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Considering the well-known features of the noise emitted by moving sources, a number of

vehicle characteristics such as speed, unladen mass, engine size, year of registration,

power and fuel were recorded in a dedicated monitoring campaign performed in three

different places, each characterized by different number of lanes and the presence of

nearby reflective surfaces. A full database of 144 vehicles (cars) was used to identify sta-

tistically relevant features. In order to compare the vehicle transit noise in different

environmental condition, all 1/3-octave band spectra were normalized and analysed. Un-

supervised clustering algorithms were employed to group together spectrum levels with

similar profiles. Our results corroborate the well-known fact that speed is the most rele-

vant characteristic to discriminate between different vehicle noise spectrum. In keeping

with this fact, we present a new approach to predict analytically noise spectra for a given

vehicle speed. A set of speed-dependent analytical functions are suggested in order to fit

the normalized average spectrum profile at different speeds. This approach can be useful

for predicting vehicle speed based purely on its noise spectrum pattern. The present work

is complementary to the accurate analysis of noise sources based on the beamforming

technique.
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1. Introduction

A sound generating device is generally identified according to

its acoustic features which are referred to as acoustic signa-

tures and are usually employed to discriminate among vehi-

cles. Such signatures in case of moving sources are mostly

linked to the engine vibrations and tire-road friction

(Sandberg and Ejsmont, 2002). Among the techniques used to

extract features in time-frequency domain there are Short

Time Fourier Transform and Wavelet Transform (Munich,

2004; Sun and Qi, 2008). A signal processing time-domain

technique used in sensor arrays for directional signal

transmission or reception (Van Veen and Buckley, 1988),

denoted as Beamforming, has been recently employed in car

by-pass noise identification (Ballesteros et al., 2015). This

technique allows one not only to locate the main noise

sources during the pass-by of a vehicle, but also their

characterization in terms of source strength.

Pattern recognition has been the subject of many studies

which included techniques of compressed sensing (Candes

et al., 2006; Donoho, 2006; Donoho et al., 2006) to disclose

important acoustic features of an unknown signal and prin-

cipal component analysis to dimensionally reduce such fea-

tures employed to describe the difference between signals

(Averbuch et al., 2012; Wang and Qi, 2002; Wu et al., 1999). For

a review of such techniques we refer to Kakar and Kandpal

(2013). Other advanced methods are based on laser Doppler

vibrometry (Ometron, 2013), source height measurement

(Glegg and Yoon, 1990), sound intensity (GMNA, 2005),

nearfield acoustic holography (Ruhala, 1999) and spatial

transformation of sound fields (Hald, 1995).

Different projects have been developed to determine com-

mon noise assessment methods for road, railway, aircraft and

industrial noise in order to improve the reliability and the

comparability of results across the EU Member States (CNOS-

SOS-EU (Kephalopoulos et al., 2012)). Further projects include

prediction algorithms in order to forecast noise from specific

sources such as road, rail traffic, aircraft and industrial sites

(HARMONOISE (Bullen, 2012; Salomons et al., 2011), IMAGINE

project (CORDIS, 2012)), providing a procedure to be adopted

for strategic mapping as defined by the environmental noise

directive. As for traffic noise, in the Harmonoise/Imagine

model, particular attention has been paid to rolling noise,

split into the vehicle and track contribution as well as wheel-

surface interaction. The algorithms also include noise

transport due to the combined effects of air absorption, the

ground effect, shielding by topography (including barriers or

buildings), atmospheric refraction, and atmospheric

scattering. It is known that in the case of traffic noise, the

events associated with each single vehicle transit are mainly

random and characterized by fast or occasional sequences

according to high or low vehicle flow rates. Monitoring traffic

noise in a mid-long period (days or weeks) is usually carried

out with 1 s temporal resolution recording both the spectrum

at 1/3-octave band and the equivalent A-weighted level. In

addition, traffic noise usually displays high variability in the

noise spectra. For this reason, in this paper we address the

question of the measured spectra variability and perform a

detailed analysis by considering their average behavior. From
these considerations, we developed a completely “blind”

