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The elastic-plastic collapse of circular beams under uniform lateral pressure with an initial imperfection represented by a
combination of different modes and amplitudes and with varying material properties is analysed from a computational viewpoint.
The work is stimulated by a number of accurate experimental tests recently performed and it is found that both the initial
imperfection and the material inhomogeneity along the beam axis can affect the collapse and produce a sensible variation in the
carrying capacity of the structure on account of the changes between the underlying buckling modes.This can give reason for some
apparently anomalous observed experimental results.

1. Introduction

The foundation of the analytical theory for the postbuckling
behaviour of structures in the plastic range is essentially
due to Hutchinson [1], but with the advent of powerful
computers, a large number of studies based on materially
and geometrically nonlinear numerical procedures have been
performed.

The present study,moving from the analysis of cylindrical
shells employed in the oil industry and nuclear power
plants, shows a limit behaviour in collapse of circular rings
under uniform external pressure that can be considered an
extension to the elastic-plastic range of the phenomenon of
change in buckle patterns in elastic structures studied by
Chilver [2] and Supple [3], among others.

In fact, the cross sections of many of these cylindrical
shells possess a diameter over thickness ratio, 𝐷/𝑡, in the
region where failure under uniform external pressure is
dominated by both instability and plastic collapse, which
means that prior to collapse the compressive yield strength of
thematerial is exceeded, followed by deformation and further
local yielding.

Moving from some apparently anomalous observed
experimental results, the problem is investigated and it is
found that both the shape of the initial imperfection and the

variation of material properties along the axis can affect the
buckling load and produce a reduction in the carrying capac-
ity of a circular beam by accelerating changes in collapsing
patterns.

2. Experimental Findings

The results from four different circular beams machined at
Tata Steel [4] and from the same pipe of diameter 𝐷 =

457.2mm, thickness 𝑡 = 31.75mm (see Figure 1), are shown
in Figure 3, where the displacements are referred to four
transducers placed at 0, 𝜋/2, 𝜋 and 3𝜋/2 positions; see
Figure 2.

The experimental setting is described in detail in [5].
The first three cases, namely, (a), (b), and (c), show a limit

pressure consistently ranging from67.6 to 69.5MPa, while the
last one, (d), shows a limit pressure of 55.4MPa.

At first sight, this anomaly was not followed up and after
checking that the transducers were correctly positioned and
the instrumentation was functioning properly, its cause was
not further investigated.

However, since this behaviour has been found in addi-
tional instances, the need to understand the possible causes of
such findings has led us to studymore carefully themechanics
of the problem.
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Figure 1: A circular beam specimen.

Figure 2: Specimen equipped with displacement transducers.

3. Problem Statement

The problem under analysis can be represented as that of
a circular beam subject to a uniform external pressure, as
shown in Figure 4.

With reference to Figure 4 a system of polar coordinates
is set:

𝑥 = 𝑅 sin 𝜃, 𝑦 = 𝑅 cos 𝜃, (1)

where 𝑅 is the radius of beam axis. The displacement field
is expressed in terms of the radial component, 𝑤 = 𝑤(𝜃), 𝑝
being the uniform external pressure.

In order to be general, the collapse of the ring of Figure 4
is here studied under the assumption that the material
properties vary along the axis of the beam and that the initial
out of roundness can be represented in the form

𝑤 (𝜃) = ∑

𝑖

𝑤
𝑖
cos (𝑛

𝑖
𝜃 + 𝜓
𝑖
) , 𝑛

𝑖
∈ 𝑁, (2)

where 𝑛
𝑖
is the number of waves characterising each compo-

nent of the out of roundness (see Figure 5) and 𝑤
𝑖
and 𝜓

𝑖
are

the corresponding amplitude and phase angles, respectively.
Moreover, it is 𝜔 = ∑

𝑖
𝑤
𝑖
𝑅
−1.

