
A Resilient Architecture for Forensic Storage of Events in Critical Infrastructures

Muhammad Afzaal, Cesario Di Sarno, Luigi Coppolino, Salvatore D’Antonio, Luigi Romano

Department of Technology
University of Naples “Parthenope”

Naples, Italy
muhammad.afzaal,cesario.disarno,luigi.coppolino,salvatore.dantonio,luigi.romano@uniparthenope.it

Abstract—In Critical Infrastructures, forensic analysis of
stored events is an essential task when a security breach occurs.
The goal of forensic analysis is to provide evidence to be used
as valid proofs in a legal proceeding. So, it is very important
to ensure the integrity of the events stored in order to perform
a correct forensic analysis. Today, most of the SIEMs used
to protect the Critical Infrastructures sign the security events
with RSA classic algorithm in order to ensure their integrity.
The signed security events cannot be admissible as evidence if
the secret key is compromised, or when the module responsible
for signing operations is down for any reason. In this paper
a new architecture that overcomes these limitations has been
proposed. Experimental tests show the performance of our
architecture and the high resilience in faulty situations, i.e.
some nodes are under attack.

Keywords-Forensic Storage; Threshold Cryptography; Crit-
ical Infrastructure Protection; Fault- and Intrusion-Tolerant
Architecture;

I. RATIONALE AND CONTRIBUTION

Critical Infrastructures (CI) [1] are often monitored

through Security Information and Event Management

(SIEM) systems which gather the events generated by

devices and sensors and process them in order to avoid

or mitigate the security breaches. Recently, the storage of

the events related to the security breach has been proven

necessary for forensic purposes. In fact, if an attacker has

successfully performed a security breach, it is possible

through the chain of events to find his identification. These

events can also be used to try the attacker in court but they

must be stored in raw format without any processing to be

admissible in court. So, the major SIEM systems provide

a forensic support for secure storage of events. We have

analyzed two SIEM products, Assuria Log Manager (ALM)

and OSSIM.The forensic storage of ALM is based on digital

signatures of the security events with classic RSA [2] with

SHA-256 hash function [3]. OSSIM SIEM developed by

AlienVault offers the forensic storage only in its commercial

version. The user manual of this product shows that it uses

the classic RSA algorithm to sign the important events. The

weakness of current forensic storages is that they are based

on classic RSA algorithm to sign the events. RSA algorithm

offers a good protection if the attacker tries through the

cryptanalysis [4] to read the contents of the message. But as

suggested in book [5], “Your opponent always uses her best

strategy to defeat you, not the strategy that you want her to

use”. In fact, the classical RSA algorithm, based on a pair

of public and private keys, is not tolerant to intrusions and

faults because the secret key that is used to digitally sign

the events is stored at one place and can be compromised.

The easy search of an RSA key from hard disk drive [6]

can nullify the admissibility of security events for forensic

purposes. Also, if the module that signs the events is down

due to DoS attack or some other reason, the system is not

available to sign the security events at the time of possible

security breach. If an adversary successfully steals the secret

key used to sign the security events, he can easily forge the

digital signatures and send such events to the database which

may not help in identifying the reasons of security breach.

In this paper we present a new architecture and implemen-

tation of a forensic storage that overcomes these limitations.

In fact, using threshold signature scheme instead of classic

RSA, we have obtained benefits such as: unforgeability of

data if some participants of the algorithm show abnormal

behavior; an intrusion and fault tolerant system; identifica-

tion of the participants of threshold crypto scheme that show

abnormal behavior.

In order to obtain an architecture with high performance

in terms of number of events stored, this is realized as

distributed application. Each component of the distributed

application is made using multi-threaded model program-

ming. Also we have used an optimized data structure that

allows the maximum level of concurrency between threads

that perform write operations simultaneously. We even in-

tegrated our forensic storage into OSSIM SIEM to provide

a new version of advanced SIEM system that ensures the

integrity of data even in faulty situations. Finally, through

experimental tests we have shown the performance of our

Forensic Storage and how the integrity of data is ensured

even in presence of attacks.

