
PACKETIZING SCALABLE STREAMS IN HETEROGENUS PEER-TO-PEER NETWORKS

Alexandro Sentinelli, Tea Anselmo, Pasqualina Fragneto,
Amit Kumar, Beatrice Rossi

STMicroelectronics, via Olivetti 2, Agrate Brianza (MB), Italy
{tea. anselmo, pasqualina.fragneto, amit-agr.kumar, beatrice.rossi, alexandro.sentinelli}@st.com

ABSTRACT

After the extensive effort dedicated by both Academia and
Industry in the area of peer-to-peer (P2P) streaming by
looking at models and network algorithms to achieve
optimal load distribution, recent works are moving forward
to enhance the overall P2P systems efficiency by focusing
on specific video codecs and packetization techniques at
application layer. The purpose to integrate different
technologies with the aim to design full streaming solutions
requires a joint efforts from the market and EU projects
community. Many engineering issues have been brought out
in terms of compatibility and integration that need to be
addressed. In this paper we focused on a bottleneck
discovered during the packetization step between the
Scalable Video Coding (SVC) streaming module (during
content creation) and the P2P engine before delivering the
packets over the network. We compared the a priori fixed
packet size solution adopted in P2P-Next project with a
codec aware approach, gaining performance in terms of
network overhead. We performed experiments with various
sequences aiming at overall P2P streaming efficiency and
measured the bandwidth cost under various conditions.
Since we focused on the application layer, our statistics
analysis can be helpful in designing P2P streaming solutions
dealing with any network type.

Index Terms- SVC, Content creation, Video Coding,
P2P, Bitrate Control, Network Overhead, Live streaming

1. INTRODUCTION

Despite the Global Economic Slowdown, a recent IPTV
forecast projects 5.5 million subscriptions by 2013 in the US
alone. In Europe, according to [11], the number of IPTV
subscriptions will increase by 92%, from 15.4 million in
2009 to 29.6 million in 2015, making it the fastest-growing
among all pay-TV platforms. The technological challenge is
to satisfy various users with different network and devices
all accessing to same content. Nowadays several providers
offer the same content at different qualities (bit-rates) with
the aim to satisfy users with different devices or available

978-1-61284-350-6/11/$26.00 ©2011 IEEE

network bandwidth. Unfortunately, the network efficiency
does not benefit as well because the system treats the same
content like two different bitstreams that are independently
encoded and transmitted over the network. The Scalable
Video Coding (SVC) standard, instead, plays upon the
concept of layered video coding with one bitstream
multiplexing many inter-dependent substreams, formed by a
base layer with minimum quality (common to every peer)
and a number of enhancement layers to increase the quality
for more exigent users. By moving to P2P we can improve
the overall network efficiency of the distribution. The idea
of combining together SVC and P2P gathered a lot of
interest from the industry that pushed the R&D community
step-by-step toward the in depth research or realization of
SVC or P2P technology individually or altogether for
streaming solutions. Different technologies have to be
embodied and a number of problems are being faced in
terms of integration and compatibility which may cause
sometimes significant drop in performance. In this work we
want to point out issue(s) that came out while integrating the
SVC streaming module (for content creation) along with
P2P engine. We need, in fact, an interface that receives the
SVC stream and maps it into input packets for the P2P
engine. Since one of the main constraints is the backward
compatibility with existing P2P clients using metadata file
like torrents, thus there is a need to maintain a constant
block or piece size, the encapsulation or packetization step
costs some bandwidth to the system in terms of overhead
introduced into the network. In this work we compared two
types of packetization methods and measured their
performances in terms of overhead. The first solution has
been developed in the European project P2P-Next. In this
paper we will be using the term "block", although some
existing P2P clients uses term "piece" for the same. The
algorithm basically takes a group of Nfr frames from the
SVC stream coded at constant bit-rate and encapsulates
them into one fixed size block ready for the P2P engine. In
our algorithm we encapsulate the same number of pictures
Nt,., equal to the Instantaneous Decoding Refresh (IDR)
period, into a variable number of fixed size smaller blocks
as compared to fixed number of fixed size block chosen in
P2P-Next. The IDR coded picture must be inserted at the

