);σ

({
i1, i2, i3, i4

})]}
= δσi1 σi2 δσi3 σi4+δσi1σi3 δσi2σi4+δσi1 σi4 δσi2 σi3 .

(12)

A new operator
∑

Π will now be introduced as

∑M

Π
f
(
σ(Q); ·) �= r∑

i=1

[
f
(
σ
(
Qi
)
; ·)∑∏

σM(Qi
)]
, (13)

where r = (mq ), Q ⊆ M, Qi are all the subsets generated by
the combinations of q elements chosen from M, and f is a
symmetrical mapping with respect to σ(Q). In particular, it
holds that

∑M

Π
f
(
σ(Q); ·) =∑M

Π
f
(
σ
(
Qi
)
; ·), 1 ≤ i ≤ r, (14)∑M

Π
f
(
σ(∅); ·) = f

(
σ(∅); ·)∑∏

σ(M), (15)∑M

Π
f
(
σ(M); ·) = f

(
σ(M); ·). (16)

The properties (14), (15), and (16) are trivially verified using
definitions (13) and (11).

3.2. Formulas formth-orderWiener kernel estimation
From the above definitions, we have derived the following
general formulas for themth-order kernel estimates:

E
{
y(n)D

[
x(n);σ(M)

]}

=

m/2�∑
h=0

(m− 2h)!Am−h∑M

Π
k
(
σ
({
i1, . . . , im−2h

}))
,

(17)

from which

m!Amk
(
σ(M)

)
= E

{
y(n)D

[
x(n);σ(M)

]}

−

m/2�∑
h=1

(m− 2h)!Am−h∑M

Π
k
(
σ
({
i1, . . . , im−2h

}))
,

(18)

where 
(·)� denotes the integer part of (·). The formulas just
presented allow the mth-order Wiener kernel to be identi-
fied. Note that for m = 2, 3 they reduce to (6). In the di-
agonal points, the estimation will be improved with respect
to the classical Schetzen technique referred to here by (7). It
must be noted that a real improvement is obtained only when
the expectations are assessed by averages on finite-length se-
quences, as it is unavoidable in practice. A proof for (18) can
be found in Appendix A.

3.3. Explicit generalization of Goussard’s
method tomth order

As previously pointed out, an improvement in the estima-
tion of diagonal elements was also obtained by Goussard et
al. [9]. Although they proposed a method for the improve-
ment of the diagonal points estimation, which is in principle
analogous to the idea which resides behind the development
of (17) and (18), in [9] they demonstrated only the expres-
sions up to the third order. Actually, we aimed at the gener-
alization of those formulas and proofs for higher orders in a
compact and handy way.

It can be proved (see Appendix B) that themth-order ver-
sion of the original Goussard formulas assumes the following
form:

m!Amk
(
σ(M)

) = E
{
y(n)Ψ

[
x(n);σ(M)

]}
, (19)

where the operator Ψ is defined as

Ψ
[
x(n);σ(∅)

] = 1, (20)

Ψ
[
x(n);σ(M)

]=
m/2�∑
h=0

(−1)hAh
∑M

Π
D
[
x(n);σ

({
i1, . . . , im−2h

})]
.

(21)

We also propose a recursive form of formula (21) which
can be useful for generating the code which computes Ψ for
higher orders:

Ψ
[
x(n);σ(M)

] = D
[
x(n);σ(M)

]

−

m/2�∑
h=1

Ah
∑M

Π
Ψ
[
x(n);σ

({
i1, . . . , im−2h

})]
.

(22)
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The preceding formula can also be given in a more compact
implicit form:

D
[
x(n);σ(M)

] = 
m/2�∑
h=0

Ah
∑M

Π
Ψ
[
x(n);σ

({
i1, . . . , im−2h

})]
.

(23)
A proof for (19), (20), (21), (22), and (23) has been supplied
in Appendix B.