II. BACKGROUND

We have used RSA Threshold Signature scheme instead

of classical RSA signatures because of ability to tolerate

intrusions and faults and more flexibility provided by the

former technique. Threshold Cryptography allows a group

of n parties to participate in the digital signature process

to enforce authenticity and non-repudiation. The basic idea

2012 IEEE 14th International Symposium on High-Assurance Systems Engineering

1530-2059/12 $26.00 © 2012 IEEE

DOI 10.1109/HASE.2012.9

48

is to divide the secret key in n shares, where n is the

number of shareholders or participants to the algorithm and

to set a threshold value called k where participation of at

least k shareholders is necessary in order to construct the

secret. The strength of Threshold Crypto technique lies in

the fact that the secret key should be divided among the

shareholders in such a way that not less than the threshold

number of shareholders can build the secret key and none

of the shares reveals even partial information that may be

helpful to construct or have an idea about the secret key.

Different methods for dividing the secret key into different

shares have been proposed. In 1979, Adi Shamir [7] and

Blackley [8] proposed independently the first secret share

scheme.

In our work we use the threshold signature scheme

proposed by Shoup [9] because it is the first practical scheme

to implement digital signature in a threshold mode. Previ-

ous works on threshold signature schemes were research

oriented and dealt with only mathematical details of the

digital signature generation using RSA whereas Shoup’s

scheme provides the full algorithm to implement the digital

signatures using RSA in a threshold mode.

III. RESILIENT ARCHITECTURE FOR FORENSIC

STORAGE

In this section we deal with the storage units dedicated

to the archival of critical security events, which require

properties like integrity, confidentiality, and unforgeability.

A resilient architecture for forensic storage is a facility that

allows secure storage of data by implementing a set of

techniques which make data alteration difficult to achieve.

The architecture of the forensic storage is shown in Figure 1.

The Security Events are the input data to the architecture.

The incoming data carry information about the events related

to a security breach. In order to be able to use this data

for forensic purposes, it should be stored in raw format

without any kind of processing. So, the Security event

“m” in Figure 1 is considered to be in raw format. The

first component starting from the left is the “Threshold

Cryptography” block. We suppose that there are n partici-

pants to the algorithm, and they are indicated as Node 1
. . .Node n. After the secret key is divided into shares

and distributed to all shareholders, the incoming message

(containing information about the security breach) is sent in

parallel to n nodes. Each node computes a hash function

of the same message. The hash function returns a unique

digest for this message, named h in Figure 1. The next

step for each node is to encrypt the digest in order to

produce a signature share (or partial signature) represented

by Sigshare 1 . . .Sigshare n. For this purpose, each node

has its own secret key share that is used to encrypt the digest.

A component, called Combiner, is responsible for assem-

bling all partial signatures received from the shareholders in

order to generate a complete signature which is attached to

Figure 1: Resilient architecture for forensic storage.

the original message, thus forming a signed security record,

i.e. a forensic record. This new record is stored for future

forensic analysis. To ensure unforgeability of the records, it

is common to use Write-Once-Read-Many (WORM) storage

devices to preserve such records [10]. However, records can

also be stored in any kind of database, if provided with

mechanisms of tamper detection [11].

In Figure 1, Forensic Services provide forensic analysis

services which are able to determine which data were

altered, and also who the intruder is, through the information

obtained by the recorded events. The Access Control System

is the service that controls who can interact with a resource

and how. Replication and diversity are employed to further

improve the intrusion and fault tolerance in Forensic Storage.

In particular, the combiner and the storage are single point

of failure components within the architecture, so we chose

to employ redundancy and diversity in order to avoid this

weakness. Replication introduces well-known data consis-

tency issues that can be resolved using an optimistic data

consistency method [12].

IV. DESIGN AND IMPLEMENTATION DETAILS

The architecture described in section III has been im-

plemented as a distributed application which is designed

in a similar way to the SOA1 architecture [13]. So, each

functionality is offered as a service. When a new component

has a service to offer, it must register it in a registry first. In

the same way when a component wants to use a service, it

performs a search within the registry as shown in Figure 2.