beginning of a new block and entirely contained in it as it
serves as random access point in case of lost packets and is
uniquely decodable (independent on previous or next block
within same layer). A frame, other than lOR, can be
eventually cut and fit into two adjacent blocks, but the
blocks size remains same, thus the compatibility with torrent
clients is maintained. Intuitively, when the size of Nfr coded
pictures exceeds the target constant rate due to the variable
complexity of video content, the use of a variable number of
blocks allows for packetizing all the frames. The paper is
organized as follows. After the related works and a brief
description of the overall basic architecture from the P2P
Next, we will focus on encoder chain starting from content
creation (encoding raw media stream with a Constant Bit
Rate control algorithm) until the P2P block-encapsulation
stage, the core of our analysis. Here we compare the two
P2P packetization methods using publicly available video
sequences veritying also the expected qualitative behavior
with a mathematical model. The performance of the two
solutions is measured in terms of overhead introduced into
the network. Finally we provide the conclusions.

2. RELATED WORKS

As layered coding feature of SVC can fit perfectly well
with the need of heterogeneous integrated networks,
bandwidth fluctuations at the physical layer side offer many
research opportunities for cross-layer optimization. In [1]
the authors analyze problems related to delay, network
connection errors, and the potential use of SVC standard in
variable network environments while in [2] the authors
discuss the use of multi-Iayeredlmulti-view content coding
techniques for streaming, adaptation for various kinds of
networks, e.g. xDSL, WiMAX. Some open issues have been
widely discussed in [3] about multimedia streaming
architecture using single or multiple sources of content
distribution. The closest work related to our analysis is the
P2P system proposed by Capovilla et al. [8]. In Fig. 1 the
producer-side architecture describes all steps from SVC
encoding till packet ingestion into the core of the P2P
engine (NextShare Core). The topics addressed include the
encoding process, splitting of the bitstream, creating
metadata for initializing RTP session based on the
bitstream's supplemental enhancement information (SEI),
sequence parameter sets (SPS) and picture parameter set
(PPS), the bitstream packetization, and finally the ingestion
into the P2P engine. The consumer-site architecture
describes all steps from receiving the bitstream through P2P
engine till decoding/rendering the bitstream with an SVC
media player. Our investigation focuses on the upper part of
the producer side (Fig. 1 - dashed line). We point out a
remark about the layer defmition, as it is different from the
SVC standard [5]. The temporal scalability is not considered
and the layers are interpreted as generic video files as in the
NextShare (P2P-Next) specification [8].

3. CHAIN DESCRIPTION

The chain (see Fig. 2) consists of an SVC encoder featuring
CBR (constant bit-rate) capability, which gives an SVC
elementary stream with constant bit-rate, which is further
passed to the splitter (NALU Demux): the output is a set of
files (or substreams), one per layer.

-------------------��--

Fig. 1. P2P-Next project: the NextShare streaming chain.

Raw Encoder
stream + CBR

� �yeI7II =I

Hr- LI II I::I = Splitter \'-- L, II II =I

.J

L-L3 �==�==�===cl (X3)

Fig. 2. Compact view of our chain.

In the next sections we will explain the CBR algorithm
and the two splitters we are comparing, using SVC encoded
video within the context of P2P streaming.

3. 1. Integrating SVC in P2P networks

Scalable Video Coding is an extension of the H.264/A VC
[4] and it is one of the latest video coding standards
developed by the Joint Video Team (JVT) of the ITU-T
Visual Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG). Since principles of
scalable coding are widely known to the video coding
community and an in-depth description of SVC in not the
aim of this article, readers are referred to [5] for a more
detailed overview of the standard, while an analysis of
coding efficiency is reported in [6]. Here below we focus on
the properties of SVC that make this standard easily
adaptable to heterogeneous networks and especially efficient
in P2P environments. SVC provides scalable video streams,
which are composed of a base layer and one or more
enhancement layers: each enhancement layer can improve
the temporal rate, the spatial resolution, supporting both
dyadic and arbitrary resolution ratios, and the quality of the
video content. Scalable bitstreams offer easy adaptation to
varying network conditions and terminal capabilities: the
scalability property refers to the capability of adapting the
bitstream to varying terminal capabilities, network
conditions and end user preferences by selectively
discarding parts of the scalable bitstream and still obtaining
an SVC decodable bitstream. This ease of adaptability

brings more flexibility that becomes important to P2P
systems in case of high churn rate (when peers change
channels or disconnect) or sudden network congestions,
which may affect dramatically the user experience. That is
why many P2P systems use to relax playback delay
constraints and set large buffers to overcome changes in the
overlay network. Moreover, in terms of network efficiency,
an overall improvement is shown in Fig. 3.