Interesting higher-order formulas for identification in a
nonparametric approach can also be found in [10] or refer-
enced in [2], where they are based on cross-cumulants rather
than crossmoments. These formulas generalize the identifi-
cation method avoiding an explicit Wiener-to-Volterra series
conversion and they hold also for nonwhite Gaussian inputs.
If the input is white, they simplify in a form equivalent to
(19). Actually, the use of (19) and (21) can be found to be
equivalent to the formula using the cumulant definitions in
the white Gaussian case.

In [12] and references therein, a useful formula can be
found which directly relates Wiener kernels to cumulants.
The use of (18), after some manipulations, is equivalent
to the formulation proposed in [12]. The computation of
the joint cumulants of mth-order requires, in principle, the
knowledge of all the joint moments up to mth-order [2]. In
(18), only the mth moment is needed because the lower-
order moments are implicitly stored in lower-order previ-
ously estimated kernels. So the notations and formulas pro-
posed here constitute mainly a handy tool for the straightfor-
ward implementation of cumulant calculus in the particular
case of white Gaussian input. The implementation efficiency
of (18) resides in the way the storing of lower-ordermoments
is accomplished by accounting for similar terms generated by
the symmetry properties of the lower-order moments (or cu-
mulants themselves).

The main differences between the method related to (18)
and the method of (19) and (21) reside in the application
point of view: while the first needs the storage of lower-order
kernels, the plain implementation of (19) permits to identify
any kernel without knowing the others. This second tech-
nique obviously causes additional computation time in the
complete estimation of a model, as will be shown in the next
section.

The use of (18) gives also the most efficient way to access
the lower-order moments needed by a smart implementation
of (19) and (21). In [9], those general-order implementation
issues were not covered.

4. IMPLEMENTATION TESTS

In the following, the results obtained by the implementation
of (18) (which will be referred to as the straight method) are
compared with the ones obtained by the formulas of Schet-
zen [1] (which will be referred to as the classic method1) and

1The implementation of (7) has actually been done subtracting only the
lower-order G-functionals which had the same parity with the order of the
kernel being identified, as suggested by Schetzen in [1].

Table 1: Mean values, over 100 independent systems, of percentage
of kernel points which have an identification relative error less than
threshold (these points are referred to as valid points2). Simulations
with 1 input (left) and 10 inputs (right). Every input is a 105 sample
sequence from a zero-mean independent white Gaussian distribu-
tion.

Kernel order Classic Straight Off-diagonal

2nd order 86.10/93.20 86.10/93.20 87.09/94.56

3rd order 62.31/62.67 91.22/95.72 94.67/97.80

4th order 25.44/31.95 40.11/54.44 41.20/57.60

5th order 23.57/27.34 52.01/65.47 55.86/71.74

Table 2: Mean computation time (seconds) over 10 identifications
of a test system versus model order, for each of the three methods
implemented.

Methods 2nd 3rd 4th 5th
Classic 0.58 9.56 61.65 223.68
Goussard’s 0.57 13.23 97.93 643.97
Straight 0.51 7.24 40.54 155.49

the ones by Goussard et al. [9] (referred to here as Goussard’s
method), which, in Section 3.3, have been extended to higher
orders explicitly. The formulas have been tested identifying
100 discrete Volterra systems of the fifth order.

For a significant implementation test, we needed a quite
general set of test systems. The most general Volterra discrete
causal system could have been created drawing the values of
the kernels from aGaussian distribution. Here, for the sake of
simplicity of the implementation and of the exposition, only
the constituent FIR filter taps have been drawn from a Gaus-
sian distribution (independent from the input sequences).
Indeed, the nth-order kernel was constituted by the cascade
of an FIR filter and an nth-power nonlinear block. The sys-
temmemory length for each order results from the ten taps of
the FIR kernel generators. Besides this restriction, we retain
that the test so conducted still maintained enough generality.

It must be noted that the results coming from the straight
method and Goussard’s one differed only by round-off errors,
so in Table 1 and Figure 1, only the results for the straight
method will be reported but they hold for Goussard’s method
as well. Besides, the two methods differ considerably in com-
puting times: Table 2 shows that the straight method is faster
than Goussard’s method (computation times are almost four
times shorter for the fifth-order case). This happens because
the straight method avoids some redundant computation of
the moments of the input and output vectors by trading it
for the storage of lower-order kernel values.