The registry provides a directory service and so the foren-

sic storage can be written as a choreography of services. The

registry can be a single point of failure in the architecture.

To avoid this weakness, in the implementation phase, the

Reliable Registry of Alberto Montresor is used [14].

The technology used to implement the distributed ar-

chitecture is Java-RMI2. In order to improve the level

1Service Oriented Architecture
2Java - Remote Method Invocation. More details are available at http:

//www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

49

Figure 2: An example of registration and search of a service

in Registry

of security when the different services communicate with

each other, only communication through SSL is allowed.

The chosen authentication mode is bilateral. Certificate

management in Java is made possible through the use of

key-store and trust-store. So all certificates have been pre-

generated and recorded in the key-store and trust-store. All

the components that participate in the threshold signature

scheme are described below.

A. Dealer

Dealer is responsible of three things: it provides a service

for generation of secret key shares, distribution of these

key shares to each participant or node involved in the

architecture and the distribution of verification key shares to

the combiner component. In particular the service provided

in the following method is used by external modules:

p u b l i c v o id g e n e r a t e K e y s (i n t keySize ,

i n t t h r e s h o l d , i n t g r o u p P l a y e r s)

t h ro ws RemoteExcep t ion ;

The threshold and groupPlayers, as evident from

names, are the parameters of the Shoup [9] scheme, while

keySize represents the size in bits of each key share

that will be generated. Before the method ends, a search

is made in the Registry by the Dealer to find the Combiner

component and the nodes responsible for partial signatures

generation. The Registry informs the Dealer which nodes

are available and also provides the way to contact them

(the same applies to the Combiner). So, the Dealer sends

each secret key share to each node. Also, it sends all

the verification key shares and the full verification key to

the combiner component. When each node has received

the share of secret key, it sends an acknowledgment to

the Dealer. If the Dealer receives acknowledgments from

all nodes and the Combiner, it deletes all generated key

shares. Otherwise a new log is generated with an exception.

The Dealer component works only during the initialization

phase. So, it is considered reliable during the generation and

distribution of secret key shares.

B. Nodes

Each node is responsible of two things: when a new

message arrives it calculates the hash value of the new

message and then encrypts this hash value with the secret

key share. The services provided by each node are accessible

through two methods

p u b l i c i n t se tKey (B i g I n t e g e r

s e c r e t K e y S h a r e)

t h ro ws RemoteExcep t ion ;

p u b l i c v o id s e t M e s s a g e (S t r i n g message ,

i n t i d) t h r ow s RemoteExcep t ion ;

The setKey method is used in the initialization phase. In

fact when the Dealer has generated the secret key shares it

distributes each secret key share to each node invoking this

method. In the initialization phase, each node searches in the

Registry for the service provided by Combiner component.

The setMessage method is used from the outside to send

a new message to the node. When a new message arrives,

a new thread is created. The thread uses the hash function

SHA-256 to calculate the digest value. Then, the thread uses

the secret key share to generate the signature share. Finally,

the thread sends the signature share and the id of the message

to the combiner component. The id value is required by the

combiner component in order to associate received signature

shares to the correct message.

C. Combiner

We can divide the behavior of the combiner in two phases:

initialization phase and normal phase. In the initialization

phase it:

• creates the link with a database where the signed events

will be stored. To protect the connection between JDBC

driver and the server, we used JSSE3 which allows

the use of protocols such as SSL [15] and bilateral

authentication to ensure secure communication

• receives all verification key shares to check the integrity

of signature shares of each shareholder. It also receives

the verification key that can be used to verify the

validity of complete signature after that the combining

process has been completed

• creates a hash table to store temporarily all messages

and their signature shares received from multiple nodes

• creates two kinds of threads: producer and consumer

which are used during normal phase.