Stream S1 = Low Quality
Stream S2 = High Quality

Server

The server delivers two layers (Base + Enhancement):
Stream S1 = Base Layer
Stream S2 = Base + Enh Layer Server

_ BaseLl�er o� o�'o:::::-O�I ==: Enh L:l\Cr 0 � o S1 , 5 2
Base + Enh L,yer , /'" '�O+-::o C$'_��

Fig. 3. P2P networks: independent video encoding (top) vs.
SVC coding (bottom).

In most of the existing P2P streaming solutions the
interesting media contents are usually delivered at two
independent network overlays giving the possibility to the
users to choose the quality/resolution they want. These
bitstreams are independently encoded, so the network
overlay is made by two independent sub-overlays.
Each end-user belongs to one of the sub-overlays and
consumes the associated bitstream (Fig. 3, top).

Although this solution meets the user requirements it
does not exploit completely the benefits of P2P systems. In
fact, by using SVC (Fig. 3, bottom) the two sub-overlays are
actually a single overlay embracing the entire peer
population that shares the base layer and a sub-set of peers
delivering only the enhancement layer. The availability of
peers is maximum in numbers for base layer which is
always common to the whole overlay. If we want to exploit
all the advantages with this synergy (SVC/P2P) the P2P
client needs an interface which receives the video stream
and fits it into packets, all of same size, also avoiding the
backward compatibility issues with nowadays existing P2P
streaming solutions with fixed packet size. In order to build
video packets referring to different qualities and same block
size, we need to act at the beginning of the chain by
properly modeling/organizing the encoded bitstream.

The encoded bitstream is formed by a series of data
packets called NALU (Network Abstraction Layer Unit),
each containing either an entire encoded image, or part of it,
or the header information needed to properly decode the
bitstream (i.e. Sequence and Picture Parameter Sets,
Scalable and Supplemental Enhancement Information). In
SVC, all representations of the same image with different
layer identifier (spatial or quality) for a time instant form an
Access Unit (AU). In order to map SVC units (NALUs) into

input packets for the P2P engine, a rate control is required to
adapt the intrinsic variability of bitstream rate to the
packetization process. Constant Bit-Rate (CBR) algorithm
acts on the QP (Quantization Parameter) value in order to
adapt the variable rate bitstream to a limited bandwidth
channel. The results shown in this paper refer to the buffer
based CBR control method proposed in [7], which is based
on buffer management to avoid overflow and underflow
events, and is suitable for multiple layer coding: the
algorithm tries to achieve, at the end of each Intra period,
the same buffer fullness that was before encoding the last
Intra picture. As a consequence, it performs a constant bit
rate encoding since every Intra period of length IDR consists
of about the same number of bits:

Target IDR size = AvgBitPict·!DR (1)

where AvgBitPict is the average amount of bits per picture
obtained as the ratio of the target bit-rate and the sequence
frame rate.

Table 1. Simulation results of SVC encoder with CBR.

Sequences Layer 0 Layer 1 Layer 2 Layer 3
BR[kb/s] Err(%] BR [kb/s] Err(%] BR[kb/s] Err (%] BR[kb/s] Errr/.]