2The reported quantities are obtained by an average over 100 inde-
pendent systems estimate of the quantity 100 × Npv/Np , where Np is
the number of necessary points (taking account of symmetries) for the
estimation of kp and Npv is the number of the valid points defined

as follows. Let kp(τ1, τ2, . . . , τ p) be a point of kp and k̂p(τ1, τ2, . . . , τ p)

its estimate, then a point is considered valid if |k̂p(τ1, τ2, . . . , τ p) −
kp(τ1, τ2, . . . , τ p)|/|kp(τ1, τ2, . . . , τ p)| ≤ 10.
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Figure 1: Percentage of valid points (see footnote a) versus number (or length) of input signals for only one of the test systems. An abscissa
unit corresponds to 105 independent input samples. (a) 2nd order, (b) 3rd order, (c) 4th order, and (d) 5th order.

The first test for the estimation efficiency has been per-
formed using ten white Gaussian inputs of 105 samples
for each of the 100 systems. The results of this test are
shown in Table 1. Each cell of the table reports two val-
ues: the first one refers to one input of 105 samples. The
second one is the value obtained with a mean on ten ker-
nel identifications, with ten independent input sequences
of the same length. Under the assumption of the ergod-
icity of the identification process, this procedure corre-
sponds to a single experiment with an input length ten
times longer than the first one. When the value of the de-
sired kernel is nearly zero, the relative error tends to infin-
ity. As a consequence, we established an arbitrary thresh-
old for the relative error value equal to 10. Only the
points with a relative error under threshold are consid-

ered as valid points. Table 1 shows the percentage of valid
points.

Results show, for all the methods, an improvement of
identification accuracy as the input length increases. In the
classic method, such improvement is less than in the straight
one. This first test was a consistency test for the algorithms.

In a subsequent simulation, the percentage of acceptance
of kernel points has been calculated increasing further the
number of the input signals for only one of the test systems
arbitrarily chosen. Figure 1 shows such results, evidencing
how the straight methodworks better than the classic one. The
off-diagonal estimates have been reported both in Table 1
and in Figure 1 as a reference, because they represent the best
case, which is equivalent for all the methods considered so
far.
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5. CONCLUSION

The formulas proposed here with the use of well-suited no-
tations permit to handle, in an efficient way, the nth-order
identification of Wiener kernels. The proof of the formu-
las has been supplied and simulation has demonstrated their
efficiency with respect to the classic Lee-Schetzen method.
The alternate method proposed here and referred to as the
straight method has been shown to be considerably faster
than previous improvements of the Lee-Schetzen method
known in literature [9], especially as the order and the size
of the kernels increase.

APPENDICES

A. PROOF OF FORMULA (17)

We have to prove that when x(n) is a sequence of white Gaus-
sian random variables (an i.i.d. Gaussian process), it holds
that

E
{
y(n)D

[
x(n);σ(M)

]}

=

m/2�∑
h=0

(m− 2h)!Am−h∑M

Π
k
(
σ
({
i1, . . . , im−2h

}))
,
(A.1)

withM = {1, 2, . . . ,m},m ∈ N,m <∞.
When the Wiener series expansion exists, we can write

y(n) =
∞∑
h=0

Gh
[
kh; x(n)

]
. (A.2)

If we multiply the left and right members of (A.2) by
D[x(n);σ(M)] and apply the expectation operator, then, ex-
ploiting the orthogonality of the G and D operators defined
in (2) and (10) (it can be easily proved that D operators are a
particular case of G operators [1, 9]), it holds that

E
{
y(n)D

[
x(n);σ(M)

]}
=

m∑
h=0

E
{
Gh
[
kh; x(n)

]
D
[
x(n);σ(M)

]}
.

(A.3)

From the properties of the expectation operator and of the
operatorsG andD, it follows that in the sum of (A.3) for even
(odd) m, the terms with indices h odd (even) are identically
zero, then (A.3) can be simplified as follows:

E
{
y(n)D

[
x(n);σ(M)

]}

=

m/2�∑
h=0

E
{
Gm−2h

[
km−2h; x(n)

]
D
[
x(n);σ(M)

]}
.

