
Open Access. © 2019 Gaetano Rossiello et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution alone 4.0 License

Open Comput. Sci. 2019; 9:212–225

Research Article Open Access

Gaetano Rossiello*, Annalina Caputo, Pierpaolo Basile, and Giovanni Semeraro

Modeling concepts and their relationships for
corpus-based query auto-completion
https://doi.org/10.1515/comp-2019-0015
Received February 20, 2019; accepted July 29, 2019

Abstract: Query auto-completion helps users to formulate

their informationneeds by providing suggestion lists at ev-

ery typed key. This task is commonly addressed by exploit-

ing query logs and the approaches proposed in the liter-

ature fit well in web scale scenarios, where usually huge

amounts of past user queries canbeanalyzed toprovide re-

liable suggestions.However,whenquery logs are not avail-

able, e.g. in enterprise or desktop search engines, these

methods are not applicable at all. To face these challeng-

ing scenarios, we present a novel corpus-based approach

which exploits the textual content of an indexeddocument

collection in order to dynamically generate query com-

pletions. Our method extracts informative text fragments

from the corpus and it combines them using a probabilis-

tic graphical model in order to capture the relationships

between the extracted concepts. Using this approach, it

is possible to automatically complete partial queries with

significant suggestions related to the keywords already en-

tered by the user without requiring the analysis of the past

queries. We evaluate our system through a user study on

two different real-world document collections. The experi-

ments show that ourmethod is able to providemeaningful

completions outperforming the state-of-the art approach.

Keywords: query auto-completion, information retrieval,

information extraction, probabilistic graphical model

*Corresponding Author: Gaetano Rossiello: IBM Research AI,

Thomas J. Watson Research Center, Yorktown Heights, NY, USA.

E-mail: gaetano.rossiello@ibm.com

Annalina Caputo: ADAPT centre, School of Computer Sci-

ence and Statistics, Trinity College Dublin, Ireland. E-mail: an-

nalina.caputo@adaptcentre.ie

Pierpaolo Basile, Giovanni Semeraro: Department of Computer

Science, University of Bari Aldo Moro, Bari, Italy. E-mail: pier-

paolo.basile@uniba.it, giovanni.semeraro@uniba.it

1 Introduction
Query Auto-Completion (QAC), sometimes also referred to

as query suggestion, is oneof the early facilities that search

engines offer to users in order to make the retrieval task

easier, quicker, and more effective. QAC helps users to ex-

press their information needs by supplying a list of sugges-

tions at each key typed in the search box. A valuable sug-

gestion list should meet some requirements: (1) it should

be available in real-time, for really alleviating the user

from the burden of explicitlywriting down the information

need; (2) it shouldbe relevant, i.e. pertaining theportionof

query the user has already entered in (and potentially able

to predict the whole information need); (3) it should be di-

verse, in order to offer different interpretations of the user

information need and (4) it should be as specific as possi-

ble in order to better discriminate relevant documents.

The problem of completing a partially entered user

query is usually tackled by exploiting query logs [1]: Past

user queries represent a collection of information needs

that have been already fully expressed. Inweb scale search

engines, these approaches show excellent performance

since they count on a consistent amount of queries col-

lected by millions of users. Indeed, such a “wisdom of

crowds” guarantees a wide topic coverage. Moreover, past

queries are usually stored in appropriate data structures,

like prefix tries, that ensure efficient response time.

However, there are several contexts where it is diffi-

cult to collect an adequate amount of query logs. For in-

stance, enterprise content management systems, personal

blogs, or desktop search tools, usually have a very limited

query database, therefore in these kinds of environments

methods based on query logs are not applicable at all. In

order to face this issue, a QAC tool should be able to ex-

ploit the collection of documentswith the aimof providing

suggestions for a given partially typed query. This process

could be considered as an inverted question answering

system, where queries are automatically generated start-

ing from the available textual content. Although the QAC

field counts on an active research community [2], most

of the research focuses on query log-based approaches,

while only few corpus-basedmethods have been proposed

Unauthenticated
Download Date | 3/5/20 12:09 AM

https://doi.org/10.1515/comp-2019-0015

Corpus-based query auto-completion | 213

in the literature [3, 4]. Thus, despite the process of auto-

matically generating queries from unstructured texts may

clearly have practical implications in real systems, it re-

mains an open challenge from a research point of view.

Generally speaking, in a corpus-based approach the

sequences of terms that form a possible suggestion are

extracted from the text of the document collection rather

than being fed by previous user formulated queries. This

poses two main challenging steps: (1) corpus-based QAC

methods have to deal with the automatic generation of

meaningful pieces of candidate suggestions, which have

also to be dynamically generated and supplied in-real

time; (2) the proposed completions have to be ranked ac-

cording to their semantic relevancewith respect to the con-

text, which consists of the keywords already keyed in.