approach based upon the building up of statistically relevant

classes characterized by “similar” spectrum profiles. The

content of each group was then cross-checked against all the

available vehicle characteristics. It is found that speed alone

is sufficient to discriminate between different clusters, and,

correspondingly an analytical model is presented. The model

should be useful as a predictive instrument in a number of

environmental applications. A similar approach has been

applied to recorded hourly noise level profiles in the

Dynamap-Life project (Zambon et al., 2014, 2015, 2016a,b).

The paper is organized as follows: In Section 2 we discuss

the statistical analysis of the noise spectra produced by 144

vehicles pass-by, regarding their clustering and composition.

In Section 3, we present an analytical model which fits the

mean noise spectra very well, allowing us to make

predictions for different car speeds. Finally, in Section 4 we

present the conclusions.
2. Statistical analysis of noise spectra

2.1. Database description

Considering the well-known features of the noise emitted by

moving vehicles, amonitoring campaignwas planned in order

to obtain detailed information on the moving sources. The

monitoring has been performed in three different places, each

characterized by different numbers of lanes and the presence

ofnearby reflective surfaces. The experimentalmeasurements

are part of a project (Zambon and Radaelli, 2012) aimed at

providing a control system for real time field monitoring of

single vehicle emission. The recorded data have been

obtained using a 1/3-octave band spectrum, and further

analyzed (Peeters and Blokland, 2007), in order to make it in

accordance with the accepted standards ISO 362-1

(International Organization for Standardization, 2007) and

Regulation No. 51 (GRB Expert Group, 2007). As equipment, a

sound level meter providing the acquisition of A-weighted

equivalent level, LAeq,100ms, (for 1/3-octave band analysis in

the frequency range 25 Hz to 10 kHz), a speed detector (radar)

and a camera were employed. The camera was used for the

identification of regular transits in double lane roads which

might be influenced by overtaking and to read the vehicle

plate number. The latter was used to obtain information on

the year of registration, unladen mass, engine size, power

and fuel. In all measuring sites the microphone was

positioned 5.5 m from the axes of the road and 1.2 m above

the road surface. All the measurements were synchronized

by means of a photocell. More details on the experimental

setup and procedure are given in Zambon and Radaelli (2012).

In this work, we consider the original 1/3-octave band spectra

recorded during the vehicle pass-by, which contain the whole

vehicle information such as speed, fuel, age, etc.

2.2. Clustering of vehicle spectra

The database made of 144 vehicles (cars) was used to identify

statistically relevant features. Because of the non-homoge-

neity of the equivalent level (A-weighted) dataset, LAeq, due to
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different conditions of the road such as its geometry, the

presence of reflecting surfaces and obstacles in sound prop-

agation and types of paving, we proceeded normalizing each

jth 1/3-octave band spectrum.

The normalized spectrum, Sj, can therefore be regarded as

dependent on each vehicle feature and written as the ratio

between the spectrum level and its mean value LAeqj
(Eq. (1)).

Sjðf ; k1; k2;/; knÞ ¼ LAeqj
ðf ; k1; k2;/; knÞ

.
LAeqj

ðk1; k2;/; knÞ
j ¼ 1; 2;/;144

(1)

where f and kn represent the 1/3-octave band frequency and

the generic vehicle feature, respectively, n is the number of

features considered.

Unsupervised clustering algorithms were employed to

group together normalized spectrum levels found to be “close”

to one another. Various algorithms, such as hierarchical

agglomeration (Ward, 1963), K-means algorithm (Hartigan and

Wong, 1979), and partitioning around medoids (PAM)

(Rousseeuw and Kaufman, 1990), were considered, and their

results compared. The number of clusters was chosen as a

compromise between satisfactory discrimination and the

need to limit the number of groups. Euclidean distance was

chosen as metric among observations.