(A.4)

So (A.1) holds if the validity of the following can be verified:

E
{
Gm−2h

[
km−2h; x(n)

]
D
[
x(n);σ(M)

]}
= (m− 2h)!Am−h∑M

Π
k
(
σ
({
i1, . . . , im−2h

}))
,

(A.5)

for allm,h ∈ N, h ≤ 
m/2�.

To prove (A.5), we have to consider the explicit general
expression of a G operator in the discrete-time case [1, 2]:

Gp
[
kp; x(n)

] =

p/2�∑
s=0

∑
τ1

· · ·
∑
τp−2s

(−1)s p!As

(p − 2s)!s!2s

×
∑
ξ1

· · ·
∑
ξs

kp
(
ξ1, ξ1, . . . , ξs, ξs, τ1, . . . , τp−2s

)

× x
(
n− τ1

) · · · x(n− τp−2s
)
.

(A.6)

Using (A.6) and the definition of the
∑∏

operator and let-
ting p = m− 2h, (A.5) can be simplified as


p/2�∑
s=0

Cs

∑
τ1

· · ·
∑
τp−2s

∑
ξ1

· · ·
∑
ξs

kp
(
ξ1, ξ1, . . . , ξs, ξs, τ1, . . . , τp−2s

)

×
∑∏(

τ1, . . . , τp−2s, σ1, . . . , σm
)

=
∑M

Π
k
(
σ
({
i1, . . . , ip

}))
,

(A.7)

with

Cs = (−1)s
(p − 2s)!s!2s

. (A.8)

Now consider the general expression of a term of the sum
over s in the first member of (A.7):

Cs

∑
τ1

· · ·
∑
τp−2s

∑
ξ1

· · ·
∑
ξs

kp
(
ξ1, ξ1, . . . , ξs, ξs, τ1, . . . , τp−2s

)

×
∑∏(

τ1, . . . , τp−2s, σ1, . . . , σm
)
.

(A.9)

We will show hereafter how the terms deriving from the ex-
pansion of (A.9) can be grouped in 
p/2� term typologies.
We define as ν-type term the following expression:

Cs

∑
ξ1

· · ·
∑
ξν

kp
(
ξ1, ξ1, . . . , ξν, ξν, σ1, . . . , σp−2ν

)

×
∑∏(

σp−2ν+1, σp−2ν+2, . . . , σm−1, σm
)
.

(A.10)

Note that in the expression (A.10), there are ν pairs of identi-
cal formal variables in the argument of kp and a correspond-
ing number ν of sum operators, which explains the choice
of the ν-type term name. The term (A.10) collects a group of
addenda of (A.9), as we are going to point out next.

Recalling that an expression like E{x(n − σi)x(n − σj)}
generates the sequence δ(σi − σj), consider one of the prod-
ucts of unity pulse δ-sequences deriving from the complete
expansion of (A.9):

δτ1τ2 · · · δτ(2N−1)τ(2N)δτ(2N+1)σ1 · · · δτ(p−2s)σ(p−2s−2N)

× δσ(p−2s−2N+1)σ(p−2s−2N+2) · · · δσm−1σm ,
(A.11)

with N chosen such that 0 ≤ N ≤ 
(p − 2s)/2�. The term
(A.11) is compounded by two types of factors: we will dub
homogeneous those factors of the form δτiτj and mixed those
factors of the form δτiσj , for all i, j ∈ N. Note that the product
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between the first part of (A.9),

Cs

∑
τ1

· · ·
∑
τp−2s

∑
ξ1

· · ·
∑
ξs

kp
(
ξ1, ξ1, . . . , ξs, ξs, τ1, . . . , τp−2s

)
,

(A.12)

and a homogeneous factor δτiτj collapses the two sums
∑

τi
and

∑
τj into one, and at the same time makes indistinguish-

able the arguments of kp in the ith and jth positions. On the
other hand, the product between (A.12) and a mixed factor
δτiσj cancels the sum