City 395.28 ·1.18 798.10 ·0.2� 1,191.17 .Q.7 2,400.30 0.01
Crew 395.28 -1.1 a 794.52 -o.ss 1,195.82 .Q.3 2,376.83 -0.9
Soccer 395.26 -l.la 800.24 0.0 1,186.58 -1.12 2,383.78 -0.68
Flight 400.97 0.24 800.29 o.� 1,203.26 0.2 2,405.03 0.21
Tree 408.01 2.00 803.57 0.45 1,219.28 1.61 2,412.29 0.51
Home 400.06 0.01 799.97 0.00 1,201.22 0.1 2,�.22 0.18

In order to produce a nearly constant amount of bits Target
IDR size, the algorithm checks the buffer fullness and
compares the current buffer occupancy level with the target
level: in case of emptiness detection, the QP is increased,
while in case of possible overflow, the QP is decreased and
filler NALUs are inserted. A more detailed description of
the CBR algorithm can be found in [7]. The encoder along
with buffer based CBR is able to achieve good bit-rate
control performance and, at the same time, to maintain fine
uniform image quality throughout the sequence. Table I
summarizes the fmal bit-rate error obtained with JSVM
reference software [9] and the buffer-based CBR for the
scalable configuration including a base layer and a spatial
enhancement layer (Layer 0, Layer 2) with two quality
levels (Layer I, Layer 3).

The ITU-T test sequences Crew, City, Soccer are 300
frames long and they have been used with CIF to 4CIF
spatial resolutions at 30 Hz. The sequences Home, Flight
and Tree [10] are 9000, 1200 and 600 frames long
respectively, and they have been coded with QVGA to VGA
resolutions, Home at 24 Hz while the last two at 25 Hz. The
tested coding parameters are the ones referred in Table I.
The target bit-rates for the four layers are respectively 400
kbitls, 800 kbitls, 1.2 Mbitls and 2.4 Mbitls. For all our
simulations the lOR period is equal to 64 frames.

The CBR working at lOR target size comes in handy for
the need of having an lOR at the beginning of a new block.

Therefore, when NALUs are provided by SVC encoder to
the P2P engine, they are packetized into single or set of
blocks, encapsulating an IDR period to be provided to P2P
engine and further shared over P2P network. In our
proposed solution each block contains only the data
belonging to a unique layer (among base and enhancement
layer(s)) of the scalable bitstream. In order to extract a
specific quality from the bitstream it is sufficient to map
blocks into the main bitstream.

% frame
skipped

,,.

Fig. 4. Skipped (%) frames f(Bs, Nfl').

• IIG-OO
C 76-00
_80-70
.,
_40-50
C:JG..40
026-""
.1(�20
.0-10

Such mapping needs a mask to indicate the number of
blocks per layer and a priority scheme to specify how to
insert blocks into the stream for synchronization. The
synchronization mapping scheme can be defmed in two
ways. The first one declares a number of blocks per IDR per
layer that is kept invariant during the streaming. For
example a mask [1,1,1,3], means that every layer needs one
block per IDR except the highest one (3 blocks). In the
second approach we are aware of each IDR. thus leading to
declare a variable number of blocks per layer all along the
stream. In Fig. 5 we show an example with a stream
containing 3 layers (Base + 2 Enhancement layer).

3.2. Splitter module

The splitter basically works in the same way as a
demuxer. As the SVC elementary stream encapsulates all
the layers into one file, the splitter application creates a

�epar�te file per layer and fits the corresponding NALUs
mto It. Each file can be seen as a continuous stream of
blocks belonging to the same layer until the content's end.
In the following paragraphs we will describe the two
splitters, P2P-Next Splitter and Adaptive splitter.

P2P-Next Splitter. The input parameters provided to
P2P-Next splitter are Ntr ("Number of Frames per Block")
and Bs ("BlockSize"). When a NALU doesn't fit into the
block it is simply dropped. Therefore, when receiving the
first frame of the next block, layers are always synchronized
among base and different enhancement layer(s). If the block
advances so�e space �bits) after containing Ntr frames, a
filler NALU IS added m order to maintain constant block
size.

Quality

EL 2,1 block l EL 2,2 block I EL 2,3 block j EL 2,4 block I
I EL1,1 block I EL 1,2 block I EL 1,3 blOCk]

I BL 0, 1 block I BL 0,2 block I
time

Block Mask m.Bt
[-l]#bIOCkS EL2

3 #blocks Ell
2 #blocks BL

�
IDR, IDR'+1

1(2,3,4) �LO'l IEll'lIEL I,lISlo,2fL 1,z IEl2,1 IEl l,)IEl2.)IEl2,41 ��::] (2,1,2±_O,1IEll,lrL2,1�O,2fL 1,2�l2,21 (...)