In the normal phase the producer thread has two tasks: it

stores the new incoming events in the hash table against

their id and stores the signature shares sent by nodes

corresponding to each event. The consumer thread works

asynchronously. In fact, once it has been created, it periodi-

cally reads the whole hash table to check if it is possible to

generate new complete signature. Since the time to verify all

signature shares is higher than the time to verify complete

signature, we always use the optimistic approach. In fact,

3Java Secure Socket Extension. It is included in JDK since its version
1.4.1

50

when the combiner receives at least k (threshold) signature

shares, it generates the complete signature. Then, it verifies

the integrity of this complete signature with the verification

key [9]. If the complete signature is valid, it is stored in

database together with the original event. If the complete

signature is not valid, the combiner explores in depth each

signature share and checks their integrity with corresponding

verification key share. If the signature share is valid a flag

is set to the true value, otherwise the flag is set to false.

In this way, the next time when a new signature share

arrives from the same event source, the combiner takes the

first k signature shares excluding the signature share whose

flag is set to false and generates a complete signature. If

the complete signature is valid, the combiner stores in the

database the event with its valid signature along with the

faulty node otherwise the process is repeated. When a faulty

node is identified, the system administrator will be informed

about this in order to take necessary security measures to

bring it in working condition.

The services provided by the Combiner are accessible

through three methods:

p u b l i c v o id s e t P a r a m e t e r s (B i g I n t e g e r

v e r i f i c a t i o n K e y S h a r e s [] ,

B i g I n t e g e r v e r i f i c a t i o n K e y C o m p l e t e)

t h ro ws RemoteExcep t ion ;

p u b l i c v o id s e t M e s s a g e (S t r i n g message ,

i n t i d) t h r ow s RemoteExcep t ion ;

p u b l i c vo id s e t S i g S h a r e (B i g I n t e g e r

s i g S h a r e , i n t id , i n t pos)

t h ro ws RemoteExcep t ion ;

The setParameters method is used in the initialization

phase to store all verification key shares and full verification

key. The method setMessage starts the producer thread

that stores the message in the hash table using id value

as key. The method setSigShare starts the producer

thread that adds in the hash table the new signature share

sigShare from node pos to the message with id value

equal to id.

1) Optimization of the Data Structure: The meth-

ods shown in the code above setMessage and

setSigShare work in parallel writing on the same hash

table. Moreover also the consumer thread writes a flag in

the hash table if a valid signature share or a full signature

is found. This problem is known as the producer-consumer

problem. There are many solutions to this problem and one

of them is to perform one write operation at a time. We have

found a new way to overcome this limitation partially. In

particular, better organization of data in the data structure

allows some write operations to be performed in parallel.

The data structure that we have chosen is shown in Figure 3.

Using this data structure when a new signature

share arrives, the producer thread adds it to the field

arraySignatureShare of a message with id equal to

Figure 3: Data structure used to handle all signature shares

in the combiner

given idMessage. Given that the key of the hash table

arraySignatureShare is the id number of the node

that has generated the signature share, the next time a

signature share arrives to the combiner, the producer thread

does not change old records anymore. This is because, each

node generates only one signature share for a given message.

So, when the consumer thread checks that a signature share

is valid, it can write the flag isValidSigShare directly

without generating race condition with the producer thread.

This optimization allows improving the performance of the

global system.

D. Controller

The controller component does not provide any service,

instead it searches the services in the registry and triggers

the relevant components. It is the entry point of the whole

architecture in Figure 1. In fact, it can be contacted from

outside of this architecture using an https [15] connection.

Each event that arrives via https on an established port will

be sent to the nodes by the Controller.

In the initialization phase the controller:

• invokes the method generateKeys of Dealer to

generate all keys

• accepts the acknowledgment of the Dealer component

that confirms the correct generation and distribution of

all key shares

• searches in the Registry which are the nodes that

participate in the architecture and which component

offers a service to combine all partial signatures.

In the normal phase the Controller relays the events

coming from event sources to all nodes and to the combiner

element. The Controller can be a single point of failure. In

fact, an attacker may take the control of this component and

modify the events before they are sent to all nodes. In order

to avoid this weakness we use the principles of redundancy

and diversification together with voting technique [16] [17].