We argue that state-of-the-art corpus-based methods

present several limitations in addressing both steps. First

of all, the suggestion component is limited to naively

extract n-grams from the textual content, without per-

forming any linguistic analysis. Usually, this step re-

quires advanced natural language processing techniques

to deeply analyze the document collection in order to ex-

tract meaningful and self-consistent completions. More-

over, the ranking module relies on probabilistic models

where the probabilities of the candidate completions are

computed under the term independence assumption with

respect to the query context already typed. For these rea-

sons, corpus-based methods may provide meaningless

query auto-com-pletions, which could lead to an unsatis-

factory user experience.

In this work, we face the challenges of corpus-based

QAC by proposing a unified probabilistic framework for in-

dexing, retrieval, and suggestion generation that operates

at the bag-of-concept level. We define a concept as a lin-

guistic structure, such as a noun phrase, a named entity,

and so on. The idea is that a complex linguistic structure

can capture semantics more appropriately than a single

keyword. Themain contributions of the paper can be sum-

marized as follows:

– We introduce a new suggestion extraction algorithm

from textual contents based on backward sequencing

of noun phrases in order to extract a set of meaningful

candidate query completions at every typed key.

– We define a new probabilistic semantic model that

captures, in the same framework, different types of re-

lationships existing between concepts extracted from

the text. To this extent, we exploit factor graphs as

a way for modeling higher-order term dependencies,

where each factor corresponds to a different semantic

perspective [5].

In our framework, the candidate completions extracted

from the corpus are ranked according to the dependencies

between concepts and their relationships with respect to

the query context. Moreover, the proposed model general-

izes the previous probabilistic models as well as it is easily

extensible by adding new prior knowledge coming from

external sources. Indeed, one of the main advantages of

the factor graph is its capability to model complex joint

probabilities by integrating new factor nodes.

The research questions that we want to address with

our investigation are:

– RQ1: Is the noun phrase extraction component able to

generatemore accurate candidate query completions?

– RQ2: Is the factor graph model able to provide a bet-

ter candidate query completion rank related to a given

context?

– RQ3: Is our framework offering a better user experi-

ence by generating more meaningful candidate query

completions?

We answer these questions through an exhaustive evalua-

tion by comparing it with the state-of-the art corpus-based

approach on two different tasks. In the first task, we de-

sign a novel dataset that simulates the process of auto-

completing a specific query given a partially typed infor-

mation need. In detail, we model such a process as the

task of predicting aWikipedia page title given its category.

The aim of this benchmark is to test the performance of

the extraction component and the ranking function inde-

pendently as well as to tune the model hyper-parameters.

However, a synthetic testbed is not suitable to evaluate the

quality of the query completions since this task strictly in-

volves the user interaction. Therefore, the second task ex-

ploits a human evaluation in order to assess the capability

of themethod to providemeaningful and relevant comple-

tions to a given user query. In particular, we design a user

study using two corpora in different domains, one generic

and the other more specific. The experimental results on

both tasks show that the proposed framework consistently

outperforms the baseline with significant improvements.

The paper in organized as follows. We describe the re-

lated work in Section 2. Section 3 details the process that

extracts the candidate completions as well as the prob-

abilistic graphical model used for their ranking. Section

4 reports the experimental protocol and the discussion

about the results. We conclude the remarks in Section 5 by

providing ideas for future investigations.

Unauthenticated
Download Date | 3/5/20 12:09 AM

214 | Gaetano Rossiello, Annalina Caputo, Pierpaolo Basile, and Giovanni Semeraro

2 Related work
The query auto-completion problem has been extensively

investigated over the last past years. For instance, the

works in [6–8] propose studies regarding its usage dur-

ing the information search by focusing on the user experi-

ence. From a technical perspective, the proposed method-

ologies can be organized in two main categories based on

the source used to generate the completions: query log-

based and corpus-based approaches.

2.1 Query log-based approaches

Most of the approaches proposed in the literature rely on

the analysis of query logs. Web scale search engines take

advantages from the availability of a large amount of user

interactions to develop effective QAC algorithms. Indeed,

previously formulated queries are already meaningful, of-

ten well-defined, and they can be easily indexed and re-

trieved. Therefore, the main challenge for these methods

is to provide an effective list of suggestions by taking into

account and properly managing an impressive amount of

information stored in the query logs, such as the popular-

ity [9–14] or click-through and session data [15–20]. Re-

cently, the work in [21–24] models the QAC problem in

a learning to rank framework where the completions are

ranked according to a decision function which exploits

features, such as frequency in the logs, similarity mea-

sures computed by a deep neural network, demographic

information, and short-term history-based data or homol-

ogous queries. A deep analysis of the methods based on

the query logs is out-of-the-scope of this work and com-

prehensive surveys on the relevant literature can be found

in [1, 2, 25].

2.2 Corpus-based approaches

The generation of queries directly from the document con-

tent solves the problem of auto-completing queries even

in absence of query logs. This problem has not been well-

studied in the literature and it still remains an open chal-

lenge, despite its undeniable benefits in concrete real-

world limited domains. In this sectionwediscuss the state-

of-the-art techniques proposed in an attempt to solve this

task by focusing on their limitations, which we seek to

overcome with our method.