In order to account for the variation of the material
properties along the beam axis, for the sake of simplicity but
without loss of generality, three different material regions,

symmetric with respect to the 𝑥 axis, are defined around the
ring circumference, as shown in Figure 6. The amplitudes of
these regions for 𝜃 ∈ [0, 𝜋] are, respectively,

A 𝜃 ∈ [−𝜃
𝑐
, 𝜃
𝑐
] ,

B 𝜃 ∈ [𝜃
𝑐
, 𝜋 − 𝜃

𝑐
] ∪ [𝜋 + 𝜃

𝑐
, 2𝜋 − 𝜃

𝑐
] ,

C 𝜃 ∈ [𝜋 − 𝜃
𝑐
, 𝜋 + 𝜃

𝑐
] .

(3)

The representation of the stress-strain curves for carbon steels
is assumed in the form of the Ramberg-Osgood (RO) power
law [6],

𝜀
(𝑗)
=
𝜎
(𝑗)

𝐸
+ (𝜀
(𝑗)

𝑦
−

𝜎
(𝑗)

𝑦

𝐸
)(

𝜎
(𝑗)

𝜎
(𝑗)

𝑦

)

𝛽

, (4)

where 𝛽 is a dimensionless coefficient, which for most
engineering cases can be assumed ≥5, 𝜎(𝑗)

𝑦
is the Jth material

region yield stress, and 𝜀
(𝑗)

𝑦
is the corresponding strain.

Without loss of generality, Young’s modulus, E, is assumed to
be the same for each material region.

Under these assumptions, the collapse load and the failure
modes of the circular beam are the object of the investigation
of the next sections. In order to analyse the contributions
separately and shed light on the mechanics of the problem,
first the influence of the mixed-mode imperfections and
successively that of the varying material properties along the
beam axis will be considered.

4. Influence of Mixed-Mode Imperfections

The influence of mixed-mode imperfections modelled as in
(2) has been analysed by means of the commercial finite
element (FE) package ANSYS [7].

Every circular beam was modelled by means of 23040
SOLID185 3D 8-node elements, as shown in Figure 7. Eight
divisions were carried out through both the width and
the depth of the cross section of the beam. Out of plane
displacements of the beam axis were not allowed in order to
simulate the testing arrangement [5].

In general, numerical investigation of the nonlinear
behaviour of structures must follow the equilibrium path,
identifying and computing the singular points like limit
or bifurcation points, whose secondary branches in the
equilibrium path must be examined and followed, and this
procedure can be adversely affected by any kind of approx-
imation, as shown even in the simplest examples [8, 9]. To
overcome difficulties with limit points, displacement control
techniques were introduced and for this reason the modified
arc-length method was used in ANSYS to follow the load-
deformation path [10, 11].

The case studies taken into consideration are those of a
circular beam characterised by a diameter of 457.2 mm with
𝐷/𝑡 ratios equal to 14.40 and 22.85, respectively. The second
example represents the ring whose tests results have been
presented in Section 2.

The material properties are the following: 𝐸 = 206.6GPa,
𝜎
𝑦
= 561MPa, 𝜀

𝑦
= 0.01, and 𝛽 = 7.625.
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Figure 3: Measured radial displacements against the applied pressure for four different rings machined from the same pipe (𝐷 = 457.2mm,
𝑡 = 31.75mm).
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Figure 4: A circular beam under external pressure.

From an engineering standpoint, the measured out of
roundness on experimental specimens needs to be smoothed

n = 2 n = 3

Figure 5: Sample out of roundness component shapes, 𝑛 = 2 (left)
and 𝑛 = 3 (right).

and decomposed in its fundamental modes. However, it
has been shown in [12] that in the case of many sections
commonly used in offshore engineering, the prominent
imperfection modes are those characterised by two (𝑛 = 2)
and three (𝑛 = 3) waves.

Therefore, without lack of generality, the analysis has
been performed on a combination of two, and three-wave
imperfection modes.

The results are summarised in Tables 1 and 2.
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Figure 6: Inhomogeneous material regions.

Figure 7: FE modelling of a circular beam.

Table 1: Maximum lateral load (D = 457.2mm, t = 20mm, h =
50mm, and 𝜔 = 1/1000).