In fact, we have more than one controllers to receive the

same event. Then, only one event is provided as output after

a decision is made through the voting mechanism.

V. INTEGRATION WITH OSSIM AND PERFORMANCE

TEST

We have used multi-server configuration available in OS-

SIM in order to integrate the Forensic Storage architecture

in this SIEM. In fact, in OSSIM it is possible to configure

51

more servers in order to process different types of events.

So, it is possible through a policy to specify which events

must be sent to which servers. In our case, we have created

a new policy in order to redirect the security events to the

forensic storage. Instead of sending all collected events, only

the events with a risk value greater than a certain threshold

are sent to the forensic storage. In order to support forensic

activity, the chain of events related to the generated event

will also be stored. It is necessary to store only the necessary

events because a huge amount of events per second (EPS)

are sent to the SIEM. In the SANS study [18] a benchmark

is reported measuring the number of events produced from

SIEM solution deployed in a mid-sized organization. In

this study the authors show that the average EPS generated

in normal conditions are 149.79. When two subnets are

attacked the EPS value is 8,118.80. So if we consider all

the events generated in a large span of time, e.g. 6 months,

we have in normal conditions (without any attack) 2.4 billion

events. If we use 300 bytes as the average message size, 6

months of data will require about 670GB of space (if there

are no security attacks).

OSSIM provides a risk calculation in order to classify the

alert level of different events. So, calculated risk is one of the

metrics that provides useful information in the evaluation of

a single event, but also provides useful information for the

overall security state of the infrastructure. The risk value (0-

10) of an event is calculated from the following parameters:

RISK of the event = (Asset value * Event Priority * Event

Reliability) / 25 [19]

• Asset value (0-5). The assets are: Host, Host Groups,

Networks and Network Groups

• Event priority (0-5). The Priority is the importance of

the event itself

• Event reliability (0-10). Reliability determines the prob-

ability of a security event being effectively related to

an attack or not.

The estimated risk value is not assigned statically and

can be modified. In fact, each event has an initial given risk

value and it can be correlated to other events. The correlation

directive is a hierarchical set of correlation rules in XML

format. A single rule represents the entry point to a cor-

relation directive. Each incoming event is matched against

the rules of an active correlation directive. If the correlation

directive reaches its final rule an additional event is created

which is then re-injected into the OSSIM server process

and/or forensic storage according to the policy established.

If the final rule is not reached (either because no matching

events arrive or because the correlation directive reaches its

timeout) no event is generated from this correlation directive.

Correlation rules can modify the event priority and the

event reliability in the correlation process. The resulting

event generated by a correlation directive will then have

the adjusted reliability and priority, which will also lead

Figure 4: Deployment of OSSIM with the resilient architec-

ture of forensic storage

Figure 5: Time to generate 1000 valid complete signatures

with k=2 and n variable

to an adjusted risk for this event. In Figure 4 we show

the simplified deployment of OSSIM architecture (without

redundant components) along with the forensic storage.

We have performed various experimental tests on Forensic

Storage in order to measure the performance in terms of

time of generation of valid complete signatures. All tests

presented here have been done on machines with processor

I3-2330M and 2 GB of RAM. Since it is possible in our

architecture to change two values, number of shareholders

(n) and threshold value (k), we show two graphs of perfor-

mance: in Figure 5 we show the case in which k is fixed

and n is changed; in Figure 6 we show the case in which

n is fixed and k is variable. The time reported is the time

for generation of valid complete signatures of 1000 events

where each event has a size of 1Kbyte. In reality the single

event generally has a size of 300 bytes, but in our tests we

consider always an event size of 1Kbyte because when an

event is to be stored forensically, the chain of events related

to this event must also be stored. Also the size of secret key

of each shareholder is 1024 bits.