The statistical software R (The R project), a free software

environment for statistical computing and graphics, was

employed for the analysis. The package “clValid” (Brock

et al., 2008) was used for validating the results. All the

clustering algorithms were ranked based on their

performance as determined simultaneously by all the

validation measures (Pihur et al., 2007). Thus, the optimal

list, obtained through a score assigned by each validation

index, gives a two-cluster hierarchical agglomeration at the

first place followed by K-means and PAM methods, each one

yielding also a two-cluster separation.

In addition, we compared the results obtained by the hi-

erarchical algorithm with two clusters with those of the K-

means with three clusters. The result with three clusters was

considered in order to achieve better discrimination.

The values for Sj are not normally distributed over all fre-

quencies. Therefore, to check the statistical independence of

the two (three) average cluster profiles, a student's t-test was

performed on data following a normal distribution, whereas a

nonparametric ManneWhitneyeWilcoxon's (MWW's) test

was applied to non-normal populations. The two-tailed p-

values for both tests were much lower than the a ¼ 0.05
Fig. 1 e Results for two clusters. (a) Student's t
significance level (or 95% confidence level) with the exception

of the 400 Hz 1/3-octave band in case of two clusters (Fig. 1).

This means that, at 95% confidence level, the two-cluster

average spectrum profiles can be considered independent

with the exception of the 400 Hz 1/3-octave band. In fact, the

latter represents the point where the two average profiles

intersect, as we will see below. Both the student's t-test and

the MWW's test confirm the same result, representing,

therefore, a good discrimination between the two average

spectrum profiles.

The same procedure has been performed for a three-clus-

ter result. In this case, we found a much broader feature (Figs.

2 and 3). Criticality is found between cluster 1 vs cluster 3

where the two-tailed p-values exceed the threshold level in

correspondence of the following 1/3-octave bands: 80, 200,

250, 400, 500, 630, 800, 1000, 1600 Hz. In case of cluster 1 vs

cluster 2 it occurs at 400 Hz 1/3-octave band, and for cluster 2

vs cluster 3 at 315 and 400 Hz. Both the student's t-test and

MWW's test are in agreement to each other.

Asmentioned above, the distribution of Sj is not normal for

some frequencies, therefore in order to obtain a meaningful

and more accurate estimator of the population, the mean and

its confidence level were calculated applying a resampling

procedure: the bootstrap method (Efron and Tibshirani, 1993),

that consists in considering 1000 samples with replication

randomly extracted from our initial sample.

Figs. 4 and 5 illustrate themulti-dimensional scaling (MDS)

results applied to the data to provide a visual representation of

the pattern of proximities among the data. The distinction

among clusters, marked by different colors, is rather good. In

particular, we can observe that cluster 1, for the two-cluster

solution, splits into two sub-clusters (cluster 1 and cluster 3) in

case of the threeecluster result. However, as we can see from

these results, the many over-threshold peaks of Fig. 3 (cluster

1 vs cluster 3) manifest in the close vicinity of the two clusters

(blue and red) in Fig. 5.

According to these results, we proceeded with the study of

the mean noise spectra associated with each cluster

Ciðf ; k1; k2;/; knÞ ¼
X

j2cluster i

Sjðf ; k1; k2;/; knÞ 1
mi

(2)

where mi is the number of cars in the ith cluster.

Fig. 6 shows the two normalized cluster average spectra, C,

for the two-cluster result. As we can observe, each normalized

spectrum can be divided into three regions: a low frequency

interval up to 200 Hz, a medium interval of frequencies
-test. (b) ManneWhitneyeWilcoxon's test.
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Fig. 2 e Student's t-test results for three clusters.
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between 200 and 1000 Hz and a high frequency interval for

values higher than 1000 Hz. In the low frequency region, the

two curves are well-separated and the bumps which appear

between 50 and 100 Hz, may be attributed to engine

rotations. In the central frequency region, the curves tend to

get closer and overlap in agreement with the results of

independence tests. At higher frequencies, the spectra

display bumps around 1000 Hz, followed by well-separated

decreasing tails. The source of the bump at 1000 Hz may be

attributed to tyre-pavement interaction.