𝑛
1
= 2 𝑛

2
= 3 Pcrit (MPa)

𝑤
1
= 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0, 𝜓

2
= 0 25.454

𝑤
1
= 0.75 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.25 𝜔𝑅, 𝜓

2
= 0 26.003

𝑤
1
= 0.75 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.25 𝜔𝑅, 𝜓

2
= 𝜋/3 26.005

𝑤
1
= 0.75 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.25 𝜔𝑅, 𝜓

2
= 𝜋/2 26.008

𝑤
1
= 0.75 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.25 𝜔𝑅, 𝜓

2
= 2𝜋/3 26.011

𝑤
1
= 0.5 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.5 𝜔𝑅, 𝜓

2
= 0 26.702

𝑤
1
= 0.5 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.5 𝜔𝑅, 𝜓

2
= 𝜋/3 26.688

𝑤
1
= 0.5 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.5 𝜔𝑅, 𝜓

2
= 𝜋/2 26.679

𝑤
1
= 0.5 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.5 𝜔𝑅, 𝜓

2
= 2𝜋/3 26.676

𝑤
1
= 0.25 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.75 𝜔𝑅, 𝜓

2
= 0 27.642

𝑤
1
= 0.25 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.75 𝜔𝑅, 𝜓

2
= 𝜋/3 27.594

𝑤
1
= 0.25 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.75 𝜔𝑅, 𝜓

2
= 𝜋/2 27.577

𝑤
1
= 0.25 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.75 𝜔𝑅, 𝜓

2
= 2𝜋/3 27.600

𝑤
1
= 0, 𝜓

1
= 0 𝑤

2
= 𝜔𝑅, 𝜓

2
= 0 34.586

The parameters for the control of the nonlinear FE
analysis have been set assuming that the maximum initial
load is 1.2 times the value deriving from the analytical
expression in [13] and the number of initial substeps is 100.

Table 2: Maximum lateral load (D = 457.2mm, t = 31.75mm, h =
50mm, 𝜔 = 1/1000).

𝑛
1
= 2 𝑛

2
= 3 Pcrit (MPa)

𝑤
1
= 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0, 𝜓

2
= 0 56.046

𝑤
1
= 0.75 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.25 𝜔𝑅, 𝜓

2
= 0 56.620

𝑤
1
= 0.75 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.25 𝜔𝑅, 𝜓

2
= 𝜋/3 56.621

𝑤
1
= 0.75 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.25 𝜔𝑅, 𝜓

2
= 𝜋/2 56.623

𝑤
1
= 0.75 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.25 𝜔𝑅, 𝜓

2
= 2𝜋/3 56.626

𝑤
1
= 0.5 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.5 𝜔𝑅, 𝜓

2
= 0 57.085

𝑤
1
= 0.5 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.5 𝜔𝑅, 𝜓

2
= 𝜋/3 59.432

𝑤
1
= 0.5 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.5 𝜔𝑅, 𝜓

2
= 𝜋/2 57.116

𝑤
1
= 0.5 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.5 𝜔𝑅, 𝜓

2
= 2𝜋/3 57.120

𝑤
1
= 0.25 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.75 𝜔𝑅, 𝜓

2
= 0 60.310

𝑤
1
= 0.25 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.75 𝜔𝑅, 𝜓

2
= 𝜋/3 57.712

𝑤
1
= 0.25 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.75 𝜔𝑅, 𝜓

2
= 𝜋/2 57.727

𝑤
1
= 0.25 𝜔𝑅, 𝜓

1
= 0 𝑤

2
= 0.75 𝜔𝑅, 𝜓

2
= 2𝜋/3 57.744

𝑤
1
= 0, 𝜓

1
= 0 𝑤

2
= 𝜔𝑅, 𝜓

2
= 0 67.764

It is worth noticing that in the case of the ring with𝐷/𝑡 =
14.40, the increment in the collapse load which occurs for a
pure three-wave initial imperfectionwith respect to two-wave
is about 35%,whereas in the case of the ringwith𝐷/𝑡 = 22.85,
the corresponding increment is about 21%.