The work in [26] is the first to introduce the problem of

auto-completing queries in search engines by exploiting

document collections. It defines an efficient data structure

for a priori indexing of termpairs in order to generate com-

pletions in linear time. This method is limited to suggest

only oneword at time,while our system is able to complete

partial queries with phrasal concepts.

The authors of [3, 4, 27] propose probabilistic models

for corpus-based query auto-completion. The candidate

completions are n-grams extracted from the corpus that

match the last partial term of the query. Then, their mod-

els rank the suggestion list according to the joint proba-

bility computed given the candidate n-grams and the par-

tial user query. However, the use of n-grams to complete a

query may provide not coherent, meaningless, or incom-

plete suggestion, which may cause an unsatisfactory user

experience. For example, an n-gram can be a truncated

concept since it can terminate with a verb. To face this

issue, we propose a novel approach for extracting con-

sistent and meaningful completions. Moreover, the joint

probabilities are computed under the term independence

assumption, thusmeaningless completions, not related to

the query context, may be provided. Finally, these systems

fail to provide a suggestion list when all the keywords in

the partial typed query and the extracted n-grams do not

occur together in at least one document. The method pro-

posed in this paper aims at addressing all these limita-

tions.

In the framework proposed in [28] the sequences of bi-

grams extracted from the corpus are selected and ranked

through several steps by involving different heterogeneous

models, such as multinomial, bi-grams and vector space.

The different measures are then combined to produce the

final score. Since pairs of bi-grams are concatenated dur-

ing the completion generation, there is no guarantee of ob-

taining ameaningful suggestion list. Moreover, this frame-

work heavily relies on an encyclopedic external source,

likeWikipedia, thus it does not fitwell in specific domains.

This issue does not affect our method since it is general

and can be adopted in every domain.

More similar to a query recommender system, the

framework proposed in [29] suggests phrasal concepts for

literature search. The relevance of an extracted phrase is

computed via languagemodeling, while its similarity with

the input query is computed by the label propagation algo-

rithm. The phrase suggestion component is activated once

theuser has completely entered either thewhole query or a

long text, therefore it is not properly considered as anauto-

completion method. We adopt the same idea of extracting

phrasal concepts in our framework.

Unauthenticated
Download Date | 3/5/20 12:09 AM

Corpus-based query auto-completion | 215

Table 1: Examples of query auto-completions. Suggestions are gen-
erated from the corpus of Wikipedia abstracts.

micro
microbiological activity
microarray analysis
micropolitan statistical area
microchip based technology
microsoft games studios publishing

microsoft wind
microsoft windows
microsoft windows server
microsoft windows operating systems
microsoft windows sharepoint services
microsoft windows client and server platforms

microsoft windows secur
microsoft windows security
microsoft windows security improvements
microsoft windows security vulnerabilities

3 Methodology
Log-based QAC usually picks candidate suggestions from

the queries previously formulated by other users. Thus,

the candidate suggestions are already meaningful and

usually well-formed. Conversely, in a corpus-based ap-

proach the candidate suggestions are dynamically gener-

ated by exploiting a document collection. This raises the

challenge of generating suggestions that have to be mean-

ingful and correlated with the first part of the query. As a

consequence, these approaches require techniques to ex-

tract pieces of information from textual content as well as

to model and rank them according to the other keywords

the user has already typed in.

Table 1 reports some examples of auto-completions

provided by our QAC system for different partially typed

queries. In the example, the candidate suggestions are au-

tomatically generated by indexing theWikipedia abstracts

as corpus. In the first example, the query consists only

of the prefix micro, therefore no context is provided that

can narrow the completions toward the real user intent.

In absence of other contextual information, the suggestion

list generated for the given prefix should provide several

topics in order to cover different user information needs.

However, as the user continues typing the query, our sys-

tem is able to provide suggestions that are suitable com-

pletions for the given prefix and, at the same time, that

correlate meaningfully with the keywords already keyed

in. The last two examples report such scenario. Consider-

ing the latter example, the candidate suggestion security
improvements completes the prefix secur and is semanti-

cally related to the context “microsoft windows”. The pro-

posed QAC method discards those matching suggestions,

like security district, that do not pertain to the given con-

text. Moreover, it has to be pointed out that our system

is able to generate auto-completions for a given context

even when that exact sequence of terms does not co-occur

in the corpus. For instance, the keywords in the comple-

tion sequence “microsoft windows security improvements”
showed in the last example never occur together in any

Wikipedia abstract. Thismeans that simply learning a lan-

guage model [30] on the textual corpus and applying it as

a QAC system is not enough to obtain satisfactory auto-

completions, especially for small sized document collec-

tions.

This section describes a corpus-based QAC method

that addresses the aforementioned challenge.We can now

formally define the corpus-based QAC as a probabilistic

problem.