As a comparison, we also considered a clustering obtained

by the K-means algorithm with three clusters. This choice, as

mentioned above, was made by the capability of such algo-

rithm to perform an acceptable cluster separation and there-

fore potentially revealmore details on the cluster content. The

results of such analysis are reported in Fig. 7.

As in the previous case for two-cluster results, we observe

the typical features of the contribution due to engine rotations

at low frequencies, a mid-frequency range where the

normalized spectrum profiles tend to overlap assuming a flat

trend, and a high frequency interval due to the tyre-road

interaction manifested by the presence of bumps followed by

well-separated spectrum tails.
2.3. Clusters composition

In order to determine the composition of each cluster and

therefore to assess the parameters driving the cluster forma-

tion, each group was cross-checked with each parameter

identifying the examined vehicles. Among these, the vehicle

speed showed to prevail over the other characteristics

(Benocci et al., 2014). In particular, Fig. 8 shows the histogram

and the probability density of the content of each cluster with

respect to themeasured vehicle speed (27e70 km/h). Cluster 1

represents vehicles with a mean speed v1 ¼ 46.8 km/h (106

cases), whereas cluster 2 is characterized by vehicles with a

mean speed v2 ¼ 39.4 km/h (38 cases), suggesting the

possibility of naturally grouping spectra of vehicles

according to their speed. In other words, clusters do not

show any sensitive dependence on other parameters like

engine power, fuel type, year of registration, vehicle weight,

engine size and power. Therefore, the normalized cluster

means spectrum, C, now becomes

Cðf ; k1; k2;/; knÞ≡ Cðf ; vÞ (3)

explicitly showing the dependence on the mean cluster

speed, v.

http://dx.doi.org/10.1016/j.jtte.2017.05.001
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Fig. 3 e ManneWhitneyeWilcoxon's test results for three clusters.
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The same result is obtained for three clusters as shown in

Fig. 9. In this case, speed range is 27e70 km/h, and the three

clusters are characterized by the following mean vehicle

speeds: v1 ¼ 49 km/h for cluster 1, v2 ¼ 38.5 km/h for cluster

2 and v3 ¼ 44.5 km/h for cluster 3. As is apparent, the

previous cluster 1 has roughly split into two smaller sub-

groups. Therefore, it seems that the approach aimed at

describing the traffic in terms of car speed is reflected in the

formation of clusters, each one characterized mainly by its

distinct speed distribution which can be further

implemented by using three clusters.
Fig. 4 e Multi-dimensional scaling of level profiles with the

solution at two clusters.
3. Analytical model

The peculiar spectrum profile, associated with each cluster

and characterized by a different mean speed, can be extended

to the speeds not included in the present set of data. For this

reason, the speed-dependent spectrum was fitted by a set of

functions each defined in a specific frequency range.

As suggested by the results shown in Fig. 6, the spectrum is

described by a power-law and a Gaussian curve for
Fig. 5 e Multi-dimensional scaling of level profiles with the

solution at three clusters.

http://dx.doi.org/10.1016/j.jtte.2017.05.001
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Fig. 6 e Average normalized spectrum profiles C(f, k1, k2, ⋯,

kn) for each hierarchical cluster and their confidence levels

(one standard deviation).

Fig. 7 e Average normalized spectrum profiles C(f, k1, k2, ⋯,

kn) for each K-means cluster and their confidence levels

(one standard deviation).

Fig. 8 e Histogram and probability density vs vehicle speed

for the hierarchical two-cluster results.

Fig. 9 e Histogram and probability density vs vehicle speed

for the K-means three-cluster results.
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frequencies below 500 Hz, it can be fitted by a Gaussian

function in the range between 500 and 1600 Hz, whereas for

higher frequencies a power-law represents the optimal fit.