Hellders to Identify the I I blocks Mllsk (blocks per _----'-______ --.-l
lOR per LlIyer)

Fig. 5. General synchronization priority scheme .

T�e rate of fr�mes skipped during the streaming depends
hIghly on the mput variable couple (Bs, Njr). In general, we
can say that if we increase Ntr with respect to Bs, we will
have a higher number of frames skipped though less filler
NALU per block. On the other hand, if we increase Bs with
respect to Ntr, we will output sub-bitstreams with a higher
percentage of filler NALU while decreasing significantly
the �erc�ntage of frames �kipped. A trade off is obtained by
considermg the average SIze of one frame in a stream with
respect to a defmed target bit-rate, and to maintain this ratio
while choosing the parameters Ntr and Bs. In particular, our
experiment uses an bitstream encoded with SVC encoder
featuring CBR with encoding parameter as 400 Kbitlsec, 25
fps (frame per seconds), which means each frame on
averag� is 2 kB � si�e to keep the synchronization with any
streammg applIcation designed over our proposed
algorithm. We have also analyzed the effects of the
relationship between [Bs, Ntr] and the percentage of frames
skipped in Fig. 4. As per our proposed algorithm required to
m�intain the ratio given by the chosen target bit-rate, it is
eVIdent that the ratio between Ntr and Bs must be 1 :2. The
dashed line represents the optimal trade-off between wasted
space and the percentage of skipped frames, and it continues
following the relationship Bs=2*Ntr. Considering a practical
P2P application design perspective with Ntr = 64 and frame

�ate 25 fps, in order to keep all frames in the single block it
IS suggested to choose a target bit-rate a little bit lower than
400 kbps, or Bs little bit larger than 128 kB. As the rate
precision of the CBR algorithm may depend on video
c�ntent �omplexity, ch�osing target bit-rate or Bs in this way
wIll aVOId any frame SkIpping during splitting operation.

In actual splitter's implementation each block contains a
group of 64 frames (IDR period) starting from an IDR
picture. If the IDR size exceeds B" the future incoming
NALUs (for same IDR period) are discarded. While, in the
other case, if the IDR size is less than Bs then the size
corresponding to (Bs less IDR period size) is completed with
a filler NALU.

Adaptive Splitter. In this version, the splitter receives
only

.
one parameter as input: the block size, which is

relatively smaller in size with respect to the previous version
of splitter discussed above. The main feature of this
approach is the possibility to cut the IDR period into

multiple blocks. This feature is suitable to adapt the amount
of information to the content of the stream itself, or to
change/choose the quality on the fly. In case of fairly static
video scenes lasting for few seconds, the encoder needs less
bits to encode it with respect to a scene with many objects
moving around; therefore, depending on the specific video
scene, the number of blocks per layer can be adapted to the
amount of information of each lOR. It is evident that
smaller the Bs, smaller the P2P protocol overhead in the
whole network will be. On the other hand, reducing the
block size very small will proportionally increase the
communication overhead as compared to exchanged blocks
among peers.

Lo

L,

L,

L,

P2P-Next Splitter Adaptive Splitter

l." .- o overhead

L, data

L, IJJ h-
�� I I I I L, I I I I ill

B. - block size co avoid frame skipping B$-new block size { OVHead np·Nex' ,pi""" I j .} II !
OW-lead AdBpove Splitter solut'Jon CIIIl. '.

Figo 60 Content size-aware solution. The Adaptive Splitter allows
cutting IDR of any layer into a variable number of blocks.

In our experiment we have chosen a range of block size
starting from 16 till 512KB, considering the block size used
by various BitTorrent-protocol based applications. As
shown in Fig. 6 the network overhead decreases remarkably.
Note that the mask [1,1,1,3] used in the first version of the
Splitter, may suggest that the lOR of the highest layer is cut
into 3 blocks: once chosen the target bitrates, the
contribution of the highest layer is 3 times the contribution
of each lower layer, no matter what is the size of the data.
Instead our proposed solution adapts dynamically the
number of required blocks per layer for every streamed lOR
period, as shown in Fig. 6.