Definition 1. Given:
– D = {d

1
, d

2
, . . . , dn}, a document collection;

– Q, the partial query typed by the user. The query Q can
be split into the context Qc, the sequence of completely
defined query keywords, and the prefix Qp, the last par-
tially typed keyword, with |Qc| ≥ 0 and ||Qp|| ≥ 1. |Qc|
denotes the number of keywords in Qc, while ||Qp|| de-
notes the number of characters in Qp;

– S = {s
1
, s

2
, . . . , sk}, the set of candidate suggestions

extracted from D whose prefix matches Qp;
the probability of a candidate suggestion s, given the partial
query Q, is defined as follows:

P(s|Qc) (1)

In the example “microsoft windows secur” in Table 1, Qc
corresponds to “microsoft windows” (|Qc| = 2) and Qp to
“secur” (||Qp|| = 5), while S = {security, security improve-

ments, security vulnerabilities}. In our problemdefinition,

||Qp|| ≥ 1 because the QAC mechanism is triggered when

at least one character has been typed by the user. How-

ever, the query may not contain complete keywords, thus

|Qc| ≥ 0. This occurs when the user has just started typ-

ing some characters of the prefix, as in the first example

of Table 1. In the remainder of this section, we first intro-

duce a technique to extract meaningful pieces of informa-

tion from a textual collection in order to gather the set S
of candidate suggestions. Then, we propose a probabilis-

tic factor graph model which works at a concept level to

Unauthenticated
Download Date | 3/5/20 12:09 AM

216 | Gaetano Rossiello, Annalina Caputo, Pierpaolo Basile, and Giovanni Semeraro

compute the probability P(s|Qc) in formula (1). Finally, we

describe the framework to dynamically generate a sugges-

tion list given a partial user query.

3.1 Candidate suggestion extraction

As candidate suggestions we adopt noun phrases ex-

tracted by a chunker through the analysis of the textual

content of a document collection. Noun phrases, which

usually embed a noun with pre- and post-modifiers, are a

syntactic part of the sentence that is usually involved in the

activity described by the verb. The key idea is that a noun

phrase represents a self-consistent concept and it tends to

bemore informative than other types of chunks. For exam-

ple, in Table 1, all suggestions that complete the last par-

tial terms are noun phrases extracted from Wikipedia ab-

stracts.However, completions basedonly onnounphrases

wouldnot consider those suggestions built upon the single

terms that constitute the chunk. For example, the chunk

“windows operating system” would complete the prefix

“wind” but not “operat”, which could be completed by

“operating system”. To solve this problem, we introduce

the concept of backward n-gram. A backward n-gram is de-

fined as the set of term sequences {wi . . . wn| 1 ≤ i ≤ n}
that canbebuilt backwards fromagiven sequence of terms

w
1
w
2
. . . wn. We index each backward n-gram that can

be built from the noun phrases extracted from a corpus.

Thus, for the chunk in the above example, our framework

extracts “windows operating system”, “operating system”

and “system”.

3.2 Probabilistic factor graph model

Following Definition (1), we now analyze the probability

P(s|Qc) in the cases of a partially typed query with (|Qc| >
0) and without a context (|Qc| = 0).

3.2.1 Suggestion without context

In absenceof query context (|Qc| = 0), themodel computes

the marginalization of s over the whole corpus. Thus,

P(s|Qc) can be written as:

P(s|Qc) = P(s) =
∑︁
d∈D

P(s, d) =
∑︁
d∈D

P(s|d)P(d) (2)

where s, Qc and D are introduced in Definition (1). Since

P(d) is a constant value for each candidate suggestion s,

equation (2) can be approximated as follows:

P(s) =
∑︁
d∈D

P(s|d)P(d) ≈
∑︁
d∈D

P(s|d) (3)

We can estimate the probability of a phrase s given a doc-
ument d by means of its frequency:

P(s|d) = tf (s, d)|d| (4)

where tf (s, d) denotes the frequency of the suggestion s in
the document d. Finally, by replacing equation (4) in (3),

we have:

P(s) ≈
∑︁
d∈D

tf (s, d)
|d| (5)

In absence of dynamic information, themarginalization of

each suggestion s can be precomputed at indexing time.

3.2.2 Suggestion with context

When the user provides some context keywords (|Qc| > 0),
the context has to be taken into account during the process

of suggestion generation. Given a context, the probability

of a suggestion can be computed as:

P(s|Qc) =
P(s, Qc)
P(Qc)

=

∑︀
d∈D P(s, Qc , d)∑︀

s∈S
∑︀

d∈D P(s, Qc , d)
(6)

Since the computation of P(s|Qc) on the whole document

collection D every time the user types a new character is

an infeasible task,we approximate the probability by com-

puting equation (6) on the set of pseudo-relevant docu-

ments R retrieved for the query Qc. The set R is retrieved

by a languagemodel with Dirichlet smoothing [31].We can

drop the denominator P(Qc) since it is invariant for all sug-
gestions s:

P(s|Qc) ≈
∑︀

d∈R P(s, Qc , d)∑︀
s∈S
∑︀

d∈R P(s, Qc , d)
∝
∑︁
d∈R

P(s, Qc , d) (7)