Eq. (4) describes this approach for the normalized mean

cluster speed-dependent spectrum C(f, v).

Cðf ; vÞ ¼

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

AðvÞ
�
f
f0

��aðvÞ
þ Effiffiffiffiffiffi

2p
p

s
e�ðf�fG ðvÞÞ2

2s2 f � 500 Hz

Effiffiffiffiffiffi
2p

p
s
e�ðf�fG ðvÞÞ2

2s2 500 Hz< f < 1600 Hz

BðvÞ
�
f
f0

��aðvÞ�bðvÞ
f � 1600 Hz

(4)

where a and b are the two speed-dependent power-law ex-

ponents, A and B are the two speed-dependent power-law

constants, E is the amplitudes of the Gaussian distribution, fG
is the positions of the center of the Gaussian peaks, a is the full

widths at half maximum, f0 ¼ 1 Hz.

Results of the fitting for the two and three cluster profiles

are shown in Figs. 10 and 11.

In Fig. 10, two-cluster profiles are characterized by

v1 ¼ 46.8 km/h and v2 ¼ 39.4 km/h. The corresponding fits
Fig. 10 e Results of the fitting for two-cluster profiles.

http://dx.doi.org/10.1016/j.jtte.2017.05.001
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Fig. 11 e Results of the fitting for three-cluster profiles.
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obtained using Eq. (4) are displayed by the lines. The values of

the fitting parameters are reported in Table 1. In Fig. 11, three-

cluster profiles are characterized by v1 ¼ 49 km/h,

v2 ¼ 38.5 km/h and v3 ¼ 44.5 km/h. The corresponding fits

obtained using Eq. (4) are displayed by the lines. The values

of the fitting parameters are reported in Table 2.
Table 1 e Results of the fitting procedure of two-cluster
profiles.

Two-cluster
profile

a b A (1/Hz) B (1/Hz) E s (Hz) fG (Hz)

v1 ¼ 46.8 km/h

f � 500 Hz 0.01 e 1.06 e 5 20 63

500 Hz

< f < 1600 Hz

e e e e 20 250 1100

f � 1600 Hz 0.01 0.17 e 4.0 e e e

v2 ¼ 39.4 km/h

f � 500 Hz 0.07 e 1.55 e 5 20 57

500 Hz

< f < 1600 Hz

e e e e 20 250 900

f � 1600 Hz 0.07 0.27 e 12.5 e e e

Table 2 e Results of the fitting procedure of three-cluster
profiles.

Three-cluster
profile

a b A (1/Hz) B (1/Hz) E s (Hz) fG (Hz)

v1 ¼ 49 km/h

f � 500 Hz 0.001 e 1.00 e 5 20 63

500 Hz

< f < 1600 Hz

e e e e 20 250 1120

f � 1600 Hz 0.001 0.159 e 3.45 e e e

v2 ¼ 38.5 km/h

f � 500 Hz 0.080 e 1.63 e 5 20 57

500 Hz

< f < 1600 Hz

e e e e 20 250 900

f � 1600 Hz 0.080 0.270 e 13.50 e e e

v3 ¼ 44.5 km/h

f � 500 Hz 0.020 e 1.14 e 5 20 58

500 Hz

< f < 1600 Hz

e e e e 20 250 1000

f � 1600 Hz 0.020 0.205 e 5.60 e e e
In order to obtain a predicting model of the average spec-

trum profile for a set of vehicles moving at different speeds

from those under investigation in the present set of data, the

calculated fitting parameters, referring to the average cluster

behavior, have been in turn fitted by a speed-dependent

function characterized by the empirical parameters a, b, g, m,

and q. In particular, we employed the following forms.

�
aðvÞ;bðvÞ� � aebv (5)

�
AðvÞ;BðvÞ� � y ¼ y0 þ gehv (6)

fGðvÞ � mvþ q (7)

Therefore, an exponential speed-dependent function for

the power-law coefficients, fa;bg, and a linear function for the

position of the center of the Gaussian peak, fG, were adopted.