The purpose of these tests is to evaluate the performance

increase/decrease for the forensic storage as the values of

k and n are changed. We can see that when k is fixed,

the decrease of performance, as n increases, is very little

(the performance decrease is about 0.5% when a new node

is added). In fact, there is not a significant increase in the

generation time of a valid complete signature because with

the fixed values of threshold, the combiner always needs k

52

Figure 6: Time to generate 1000 valid complete signatures

with n=9 and k variable

number of signature shares to generate a complete signature

independently from the total number of nodes. So, the little

overhead shown in the Figure 5 is due to the increased

number of signature shares that the combiner has to handle.

Instead, when we fix n and increase the k value, there

is a more significant decrease of performance because the

combiner takes more time when combining the signature

shares. (the performance decrease is about 1% when the

threshold value is increased by one). These experimental

results can help us in the choice of the parameters k and n
in a real system i.e. if average expected EPS to be signed

is known, the maximum required time to generate 1000

signatures can be found and related to these experimental

results. Also, the choice of n has an impact on the cost

of the whole infrastructure and on the reliability while the

choice of k has an impact on the granted level of protection

of the secret key.

In the next experimental test we want to compare the

performance of our architecture with classic RSA algorithm.

This is because the most widely used SIEM systems actually

include a forensic storage based on classic RSA algorithm.

In particular, we focus on OSSIM which offers a forensic

storage only in commercial version. In its technical docu-

mentation, it is reported that it has a component called Log-

ger that creates a new signature using RSA algorithm. So, we

have written another module that uses Java API to sign the

events with RSA algorithm. Then, we have integrated this

module in OSSIM as described above. In Figure 7 we show

two deployments and the points considered for performance

analysis. In Figure 8 we show the comparison of RSA classic

algorithm with our Forensic Storage. In particular, classic

RSA reaches an average signature rate of 510 signatures per

second, while Forensic Storage reaches an average signature

rate of 489 signatures per second. So the Forensic Storage

has a penalty in terms of signature rate of about 5%. In

the next section we show an attack model applied to our

Forensic Storage. The Forensic Storage shows a decrease

in performance as compared to classic RSA algorithm but

Figure 7: Deployment of OSSIM with two different modules

integrated

Figure 8: Time to generate a valid complete signature

we show through an experimental test that out architecture

works correctly even in the presence of cyber-attacks.

VI. ATTACK MODEL AND VALIDATION

In this section, we show the case study of a specific

critical infrastructure. In fact, as a partner of MASSIF

project [20], we are working on a new generation SIEM

with advanced features to provide an IT support in a dam

critical infrastructure [21]. So, we use this scenario in order

to describe the setup of our system and attack model. In

particular, in dam infrastructure we have many machines that

are employed to gather data coming from wireless sensor

network (WSN) or other devices in order to monitor the

whole infrastructure. These machines are monitored though

agents that send information to the OSSIM server. Also,

for test purposes, we have a Forensic Storage integrated in

OSSIM with a number of nodes n equal to 5 and a threshold

value k equal to 3. In this configuration we can tolerate up

to k−1 = 2 compromised nodes. The simplified architecture

is show in Figure 9 where an attack model is also shown. In

particular we suppose that an attacker has corrupted a node

(Node 1 in our case) of Forensic Storage using a malicious

software hidden in an update of the software pre-installed

on this machine. So through the malicious software he has

gained remote access to the node and he can modify the

signature shares before they are sent to the combiner. Also,

another attacker knows the IP address of a node (Node 2 in

53

Figure 9: Simplified deployment of OSSIM for our case of

study

our case) but has not access to the node. So, he performs

a DoS attack in order to disrupt the regular service of that

node.

Finally, there is another attacker who performs a brute

force attack in order to discover the password of one of the

machines that control an area of dam infrastructure. Some

useful information necessary to understand the experiment

is given below:

• a machine (under attack) with the IP address

10.20.189.1 is running Snort IDS. This machine is pre-

configured to send the events to the OSSIM SIEM

• a machine with the IP address 10.20.189.2 is used by

attacker to perform a SSH brute force attack.