According to equation (7), the conditional probability of

the suggestion s given Qc is approximated by the sum of

the joint probability of s, Qc and d over the set of pseudo-
relevant documents R. In order to compute P(s, Qc , d), our
solution exploits the concept representation and the fac-

tor graph model introduced in [5] for representing depen-

dencies between query concepts. Given a text X, we define
the Bag-of-Concept (BoC) of X, denoted by ΣX, as the sub-
set of the powerset of X, with the constraint that each ele-
ment of ΣX should be a linguistic structure. Each linguistic
structure represents a type of concept. In ourmodel, terms

and noun phrases are used as linguistic structures. Table

Unauthenticated
Download Date | 3/5/20 12:09 AM

Corpus-based query auto-completion | 217

microso� windows security improvements d

Qc s

ϕ(t, d) ϕ(t, d) ϕ(t, d)
ϕ(t, d)

ϕ(t) ϕ(t) ϕ(t) ϕ(t)

ϕ(np, d) ϕ(np, d)

ϕ(X, d)

Figure 1: Factor graph structure built on the context Qc=“microsoft windows”, the candidate suggestion s=“security improvements” and a
document d for partial query Qc+Qp=“microsoft windows secur”.

2 shows an example of the BoC representation for the text

“microsoft windows security improvements” by adopting

the linguistic structures used in our model. We build X as

the context of the partial query (Qc) concatenatedwith the
candidate suggestion (s). For example, in the query “mi-

crosoft windows secur” in Table 1, “microsoft windows”

is the context Qc, a candidate suggestion s for the prefix
“secur” may be “security improvements”, and X = “mi-

crosoft windows security improvements”. Moreover, in or-

der to grasp the correlation between concepts in both the

candidate suggestion and the query context, it is relevant

to model the relationships that exist between concepts

in ΣX. We meet this requirement by exploiting the factor

graph model as a probabilistic graphic model. Differently

from [5], we apply the factor graph to the QAC task bymod-

elling the relationships between the candidate suggestion,

the query context and the document. A factor graph is a

bipartite graph with two types of nodes: variable nodes,
that represent the stochastic variables, and factor nodes,
that represent the mathematical function “argument of”

that relate variables. The strength of factor graphs relies

on their capability of expressing a joint probability on a

set of variables as the product of factors [32]. In ourmodel,

we represent terms as variable nodes, and we build a fac-

tor node for each relationship between concepts in ΣX. A
global factor gathers the relationship existing between all

the variable nodes. Formally, we define the factor graph

H = (V , E), where V = X ∪ {d} is the set of variables (or
vertices), and E = {(k, d)|k ∈ ΣX} is the set of hyperedges
that link each concept in ΣX to the document d. Figure 1
shows the factor graph built on ΣX from the previous ex-

ample X =“microsoft windows security improvements”,

where ϕ(t, d) represents the factor node that links each

term to the document, ϕ(np, d) is the factor node associ-
ated to noun phrases, and ϕ(X, d) is the global factor that
captures the relation between all terms with respect to d.
Then, we can compute the joint probability in equation (7)

as product of factors defined in our model:

P(s | Qc) ∝
∑︁
d∈R

P(s, Qc , d) ,
∑︁
d∈R

∏︁
e∈E

ϕe(Ve) (8)

where Ve ⊆ V is the set of vertices linked to the edge e. In
addition, we can consider the sum of logarithms in order

to avoid underflow errors. However, since factors have to

be positive, we introduce the exponential function and we

obtain log(exp(ϕ)) = ϕ. Thus, the rank of a suggestion s is
defined as:

P(s | Qc) rank=
∑︁
d∈R

∑︁
e∈E

λ(ϕe)ϕe(Ve) (9)

where λ(ϕe) is a boosting factor for each ϕe.
In our model we define four factors; each factor is as-

sociated to a similarity function defined as follows:

Term Document Factor (ϕ(t, d)) represents the relation-

ship between each term t and a document d, ex-
pressed as the term frequency smoothedwithDirichlet

priors [33].

Term Collection Factor (ϕ(t)) represents the relevance

of a term within the collection D in a way similar to

the inverse document frequency.

Unauthenticated
Download Date | 3/5/20 12:09 AM

218 | Gaetano Rossiello, Annalina Caputo, Pierpaolo Basile, and Giovanni Semeraro

Noun Phrases Document Factor (ϕ(np, d)) is the num-

ber of occurrences of a noun phrase np within a docu-
ment d.

Global Factor (ϕ(X, d)) represents the relationship be-

tween the whole sequence X and the document d. The
idea is to promote those suggestions s that appear near
the contextQc in d.We exploit a Gaussian kernel func-

tion computed over all pairs of terms in X.