∑
τi and substitutes τi with σj in the ith

position of the argument of kp. Using the sifting property of
the δ-sequences and letting ξs+i = τi, from the product be-
tween (A.12) and (A.11), we obtain the following simplified
expression of a group of addenda of (A.9):

Cs

∑
τ1

· · ·
∑
τN

∑
ξ1

· · ·

×
∑
ξs

kp
(
ξ1, ξ1, . . . , ξs, ξs, τ1, τ1, . . . , τN , τN , σ1, . . . , σp−2s−2N

)

× δσ(p−2s−2N+1)σ(p−2s−2N+2) · · · δσm−1σm .
(A.13)

The expression (A.13) constitutes a part of a ν-type term
like (A.10) with ν = s + N , and it is easy to show that all
the terms obtained from

∑∏
(τ1, . . . , τp−2s, σ1, . . . , σm), hav-

ing their first p−2s factors in common with the term (A.11),
can be collected by the following expression:

δτ1τ2 · · · δτ(2N−1)τ(2N)δτ(2N+1)σ1 · · · δτ(p−2s)σ(p−2s−2N)

×
∑∏(

σp−2s−2N+1, σp−2s−2N+2, . . . , σm−1σm
)
.

(A.14)

Hence, the term of type s +N

Cs

∑
ξ1

· · ·
∑
ξs

∑
τ1

· · ·

×
∑
τN

kp
(
ξ1, ξ1, . . . , ξs, ξs, τ1, τ1, . . . , τN , τN , σ1, . . . , σp−2(s+N)

)

×
∑∏(

σp−2s−2N+1, σp−2s−2N+2, . . . , σm−1σm
)
,

(A.15)

collects all the addenda of the complete expansion of (A.9)
which have in common the following p − 2s factors:

δτ1τ2 · · · δτ(2N−1)τ(2N)δτ(2N+1)σ1 · · · δτ(p−2s)σ(p−2s−2N) . (A.16)

Now, it can be observed that in the expansion of (A.9), there
are other terms of the same kind of (A.15) which have the
expression

∑∏(
σp−2s−2N+1, σp−2s−2N+2, . . . , σm−1, σm

)
(A.17)

in common, but the argument of kp different for a permuta-
tion of the group of variables

(
τ1, τ1, . . . , τN , τN , σ1, . . . , σp−2(s+N)

)
. (A.18)

Using the symmetry hypothesis3 on kp, those terms be-
come similar to (A.15). Hence we now aim at obtaining the
coefficient to be multiplied by (A.15) which accounts for all
those similar terms. This coefficient is actually the number
of completely distinct permutations, in the sense of the def-
inition of

∑∏
, among the P = (p − 2s)!/2N permutations

of the group of variables (A.18) with N pairs of repeated el-
ements. Indeed, note that a position exchange of the variable
σ from ith to jth position in the argument of kp corresponds
to a distinct permutation. In fact, that position exchange de-
rives from two distinct factor products of

∑∏
(·) which dif-

fer at least in the mixed factors δστi and δστj . On the other
hand, a position exchange between the variable pairs (τi, τi)
and (τj , τj) corresponds to a change of the order of factors
in product terms. The product terms, where the homoge-
neous factors δτiτi and δτjτj differ only in position, will be
indistinguishable for

∑∏
. N being the number of pairs of

the τ variables in the argument of kp, for each of the allowed
P permutations, there will be a group ofN ! indistinguishable
corresponding permutations. So, in the expansion of (A.9),
the number of indistinguishable terms from the term (A.15),
due to the symmetry of kp, will be equal to

Us+N ,s = (p − 2s)!
N !2N

. (A.19)

The first subscript ofU denotes the type of the term to which
the coefficient is associated and the second is the index of the
outer sum of (A.7).