In order to detect an SSH brute force attack, it is necessary

to add the following rule to the Snort configuration file:

/etc/snort/rules/ssh.rules

alert tcp any any -> $HOME_NET 22
(msg: "Potential SSH Brute Force
Attack"; flags: S; detection_filter:
track by_src, count 5, seconds 20;
classtype:attempted-dos; sid:XXXXX;
rev:4;)

This configuration creates an alert that is triggered if the

packet is a TCP packet coming from any IP address from any

port to our network on port 22 and an IP address has emitted

the same packet more than 5 times in 20 seconds. If these

conditions are true, an alert is triggered with the message:

“Potential SSH Brute Force Attack”. To start the experiment

we run Snort on the attacked machine. Then suppose that

the attacker tries to connect the previous machine with the

SSH, providing a wrong password.

cdisarno@attacker:/# ssh root@10.20.189.1
root@10.20.189.1 password: ******
Permission denied, please try again.

After a few attempts, new Snort logs are generated and

sent to collector of the SIEM in Figure 9. In order to recog-

nize this type of attack an OSSIM directive must be written

Figure 10: OSSIM directive to recognize a Brute Force

Attack

as shown in Figure 10. The directive has the following

meaning: when arrives the first event (authentication failed)

the first rule is activated so the first level of correlation is

matched. At the second correlation level we will have two

possibilities: to get almost immediately an authentication

successful event or to get more authentication failed events.

If the later option is matched a new event is raised with

priority=5 and reliability equal to the sum of reliabilities.

Then, the risk value is calculated as described above. If the

risk value is greater or equal to the threshold that was previ-

ously fixed (according to the established policy), the events

are sent to the Forensic Storage. The controller receives

the events and sends them to all nodes and combiner. Each

node calculates the signature share and sends it to combiner.

In our scenario only Node 2 does not send any signature

share because we have supposed that this node is off-line.

Also the Node 1 sends a wrong signature share. When the

combiner receives at least a threshold number of signature

shares, it combines them in order to produce a complete

signature. We suppose that the first group of k=3 signature

shares chosen by the combiner was sent by Node 1, Nod 3,

Node 4. So, the complete signature produced is verified with

the verification key. This verification process fails because

signature share sent by Node 1 is faulty. Then, the combiner

explores in depth in order to verify each signature share.

So, the node that has sent the wrong signature share is

discovered and then the combiner generates a new event with

high risk and sends it to the administrator. Finally when new

signature shares are received, the combiner chooses a set of k
signature shares. So, if the verification process is successful,

a new forensic record is created. This record contains the

events related to the security breach, the information which

nodes show an incorrect behaviour and the signature of the

events. An example of forensic record is shown in Table I.

Instead, if classic RSA module was provided in place

of our Forensic Storage, a wrong behaviour would be

experienced in the attack scenario that has been presented. In

fact, if the attack is of the same nature as shown in Node 1

in Figure 9 RSA module provides wrong signature. Instead,

54

Table I: A forensic record that shows the security event,

corrupted nodes and digital signatures of the security event

Message Corrupted Node Digital Signature
SSH Brute Force
Attack Against
10.20.189.1 . . .

1 - 2 16063178504335868849
38568479884204520885
87846809. . .

if the attack is of the nature as shown in Node 2 in Figure 9

the RSA module does not provide any signature at all. In

the scenario just presented we have shown how the Forensic

Storage keeps working correctly even in the presence of

cyber attacks where the RSA module shows an incorrect

behaviour under the same conditions.

VII. CONCLUSION

In this work we have analyzed the limitations of the

current SIEM solutions with respect to the forensic storage

features. We have designed and developed a novel archi-

tecture for the forensic storage of events that overcomes

the limitations of classic RSA technique used in existing

SIEM systems. Then, we integrated our forensic storage

into OSSIM SIEM and we have measured the performance

of our solution and compared it to classic RSA algorithm.

Also, through an experimental test we have shown that our

solution ensures the integrity of data even in the presence

of attacks. For future work, we plan to: reduce the penalty

performance when compared to the classic RSA algorithm;

provide an experimental test in order to measure the penalty

performance when forensic storage works in faulty situa-

tions.