It can be also noticed that in the first case, that is, for
𝐷/𝑡 = 14.40, on average the increment in the collapse load
for a combination of imperfectionmodes𝑤

1
= 0.25𝜔𝑅, 𝑤

2
=

0.75𝜔𝑅 with respect to a pure two-wave imperfection mode
results is about 8.3%, whereas in the second case, that is, for
𝐷/𝑡 = 22.85, the increment reduces to about 3%.

Figures 8 and 9 show both the load-displacement plot
and the deformation at impending collapse from FE analyses
for the limit cases of pure two and pure three-wave initial
imperfection (𝐷 = 457.2mm, 𝑡 = 31.75mm).

It is worth noticing that in the case of the circular beam
with 𝐷/𝑡 = 22.85, a few relatively swift variations in the
maximum load increment can be sporadically recorded (𝑤

1
=

0.5 𝜔𝑅, 𝜓
1
= 0, 𝑤

2
= 0.5𝜔𝑅, 𝜓

2
= 𝜋/3 and 𝑤

1
=

0.25𝜔𝑅, 𝜓
1
= 0, 𝑤

2
= 0.75𝜔𝑅, 𝜓

2
= 0). This suggests

that the maximum lateral load of a ring with high 𝐷/𝑡

ratio, whose collapse is more affected by material plasticity
than by geometric instability, can be occasionally affected
by the particular combination of initial imperfection modes
albeit maintaining the oval pattern at collapse. This is shown
in Figure 10, where the deformation and plastic strains are
represented both at the attainment of the maximum carrying
load and at collapse.

Overall, the results from Table 2 show that the influence
ofmixing initial imperfectionmodes varies with their relative
amplitude and offset, but the increment in the collapse load
deriving from the presence of the mode 𝑛

2
= 3 does not

result proportional to its weight and provides the value of
67.764Mpa, in line with the results from Figures 3(a)–3(c),
only for𝑤

1
= 0, that is, when the contribution from the lowest

buckling mode is very low or nearly negligible.
For such a reason, it can be inferred that the circular

beams tested in cases (a)–(c) of Figure 3, in absence of other
experimental disturbances, such as improper sealing of the

 by guest on July 3, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


Advances in Mechanical Engineering 5

0

8

16

24

32

40

48

56

64

72

80

0 2 4 6 8 10 12 14 16 18−2

Horizontal diameter length variation (mm)

La
te

ra
l l

oa
d 

(M
Pa

)

Plastic strains

.1
81
E
−
03

0

.0
03
6
3
8

0 .0
07
09
5

0

.0
10
5
5
2

0

.0
14
00
9

0 .0
17
4
6
6

0 .0
20
9
23

0

.0
24
3
8

0 .0
27
83
7

0 .0
3
12
9
4

0

Figure 8: Results from FE analyses of Table 2 (𝑤
1
= 𝜔𝑅, 𝜓

1
= 0, 𝑤

2
= 0, 𝜓

2
= 0): load-displacement plot and plastic strains at impending

collapse.

0

8

16

24

32

40

48

56

64

72

80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5−0.5

Horizontal diameter length variation (mm)

La
te

ra
l l

oa
d 

(M
Pa

)

Plastic strains

.6
88
E
−
03

0

.0
16
4
1

0 .0
3
21
3
1

0

.0
4
7
85
2

0

.0
9
5
01
5

0

.1
10
7
3
6

0

.1
26
4
5
8

0

.1
4
21
7
9

0

.0
6
3
5
7
3

0

.0
7
9
29
4

0

Figure 9: Results from FE analyses of Table 2 (𝑤
1
= 0, 𝜓

1
= 0, 𝑤

2
= 𝜔𝑅, 𝜓

2
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collapse.

specimens in the testing rig, are likely to have been shaped
in themanufacturing process with a predominant three-wave
imperfection. This supposition is also supported by some
geometrical and experimental investigations [12, 14].

5. Influence of Material Inhomogeneity

The influence of material inhomogeneity has been conducted
on the basis of the problem statement in Section 3 and
according to the analytical solutions provided in [15].