Up to this point, we have focused our attention on the
fact that, s, N , and the n-tuple (σ1, σ2, . . . , σp−2(s+N)) being
chosen, the term (A.15) is a representative of Us+N ,s simi-
lar terms of (A.9). Now, we observe that, for the symmetry
of kp and the definition of

∑∏
(τ1, . . . , σm), we have NC =( m

p−2(s+N)
)
equivalence classes which have a term like (A.15)

as a representative. Those NC classes constitute the quotient
set of the terms of (A.9) under the symmetry of kp and the
distinguishability rules of

∑∏
. Actually, each equivalence

class corresponds to an unordered choice of (p − 2(s + N))
from a total ofm σ-variables.

Henceforth, the definition (13) of the
∑

Π operator comes
in handy to define the term:

Ts+N =
∑M

Π

∑
ξ1

· · ·

×
∑
ξs+N

kp
(
ξ1, ξ1, . . . , ξs+N , ξs+N ;σ

({
i1, . . . , ip−2(s+N)

}))
.

(A.20)

This term collects all the representatives of the equivalence
classes we can obtain from the set of terms of (A.9) for a
certain choice of s and N .

3The kernel that is derived for a system need not be symmetric but com-
putations are greatly simplified if only symmetric kernels are considered.
A simple procedure exists by which a nonsymmetric kernel can be sym-
metrized so that we are able to consider only symmetric kernels without
any loss of generality [1].
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Now, by the previous arguments and definitions, it is
straightforward to rewrite (A.7) in the following equivalent
form:

[p/2]∑
s=0

Cs

[(p−2s)/2]∑
N=0

Us+N ,sTs+N = T0. (A.21)

For the validity of (A.21), it suffices to verify 
p/2�+ 1 equa-
tions, the first of which is

C0U0,0T0 = T0, (A.22)

and it is trivially verified as C0 = 1/p! and U0,0 = p!. The
remaining 
p/2� equations will be verified if it holds that

j∑
s=0

CsUj,s = 0. (A.23)

Using definitions (A.19) and (A.8), we can write

j∑
s=0

CsUj,s =
j∑

s=0
(−1)s(1) j−s

(
j
s

)
1
j!2 j = 0. (A.24)

Then with the use of Newton’s binomial formula∑ j
s=0
(
j
s

)
aj−sbs = (a + b) j , for all a, b ∈ R, (A.23) follows

immediately.
Finally, (A.22) and (A.23) imply (A.21) which is equiva-

lent to (A.7) and (A.5). The validity of (A.5), for allm,h ∈ N,
h ≤ 
m/2�, implies (A.1).

B. PROOF OF FORMULAS (19), (20), (21), (22),
AND (23)

Exploiting (18), we will prove that formulas (19), (20), (21),
(22), and (23) are valid for every finite set of distinct naturals
M with cardinalitym.

With the use of (18), the verification of (19) is equivalent
to the verification of the following equation:

E
{
y(n)Ψ

[
x(n);σ(M)

]}
= E

{
y(n)D

[
x(n);σ(M)]

}

−

m/2�∑
h=1

(m− 2h)!Am−h∑M

Π
k
(
σ
({
i1, . . . , im−2h

}))
.

(B.1)

We have to show that the definition of the Ψ opera-
tor given in (20), (21), (22), and (23) implies (B.1). This
will be demonstrated using induction separately for the odd
and even m cases. If we let the induction index equal to
ν = 
m/2�+1, then the cases ν = 1, 2 correspond tom = 0, 2
in the even m case and to m = 1, 3 in the odd m case. The
cases with m = 0, 1, 2, 3 are verified by (18) or, alternatively,
can be found proved in [9] or [10] in a different way. Hence,
we considerm = 2ν− 2 for the even case andm = 2ν− 1 for
the odd case, and suppose that (22) satisfies (19) when the
induction index is ν − 1. For m > 3 and for 1 ≤ h ≤ 
m/2�,
this is equivalent to supposing the following equation valid:

(m− 2h)!Am−2hk
(
σ
({
i1, . . . , im−2h

}))
= E

{
y(n)Ψ

[
x(n);σ

({
i1, . . . , im−2h

})]}
.