Moreover, we remark that, if we want to be sure that no
frames are dropped during the streaming session, the P2P
Next splitter needs to have a priori knowledge of the
maximum lOR period size (among all the lOR periods) in
the entire bitstreamo That may result in high buffering or
wasted bandwidth for the smaller lOR. The Adaptive
Splitter instead doesn't require prior information about
maximum size of the lOR and eventually is more suitable to
be used in live streaming scenario.

40 EXPERIMENTS AND RESULTS

In this section we have considered six different video
sequences (see Table 2) and compared the performances of
the two proposed splitters. First, we will analyze the P2P
engine by computing the percentage of frames skipped and
the wasted space as result of P2P-Next splitter for different
Bs values. In order to avoid frames skipped situation, we
have performed several simulations with increasing Bs until

the number of frames skipped reaches zero for each lOR
period.

Table 2. P2P-Next splitter vs Adaptive Splittero

�Zl' Next iDllller 'Dllvelil liller
Gained Gained

Sequences frmR[fr/s) MinSize OH Range MinOH AvgMinOH

[kB] 1%) [lcB] [%) 1%) OH[%) BW[%)

City 30 119 19% [16-119) 5.4 13.5 71 11.4
Crew 30 132 29% [16-132) 6.5 15 77 17.4

Soccer 30 126 26% [16-126) 6.3 14.3 67 15.6
T 25 165 30% 1[16-165) 5.7 13.6 81 18.6
Flight 25 138 14% [16-138) 4 8.5 77 11.9
Home 24 240 38% [16-240) 5.7 13.1 85 23

100
90 -- %Fml Skipped (A VG)
80 -- %OH (AVG)

70
60
50
40
30
20
10
0
� {I- � ,,'" ,\b gI>' ,,"v ,� ,� ,@ ,oJ' "v<Y

Block size (kB)

Figo 70 P2P-Next Splitter Performances ("Flight" sequence).

For the sequence "Flight" (see Fig. 7) the minimum Bs
to avoid frames skipped situation for each layer is 138 kB.
This leads to an overhead (measured in percentage of
wasted space over the output bitstream) of 18% for each
layer. Note that only a block size bigger than 138 kB will
guarantee the sequence to be encoded without any frame
skipped. Then we analyze the corresponding results
obtained by using the Adaptive version of the splitter that,
as expected, doesn't skip any frame. Theoretical behavior of
the average overhead per lOR period as function of Bs has
been modeled as follows: in an ideal situation, when
operating with a bit level precision CBR, theoretical
overhead can be computed as the difference between Bs and
the integer remainder of Target lOR size divided by Bs.
Percentage of average overhead per lOR period for a fixed
Bs becomes:

OH =

Bs - (Target lOR size (mOd Bs)) .100%
,(Target lOR sizelBs) l Bs

(2)

Results are shown in Fig. 8. When the overhead decreases,
the lOR size gets close to a multiple of Bs. Moreover, peaks
disappear when Bs becomes greater than the target lOR size
(in this case 128 kB). Percentage of average overhead per
lOR period as function of Bs is shown in Fig. 9. Trend meets
the theoretical behavior with fluctuations determined by the
CBR. Comparing results obtained with the two versions of
splitter for the sequence "Flight", we observe that behaving
in a different way as compared to P2P-Next splitter, the

Adaptive version allows to consider Bs values within the
range of 16 kB to 138 kB while having no frames skipped.

IOOr------------r====�======��==��
90 --% Theoretical OH LO LI L2
80 % Theoretical OH L3

70
60
50
40
30
20
10 /
O ���J--L--�--------------------�
� rf' "b ,'Y -!' ,� ",-f' ",Jp ",� ,,� ,,� ,ft ,;j' �� "a>

Block size (kB)

Fig. 8. Theoretical behavior of Adaptive Splitter.

IOO �-------------'r===��������
90 f== % OH LOLI L2(AVG)j
80 l--==-- % OH L3

70
60
50
40
30
20
10
O ��------------------------------�
� rf' "b ,'Y -!' ,� ",-f' ",4' ",� ,,� ,,� �rS' �oP .f' "a>

Block size (kB)

I OO TT-------.-------r===----=========�
90 [%AVG OH LOLl L2 LiJ
80
70
60
50
40
30
20
10
O-�------�----------------------�

� �Q "b ,'''' ,'" ,� ",-f' ",Jp ",� ,,� ,,� ,ft �oP .f' "a>
Block size (kB)

Fig. 9. Adaptive Splitter performances ("Flight" sequence).