In Tables 3e5, the calculated coefficients are reported ac-

cording to the fitting functions illustrated in Eqs. (5)e(7) and in

Figs. 12e16 such coefficients are illustrated together with their

fitting curve and the corresponding 95% confidence level.

An interesting feature which emerges from this analysis is

related to the dependence of the bumps in themean spectrum

profiles of Figs. 10 and 11 on the vehicle speed (Eq. (7) and Figs.

15 and 16). This result, therefore, confirms the link between

speed and the spectrum shift, due to engine rotations and

tire-surface interaction, towards higher frequencies.
4. Conclusions

Contrary to beamforming technique whose main objective is

the noise source identification and characterization, in our

work we focused on the spectrum emitted by the pass-by of

cars. Analyzing such spectra, we conclude that the only

characteristic differentiating statistically obtained groups is

the vehicle speed. In particular, a full database of 144 car noise
Table 3e Fit for coefficients a(v), b(v) according to y¼ aebv,
with y ¼ {a, b}.

a b (h/km)

a 4086 �0.28

b 2.21 �0.05

Table 4 e Fit for coefficients A(v), B(v) according to
y ¼ y0 þ gehv, with y ¼ {A, B}.

y0 (1/Hz) g (1/Hz) h (h/km)

A 0.96 14,601 �0.26

B 2.57 203,247 �0.25

Table 5 e Fit for the low and high frequency position of
the center of the Gaussian peak according to fG ¼ mv þ q.

fG (Hz) m (Hz$h/km) q (Hz)

Low frequency Gaussian fit 0.63 32

High frequency Gaussian fit 22.20 38

http://dx.doi.org/10.1016/j.jtte.2017.05.001
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Fig. 13 e Fit for coefficient A(v) and its 95% confidence level.

Fig. 14 e Fit for coefficient B(v) and its 95% confidence level.

Fig. 15 e Fit for coefficient fG(v) and its 95% confidence level

in the low frequency range.

Fig. 16 e Fit for coefficient fG(v) and its 95% confidence level

in the high frequency range.

Fig. 12 e Fit for coefficients a(v), b(v) and their 95%

confidence levels.
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spectra was investigated to identify common features related

to speed, engine power, engine size, weight, fuel type and year

of registration. Spectra were statistically analyzed according

to unsupervised cluster algorithms in order to group together

“similar” spectrum profiles. The package “clValid” was

employed to determine the optimal number of clusters and

clustering algorithms. For comparison and to achieve better
resolution, out of this rank we considered the solution ob-

tained by hierarchical algorithm for two clusters and the so-

lution using K-means method for three clusters. The obtained

groups resulted to be clearly composed by spectra belonging

to cars with different mean speed: v1 ¼ 46.8 km/h and

v2 ¼ 39.4 km/h for the two-cluster, and v1 ¼ 49 km/h,

v2 ¼ 38.5 km/h and v3 ¼ 44.5 km/h for the three-cluster solu-

tion. The profiles for the three-cluster solution, characterized

by v1 ¼ 49 km/h and v3 ¼ 44.5 km/hmean speed, comemainly

from the splitting of the profile characterized by v1 ¼ 46.8 km/

h mean speed of the two-cluster solution. The other param-

eters characterizing each car transit did not show significant

relations with the statistically composed groups. Thus, the

two-cluster solution turns out to be optimal, although the

three-cluster one allows for a better speed resolution, still

displaying distinct (i.e., independent) spectrum profiles. A set

of speed-dependent analytical functions was also suggested

in order to fit the normalized average spectrum profile at

different speeds. This approach can be useful for predicting

vehicle speed based purely on its noise spectrum pattern. The

present work is complementary to the accurate analysis of

noise sources based on the beamforming technique

(Ballesteros et al., 2015).
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