With reference to Figure 6 the yield strengths for Regions
A andC have been obtained by amplifying the yield strength
of Region B, 𝐸 = 206.6GPa, 𝜎

𝑦
= 561MPa, 𝜀

𝑦
= 0.01,

and 𝛽 = 7.625, by a factor of 1.1 and by reducing it by a factor
of 0.9, respectively. In this manner, an increase in resistance
is attributed to Region A and a corresponding decrease in
resistance is attributed to RegionC.

The analytical treatment of the problem proposed in [15]
leads to the determination of a collapse function, f. The
function f can be plotted against the lateral load of the beam
and the condition 𝑓 = 0 is attained at impending collapse.

Figure 11 shows the plot of the collapse function, f,
versus the lateral load, p, for a homogeneous (dashed line)
and an inhomogeneous (continuous line) circular beam for
𝜃
𝑐
= 𝜋/4, 𝑛

1
= 2, 𝑛

2
= 3, and 𝑤

1
= 0, 𝑤

2
= 𝜔𝑅. The

dimensions are the same for the rings of Figure 3 and Table 1.

 by guest on July 3, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


6 Advances in Mechanical Engineering

Plastic strains Plastic strains

.2
04
E
−
03

0

.4
88
E
−
03

0

.7
7
1E

−
03

0

.0
01
05
5

0

.0
01
3
3
8

0

.0
01
6
21

0

.0
01
9
05

0

.0
02
18
8

0 .0
02
4
7
2

0

.0
02
7
5
5

0

.2
5
8E

−
03

0

.0
03
04

0 .0
05
82
2

0

.0
08
6
03

0

.0
11
3
85

0

.0
14
16
6

0

.0
16
9
4
8

0

.0
19
7
3

0 .0
25
29
3

00.
02
25

11

Figure 10: Results from FE analyses of Table 2 (𝑤
1
= 0.5𝜔𝑅, 𝜓

1
= 0, 𝑤

2
= 0.5𝜔𝑅, 𝜓

2
= 𝜋/3): deformation and plastic strains at maximum

load (left) and at impending collapse (right).
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Figure 11: Plot of the collapse function, f, versus the lateral
load, p, for a homogeneous (dashed line) and an inhomogeneous
(continuous line) circular beam as in Table 1 for 𝜃

𝑐
= 𝜋/4, 𝑤

1
= 0,

𝑤
2
= 𝜔𝑅.

From the plot, it appears evident that for a pure three-
wave initial imperfection the collapse load for the homoge-
neous beam is much lower than the one for the inhomoge-
neous beam. Moreover, both these values of the collapse load
are in line with the experimental findings of Figures 3(a)–3(c)
and Figure 3(d), respectively.

This phenomenon can be attributed to an interference
between the geometrical andmaterial imperfections. In other
words, the variability of material properties along the beam
axis can induce a change of the buckling pattern, swinging
the failure mode of the beam characterized by an initial
imperfection of shape 𝑤

1
= 0, 𝑤

2
= 𝜔𝑅 to the failure mode

of a ring characterized by an initial imperfection of shape
𝑤
1
= 𝜔𝑅, 𝑤

2
= 0.

Most importantly, it is worth underlining that Figure 11
shows the presence of a peak at the red dot which can be
considered as a sort of concealed well in the load-yielding
plot. This sort of peaks, which can assume a very narrow
shape depending on the geometrical and material properties
of the beam, can turn sometimes difficult to trace numerically
and can contribute to explaining the anomalous results in
experimental tests.

6. Conclusions

The elastic-plastic collapse of circular beams under uniform
lateral pressure and with various degrees of initial imper-
fection and varying material properties has been analysed
on account of some apparently anomalous experimental
findings. It has been shown that both the initial imperfection
and material inhomogeneity along the beam axis can affect
the collapse modes and produce a sensible variation in the
carrying capacity of the structure by trigging the same change
between the underlying buckling modes. The presented
examples evidently show that the considered problem, far
from being rather straightforward as it might appear at first
sight, presents several hitches and requires great care in its
treatment on account of its intrinsic features, especially in the
design and assessment of problems of interest to the nuclear
and offshore industry [16–20].
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