Finally, the introduction of the aforementioned factors

in equation (9) produces the following ranking function:

P(s | Qc) rank=
∑︁
d∈R

⎡⎢⎢⎢⎢⎢⎢⎣λ(t)
∑︁
t∈ΣX

log

⎛⎝ tf (t, d) + µ tf (t,D)|D|
µ + |d|

⎞⎠
⏟ ⏞

ϕ(t,d)

− λ(t)
∑︁
t∈ΣX

log

(︂
tf (t, D)
|D|

)︂
⏟ ⏞

ϕ(t)

+ λ(np)
∑︁
np∈ΣX

log

(︂
tf (np, d)
|d|

)︂
⏟ ⏞

ϕ(np,d)

+ λ(Σ)
∑︁
ti∈ΣX

∑︁
i= ̸j

exp

(︃
−

min{dist(ti , tj , d)}2

2α2

)︃
⏟ ⏞

ϕ(X,d)

⎤⎥⎥⎥⎥⎥⎦
(10)

where tf is the term frequency, µ is the Dirichlet smooth-

ing, α is a parameter of the Gaussian kernel function, and

dist(ti , tj , d) = |pos(ti , d) − pos(tj , d)| is a proximity func-

tion based on the position of a term in a document denoted

by pos.

3.3 Query auto-completion framework

Our framework relies on two separate data structures: an

inverted index and a forward index. The inverted index is

required to retrieve the pseudo-relevant document set (R),
as well as to store precomputed weights and positions for

each concept. Given a document collection, the inverted

index is built on every concept type involved in the pro-

posed model, namely terms and noun phrases. Then, a

posting list of each term and noun phrase extracted from

the document content is created. On the other hand, for

each document a forward index is built for storing noun

phrases exploited as candidate suggestions at query com-

Input: query, n, k
Output: suggestList
context ← FirstKeywords(query)
pre�x ← LastTerm(query)
if CountTokens(context) = 0 then

suggestList ← PrecomputatePhrases(pre�x)
else

relDocs ← RelevantDocs(context, n)
phraseList ← ExtractPhrases(pre�x, relDocs)
for all phrase ∈ phraseList do

score ← 0

for all doc ∈ relDocs do
p ← FactorGraph(context, phrase, doc)
score ← score + p

end for
suggest ← Concat(context, phrase)
score ← score / CountTokens(suggest)
suggestList.Add(suggest, score)

end for
end if
suggestList ← SortDesc(suggestList)
suggestList ← TopK(suggestList, k)

Figure 2: Query Auto-Completion Algorithm

pletion time. Since this index is involved in the prefix com-

pletion process, we use a prefix trie data structure to in-

crease the system performance.

Figure 2 describes our algorithm for corpus-based

QAC. As first step, the query is split into the context and

the last partial term. If the context is empty, the method

accesses the forward index to retrieve those noun phrases

that match the last term (the prefix). In this case, the score

for each candidate suggestion is precomputed at indexing

time. In presence of a context, the top n pseudo-relevant
documents are retrieved by means of a language model.

Then, themethod selects only those noun phrases that oc-

cur in this set of documents. The algorithm computes a

score for each extracted noun phrase that is the sum of

probabilities given by the factor graph applied to the noun

phrase, the context, and every pseudo-relevant document.

The score is normalized taking into account the sugges-

tion length. The normalization demotes the importance of

those suggestions composed of many terms. Finally, the

suggestion list is sorted in descending order and the top-k
suggestions are provided to the user.

Unauthenticated
Download Date | 3/5/20 12:09 AM

Corpus-based query auto-completion | 219

Table 2: The Bag-of-Concept representation model for the text “microsoft windows security improvements” using terms and noun phrases
as concepts.

Type Concepts
Terms [“microsoft”, “windows”, “security”, “improvements”]
Noun Phrases [“microsoft windows”,“security improvements”]

Table 3: Examples of artificial queries built using Wikipedia categories and page titles using the three different prefix lengths.

Context (category) Relevant suggestion (page title) ||Qp|| Partial query (Qc+Qp)
secession separatism 1 secession s
impressionist composers claude debussy 1 impressionist composers c
philosophical logic rationality 2 philosophical logic ra
texas counties hemphill county 2 texas counties he
semiconductor physicists herbert kroemer 3 semiconductor physicists her
corporate typefaces bell centennial 3 corporate typefaces bel

4 Evaluation
We test the effectiveness of our method exploiting two

different tasks. The first is an in vitro evaluation that

simulates the query completion. We choose to perform

such evaluation in order to assess the performance of our

methodology on a large number of queries. To the best of

our knowledge, this is the first reproducible experiment

for the corpus-based QAC task. However, since in this task

the queries are automatically generated and do not reflect

a real user information need, we decide to validate the

proposed method also from a qualitative point of view by

means of a user study on two different datasets. Through

such experiments we can assess the effectiveness of our

method, which exploits concepts and their relationships

to generatemeaningful and relevant suggestions. In all the

experimentswedecidednot to evaluate themethodswhen

the context is empty (i.e. |Qc| = 0). The reason behind this

choice is that, in absence of a context, both our approach

and the baselinemethod base their ranking on the compu-

tation of the probability of a suggestion. Hence, the differ-

ences are not significant.