(B.2)

Using (B.2), (B.1) can be rewritten as

E
{
y(n)Ψ

[
x(n);σ(M)

]}
= E

{
y(n)D

[
x(n);σ(M)

]}

−

m/2�∑
h=1

Ah
∑M

Π
E
{
y(n)Ψ

[
x(n);σ

({
i1, . . . , im−2h

})]}
.

(B.3)

Further, for the properties of the expectation and the
∑

Π op-
erators, (B.3) can be rewritten as follows:

E
{
y(n)Ψ

[
x(n);σ(M)

]}
= E

{
y(n)

[
D
[
x(n);σ(M)

]

−

m/2�∑
h=1

Ah
∑M

Π
Ψ
[
x(n);σ

({
i1, . . . , im−2h

})]]}
.

(B.4)

Due to the arbitrary choice of y(n), (22) and (23) guarantee
a recursive definition ofΨ which is a solution for the ν-index
case of the induction. So (22) or (23) is a solution for (B.1).

It is left to prove that (21) fits formulas (22) and (23), so
(21) will be the explicit operative solution for (19). Exploit-
ing (21) and (14) in the right member of (23), we get

D
[
x(n);σ(M)

] = 
m/2�∑
h=0

Ah
∑M

Π


m/2−h�∑
�=0

(−1)�A�

×
∑{i1,...,im−2h}

Π
D
[
x(n);σ

({
i1, . . . , im−2h−2�

})]
.

(B.5)

From the definition of the
∑

Π operator and from the prop-
erty proved in Appendix C, it is easy to derive the rules that
allow to rewrite (B.5) in this way:

D
[
x(n);σ(M)

]

=

m/2�∑
h=0


m/2−h�∑
�=0

(−1)�A�+hC(m,m− 2h,m− 2h− 2�)

×
∑M

Π
D
[
x(n);σ

({
i1, . . . , im−2h−2�

})]
.

(B.6)

After collecting similar terms in (B.6) (i.e., the terms with
equal � + h), it can be stated that the validity of the following
equation:

h+�∑
j=0

(−1)h+�− jC
(
m,m− 2h− 2� +2 j,m− 2h− 2�

) = 0 (B.7)

suffices for the validity of (B.6). Using definition (C.2) and
after some trivial manipulations, (B.7) becomes

h+�∑
j=0

(−1)(h+�− j)(1) j
(
h + �
j

)
= 0. (B.8)
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With Newton’s binomial formula the verification of (B.8) is
straightforward. Hence also (B.6) holds and so does (B.5).
This suffices to state that (21) is a solution for (22) and then
for (19).

C. A PROPERTY OF THE
∑

Π OPERATOR

LetM be a finite set of positive distinct integers and R,Q such
that R ⊆ Q ⊆ M with cardinalities m, r, and q, respectively,
m, r, and q must be all odd or all even integers. Let f be
a symmetrical mapping with respect to the argument σ(R).
Under this hypothesis, it holds that
∑M

Π

∑Q

Π
f
(·;σ(R)) = C(m, q, r)

∑M

Π
f
(·;σ(R)), (C.1)

with

C(m, q, r) = ((m− r)/2)!
((m− q)/2)!((q − r)/2)!

. (C.2)

To prove this, let S be a mapping which associates a sum
of terms with the set of the terms being summed. It must be
observed that the first and the second member of (C.1) are
actually made of sums of terms. So we can associate two sets
to the sums in the left and right members of (C.1) in this
way:

A =

a : a ∈ S


∑M

Π

∑Q

Π
f
(·;σ(R))




,

B =

b : b ∈ S


∑M

Π
f
(·;σ(R))




.

(C.3)

Now, the proof of (C.1) can be made by proving that

(1) for all a ∈ A, there exists b ∈ B such that b ≡ a;
(2) for all b ∈ B, there exists Ab = {a ∈ A | a ≡ b} �= ∅,

|Ab| = C(m, q, r).