In such range we fmd some minimal overheads of
respectively 4%, 8%, 12.5% and 13%. Region contained by
dashed lines describe the range within which Adaptive
Splitter can outperform P2P-Next Splitter. On the whole, the
adaptive approach gives up to a 77% decrease in overhead
(see Table 2) as compared to P2P-Next splitter, which saves
bandwidth cost up to 11.9%.

Results for remaining sequences follow the same trend
as explained above (see Table 2). We also performed our
experiment framework on a considerably long sequence
(9000 frames - 6 minutes), extracted from the movie
("Home - Earth") (see Table 2). Finally, observe that, in
order to obtain this performance gain of the overall system,
there is a small overhead introduced which makes the
splitter dynamically "adaptive". For each IDR, in fact, we
have to add the number of blocks per layer, the temporal

position and the layer index itself (Fig. 5). If we consider a 2
hour movie or live streaming at a bit-rate of 400 kbits/s with
a SVC sequence splitted in four layers, thus adding for each
IDR 2 Bytes for the temporal indexing (if fps = 25 and IDR
period = 64, 2 Bytes may address more than 30 hours of
streaming), 1 Byte for layer indexing and 1 Byte for the
number of blocks per IDR/layer, we obtain an additional
cost of only 11 kB per layer. Therefore, an overhead of only
44 kB for two hours of movie streaming with its highest
quality is sufficient to save easily - 20% of the bandwidth.

5. CONCLUSIONS

We have described the architecture of an P2P based
streaming solution using SVC encoding featuring CBR and
interfacing a P2P engine from the raw video file till delivery
of specific video layers in a BitTorrent fashion. We have
compared performance in terms of overhead of the whole
chain (encoder + splitter) while using the P2P-Next Splitter
interface and our proposed solution of Adaptive Splitter that
is able to extract the size of each IDR during the streaming.
Results show a remarkable gain has been obtained using the
Adaptive Splitter interface (confirmed by our mathematical
model). Such an Adaptive Splitter is also a good candidate
for live streaming scenario because it does not require the
knowledge in a priori of block size (large enough) to
preserve all frames of each IDR period: it just adapts the
size for each IDR during the session.

6. REFERENCES

I. AZ. Spector, "Achieving application requirements",
Distributed Systems, S. Mullender, Ed. ACM Press Frontier
Series. ACM, New York, NY, pp. 19-33, 19S9.

2. T. Zahariadis, O. Negru and F. Alvarez. "Scalable content
delivery over P2P convergent networks", IEEE ISCE'OS, 200S.

3. M. Djamal-Eddine and M. Mubasher, "Open issues in P2P
multimedia streaming", MULTICOMM2006, 2006.

4. ITU-T Rec.H.264 and ISO/IEC 14496-10. Advanced video
coding for generic audio-visual services, March 2010.

5. H.Schwarz, D.Marpe and T.Wiegand, "Overview of Scalable
Video Coding Extension of the H.264/AVC Standard", IEEE
Trans. Or. Syst. Video Tech., 17(9), pp. 1103-1120,2007.

6. M.Wien, H.Schwarz and T.Oelbaum, "Performance Analysis
of SVC", IEEE Trans. Cir. Syst. Video Tech., 17(9), pp. 1194-
1203,2007.

7. T.Anselmo and D.Alfonso, "Buffer-based Constant Bit-Rate
Control for Scalable Video Coding", PCS 2007,2007.

S. N. Capovilla; L. Mapelli; A Kumar; A Bakker; R. Petrocco;
M. Eberhard; M. Uitto; "NextShare intermediate integration",
d216217 P2P-Next, deliverable 6.5.3, June 2009.

9. Joint Scalable Video Model, version 9.15, available from:
pserver:jvtuser@ garcon.ient.rwth-aachen.de:/cvsljvt

10. http://media.xiph.orglvideo/derf/
II. http://www.anaiysysmason.com/About

UslNews/lnsightiEuropean-IPTV-subscriptions-to-doubie-in
five-yearsl