ACKNOWLEDGMENT

The research leading to these results has received fund-

ing from the European Commission within the context of

the Seventh Framework Programme (FP7/2007-2013) under

Grant Agreement No. 257644 (MAnagement of Security

information and events in Service Infrastructures, MASSIF

Project).

REFERENCES

[1] J. Moteff, C. Copeland, J. Fischer, Critical Infrastructure:
What Makes an Infrastructure Critical Library of Congress
Washington DC Congressional Research Service, 2003

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems”.
Commun. ACM, ACM, 1978, 21, 120-126

[3] Assuria Log Manager, Assuria Ltd. http://www.assuria.
com/products-new/assuria-log-manager/features.html Last Ac-
cessed 7th June 2012

[4] R. Popovych, “Cryptoanalysis of RSA system of enciphering
with public key”. Modern Problems of Radio Engineering,
Telecommunications and Computer Science, 2004. Proceed-
ings of the International Conference, 2004, 301-302

[5] J. Hoffstein, J. Pipher, and J. H. Silverman, “An Introduction
to Mathematical Cryptography”. Springer Verlag, (2008)

[6] A. Shamir, and N. Someren, Playing “Hide and Seek” with
Stored Keys. Proceedings of the Third International Conference
on Financial Cryptography, Springer-Verlag, 1999, 118-124

[7] A. Shamir, “How to share a secret”, Commun. ACM, ACM,
1979, 22, 612-613

[8] G. R. Blakley, “Safeguarding cryptographic keys”. Managing
Requirements Knowledge, International Workshop on, IEEE
Computer Society, 1979, 0, 313

[9] V. Shoup, “Practical Threshold Signatures”. EUROCRYPT’00,
2000, 207-220

[10] Q. Zhu, and W. W. Hsu, “Fossilized index: the linchpin of
trustworthy non-alterable electronic records”. Proceedings of
the 2005 ACM SIGMOD international conference on Man-
agement of data, ACM, 2005, 395-406

[11] K. Pavlou, and R. T. Snodgrass, “Forensic analysis of
database tampering”. Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, ACM, 2006,
109-120

[12] J. Zhou, Y. Wang, and S. Li, “Data Dependence-based Op-
timistic Data Consistency Maintenance Method”. Computer
and Information Technology, 2006. CIT ’06. The Sixth IEEE
International Conference on, 2006, 120

[13] H. Li, and Z. Wu, “Research on Distributed Architecture
Based on SOA”. Communication Software and Networks,
International Conference on, IEEE Computer Society, 2009,
0, 670-674

[14] A. Montresor, “A Reliable Registry for the Jgroup Distributed
Object Model”. University of Bologna, 1999

[15] E. Rescorla, “HTTP Over TLS”. IETF, 2000

[16] A. Saidane, V. Nicomette, and Y. Deswarte, “The Design of a
Generic Intrusion-Tolerant Architecture for Web Servers” De-
pendable and Secure Computing, IEEE Transactions on , vol.6,
no.1, pp.45-58, Jan.-March 2009 doi: 10.1109/TDSC.2008.1

[17] Li Wang, Zheng Li, Shangping Ren, and K. Kwiaty, “Optimal
voting strategy against rational attackers,” Risk and Security
of Internet and Systems (CRiSIS), 2011 6th International
Conference on , vol., no., pp.1-8, 26-28 Sept. 2011 doi:
10.1109/CRiSIS.2011.6061841

[18] J. Michael Butler, “Benchmarking Security Information
Event Management” http://www.sans.org/reading room/
analysts program/eventMgt Feb09.pdf

[19] AlienVault Risk Metrics http://www.alienvault.com/wiki/
doku.php?id=user manual:dashboards:risk:risk metrics

[20] Scenario Requirements http://www.massif-project.eu/sites/
default/files/deliverables/D2.1.1 Scenario Requirements v1.
0 public.pdf

[21] Regan, P.J.: Dams as systems - a holistic approach to dam
safety. In: 30th Annual USSD Conference Sacramento, Cali-
fornia (2010)

55