We consider first the item (1). Using definition (13) of
∑

Π,
the left and the right member of (C.1) can be made more
explicit (it could be done also in the former definitions of A
and B):(m

q

)
∑
j=1

(
q
r

)∑
i=1

f
(·;σ(Ri

))∑∏
σ
(
Qj − Ri

)∑∏
σ
(
M −Qj

)
,

(C.4)(
m
r

)∑
h=1

f
(·;σ(Rh

))∑∏
σ
(
M − Rh

)
, (C.5)

Qj being a combination of q elements chosen from m ele-
ments of M, Ri a combination of r elements chosen from q
elements of Qj , and Rh a combination of r elements chosen
fromm elements ofM. We also need the definition of the sets
of addenda associated to a particular choice of Ri, Qj and Rh

in this way:

Aij = S
(
f
(·;σ(Ri

))∑∏
σQj
(
Ri
)∑∏

σM(Qj
))
,

Bh = S
(
f
(·;σ(Rh

))∑∏
σM(Rh

))
.

(C.6)

It obviously holds that A = ⋃
i, j Ai j and B = ⋃

h Bh. If now
we consider two sets of distinct positive integers α and β, ex-
ploiting the properties deriving from definition (11) of

∑∏
,

it is easy to prove that

S
(∑∏

σ(α)×
∑∏

σ(β)
)
⊆ S

(∑∏
σ(α∪ β)

)
. (C.7)

Then, noting that for every i, j allowed by (C.4), Ri is a
combination of elements of Qj , Qj ⊆ M implies that Ri

is also a combination of elements of M. Hence there ex-
ists at least one h (among the ones allowed by (C.5)) such
that Rh = Ri. With these arguments, it can be said that
M − Rh = (Qj − Ri) ∪ (M − Qj) holds. From the preceding
expression and from (C.7), it trivially follows that Aij ⊆ Bh,
and then using (C.6), it follows that, for all ai j ∈ Aij , there
exists bh ∈ Bh such that ai j = bh. Item (1) has been proved.

Now we will focus on item (2). If we choose a set Rh al-
lowed by (C.7) and the corresponding Bh, an arbitrary ele-
ment b ∈ Bh would be described by the following expression:

b = f
(·;σ(Rh

))
δσi1 σi2 · · · δσip−r−1σip−r , (C.8)

with {i1, . . . , im−r} = (M − Rh). Note that to every factor δ,
a pair of subscripts is associated. The number of subscript
pairs for the term b is equal to |M −Rh|/2 = (m− r)/2. Now
we choose a two-set partition of the factors of b, with (q −
r)/2 and (m − q)/2 elements, respectively. To the two-set of
factors just obtained will be associated the two corresponding
sets having, as elements, the indices of the σ-variables in the
subscripts I′ = {i′1, . . . , i′q−r}, I′′ = {i′′1 , . . . , i′′m−q}, I′ ∪ I′′ =
(M − Rh), and I′ ∩ I′′ = ∅. Now we will pick up only the
part of b having the factors belonging to the indices set I′ to
form the term b′:

b′ = f
(·;σ(Rh

))
δσi′1 σi′2

· · · δσi′q−r−1 σi′q−r . (C.9)

It must be observed that the term b′ can be generated only
by the inner sum of (C.4). In particular, it is generated only
when Qj = I′ ∪ Rh. Qj is an allowed choice of q elements
among them elements ofM, and it also holds that I′′ =M−
Qj . From this, it follows that in the expansion of (C.4), there
exists only one group of addenda as follows:

f
(·;σ(Rh

))
δσi′1σi′2

· · · δσi′q−r−1 σi′q−r
∑∏

σ
(
M −Qj

)
. (C.10)

This group, by the definition of
∑∏

, will surely contain
once the addend (C.8). So we showed that for all b ∈ B and
for all partitions of the factors of b in two groups of (q − r)/2
and of (m− q)/2 elements, there exists a choice for Qj which
guarantees that there exists one and only one element of A
which is congruent with b, and so Ab �= ∅. Moreover, |Ab|
is equal to the number of all possible such partitions of the
factors of b. This number is obviously equal to the number
of permutations of (m − r)/2 elements with the repetition
of two elements (q − r)/2 and (m − q)/2 times, respectively.
Hence we get |Ab| = ((m− r)/2)!/((q − r)/2)!((m− q)/2)!.
This proves item (2).
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