4.1 Baseline system and evaluation metrics

We compare the performance of our probabilistic Factor

Graph model (FG) against a corpus-based probabilistic

auto-completionmodel that makes use of n-grams (BL) [3]
to generate the candidate suggestions. Since a good QAC

system should present the relevant auto-completions at

the top of the suggestion list, we evaluate the methods in

terms of Mean Reciprocal Rank (MRR) and Success Rate

at n (SR@n). MRR gives the mean of the reciprocal of the

rank of the correct suggestion, while SR tells us if the rel-

evant completion occurs in the top n (n ∈ {1, 5, 10}) sug-
gestions. Moreover, in the user study we consider also the

Mean Average Precision (MAP) metric in addition to those

used in the Wikipedia title completion task. This choice

is due to the fact that each query may have multiple rel-

evant suggestions, hence MAP is a good performance met-

ric that averages precision values taking into account also

their rank. The significance of the improvements with re-

spect to the baseline is computed using a non-parametric

Randomization test (p < 0.01) [34].

4.2 System Setup

The system is written in Java language and it is based on

two main data structures, the inverted and forward in-

dexes. In order to get better performance, these indexes

are built usingRedis¹, aNoSql database inmemory. The in-

verted index is used to find the set of relevant documents

R, as defined in Equation (7), whereas the forward index

is used to store the candidate suggestions extracted from

the corpus. The forward index is implemented with a trie

to allow an efficient auto-completion feature. The inverted

index has been created with the output of a Natural Lan-

guage pipeline that exploits OpenNLP². The pipeline is ex-

ploited twice: 1) to tokenize the text, remove stop words³,

and stem the keywords; and 2) to extract the nounphrases.

1 https://redis.io/

2 https://opennlp.apache.org/

3 https://code.google.com/p/stop-words/

Unauthenticated
Download Date | 3/5/20 12:09 AM

https://redis.io/
https://opennlp.apache.org/
https://code.google.com/p/stop-words/

220 | Gaetano Rossiello, Annalina Caputo, Pierpaolo Basile, and Giovanni Semeraro

Also the forward index has been built on noun phrases ex-

tractedwith OpenNLP. The retrievalmodel used in the first

step of the suggestion algorithm relies on a uni-gram lan-

guage model. We exploit both indexes also for implement-

ing the probabilistic query suggestion algorithm (BL). The
implementation of the baseline differs from the original

paper [3] with respect to two points: 1) we choose only the

n-gramswhoseprefixmatches thepartial termof thequery

and 2) we exploit the same stop-word list of our method.

The dimension of the result set |R|, which consists of the

relevant documents retrieved using only the context as

query, has been empirically set to 10 in order to obtain the

better trade-off between the effectiveness of themodel and

the efficiency of the system. All parameters (λ(t), λ(np),
and λ(X)) introduced in Equation (10) have been set up to
1 in order to give equal importance to all the factors. We

have set up µ = 800 by considering the different values

evaluated in [31] and choosing that value most suitable to

our case, while α has been set up to 175 according to the

results reported in [35].

4.3 Wikipedia title completion task

In order to provide a standard and reproducible environ-

ment for assessing ourmethodwe set up an in vitro evalua-
tion exploitingWikipedia. In absence of a standard bench-

mark, we decided to build a testbed that simulates the pro-

cess of a real user that has a clear and non ambiguous in-

formation need during the formulation of the query. Since

a complete query can always be split in a left and a right

part, we treat the left part as the context of our model,

while the right part is the relevant suggestion unknown to
the system. Then, the only relevant candidate suggestion

is the one that completes the original user query. Although

this assumption is not always true (there could be more

suggestions suitable for the same left part) and represents

a lower bound of a system performance, it is a quite com-

mon protocol in the context of log-based query comple-

tion [21–23]. We decided to simulate the user queries with

Wikipedia page titles. Then,we exploitedWikipedia twice:

as a corpus from which to extract the candidate sugges-

tions and for building the set of queries used in the eval-

uation. Specifically, we adopted the structured version of

Wikipedia, calledDBpedia, available inRDF format⁴. In or-

der to build the corpus, we processed all the extended ab-

4 http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/

long_abstracts_en.nt.bz2

stracts⁵ available in the English version of DBpedia. The

dataset comprises 4,636,225 articles, which results in a to-

tal of 2,451,109 unique terms and 29,711,747 noun phrases.

In this phase we retained only the content of the abstracts,

while we discarded the titles: in this way the task of com-

pleting a partial title is more challenging since the whole

sequence of terms may not occur in the corpus. We built

a testbed of artificial queries by exploiting categories as-

sociated to Wikipedia articles. For this purpose, we ran-

domly chose 1,000 ⟨article, category⟩ pairs from a to-

tal of 18,731,756. The category represents the context of a

query (Qc). Then, by splitting the title of the Wikipedia ar-

ticle in a left and a right part, we generate the prefix Qp
(the left part) and its relevant suggestion (the right part).

In this way we simulate the process of suggesting a spe-

cific query, given a general concept. Since an effective QAC

method should correctly auto-complete a partial query us-

ing only few characters, we built three independent sets

of queries using the selected 1,000 queries and setting the

prefix length ||Qp|| equal to 1, 2 and 3, respectively. Ta-

ble 3 shows some examples of queries built for this task.

There are two different components that can contribute

to the overall performance of the proposed method: the

use of phrases for completing the prefix and the ranking

model based on probabilistic factor graph. In order to un-

derstand the contribution of each component individually

and to assess the overall performance of the probabilistic

factor graph model, we decided to compare our method

and the baseline on the same set of candidate suggestions:

noun phrase and n-gram⁶. In this way, we can analysis

the impact of the probabilistic factor graph with respect

to the probabilistic model employed in [3]. This resulted in

four different systems: the baseline (BL) and probabilistic
factor graph (FG) either with n-grams (ng) or with noun

phrases (np). We evaluated the systems on different prefix

lengths. The evaluation is conducted considering the list

of the top 10 suggestions.

4.3.1 Results and analysis

The scores of our method (FG) and that of the baseline

(BL) using the two different phrase extraction strategies

are reported in Table 4 and, for eachmetric, the best scores

are marked in bold. All improvements are statistically sig-

nificant, with p < 0.01, except for those of FG-np com-

pared with FG-ng in the case of ||Qp|| = 1. First, our

5 The first paragraphs of the Wikipedia articles.

6 The phrase extraction method adopted by the baseline [3]

Unauthenticated
Download Date | 3/5/20 12:09 AM

http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/long_abstracts_en.nt.bz2
http://data.dws.informatik.uni-mannheim.de/dbpedia/2014/en/long_abstracts_en.nt.bz2

Corpus-based query auto-completion | 221

Table 4: Comparison of the two QAC models (BL and FG) on Wikipedia abstract dataset using the two different phrase extraction strategies
(n-gram and noun phrase). The scores (in %) are computed using different prefix lengths (1 ≤ ||Qp|| ≤ 3).

||Qp|| = 1 ||Qp|| = 2 ||Qp|| = 3

MRR SR@1 SR@5 SR@10 MRR SR@1 SR@5 SR@10 MRR SR@1 SR@5 SR@10
BL-ng 05.25 02.93 08.28 12.63 16.43 10.68 23.19 31.94 26.47 19.34 36.11 42.08
BL-np 10.17 04.95 16.87 26.97 29.16 18.15 44.42 58.92 48.03 34.79 66.33 78.43
FG-ng 16.83 08.18 28.35 39.43 33.55 20.96 49.39 65.75 51.31 36.83 70.33 80.29
FG-np 16.84 08.43 28.48 40.81 35.54 21.77 53.31 70.40 53.24 38.76 72.37 82.16

method based on factor graph and noun phrases obtains

significant improvements compared to the standard base-

line method with respect to all metrics. Interestingly, in

the challenging case with a prefix consisting of only a

character (||Qp|| = 1), our method achieves a SR@10 of

40.81, whichmeans that the relevant suggestion is among

the first top 10 list in more that 40% of cases. Moreover,

as the prefix length grows, the performance gap between

our approach and the baseline increases. For instance,

with a prefix consisting of only a character (||Qp|| = 1),

our method achieves aMRR of 16.84, while the standard

baseline obtains a MRR of 5.25. The delta between the

two MRR values is equal to 11.59. Instead, with a prefix

of three characters (||Qp|| = 3), the two methods achieve

aMRR of 53.24 and 26.47, respectively. In this case, the

delta is 26.77. This trend is consistent across all the met-

rics. This proves that our full method (FG-np), in pres-

ence of a context, requires to type only few characters in

order to correctly auto-complete a partial query. The re-

sults show that both the factor graphmodel and the extrac-

tion of nounphrases contribute to the improvement of per-

formance. The use of phrases instead of n-gram resulted

in better performance in both the baseline and the pro-

posed method. However, this factor contributes only par-

tially to the general better performance of our method. In-

deed, the probabilistic factor graph with n-gram (FG-ng)
outperforms both the baseline with n-gram (BL-ng) and
the baseline with noun phrases (BL-fg). This proves the
effectiveness of the probabilistic factor graph method in

capturing the semantic similarities between the candidate

suggestions and the context. Moreover, it is interesting to

point out that when the prefix is short (||Qp|| = 1), the use

of noun phrase do not really contribute to significant im-

provements; these are obtained only at the increase of the

prefix length.

Figure 3: A screenshot from the web-app developed for the human
assessment. The user has to tick the correct completions given the
partial query. The names of the systems are blinded and the two
suggestion lists are showed randomly in order to avoid biases.

4.4 User study

The aim of this experiment is to assess the quality of the

suggestions produced in response to a real user query in

termsofmeaningfulness and relevance. Theuser study fol-

lows an evaluation protocol similar to that described in

[3]. The evaluation has been performed on two different

datasets:

Ubuntuforums.org More than 100,000 discussion

threads and 25 queries collected from Ubuntufo-

rums.org [36]. In this evaluation, we exploited the

Ubuntuforums.org documents also as a corpus for

extracting the suggestions.

Yahoo! Webscope (L13) A selection of 50 queries gener-

ated from Yahoo! Webscope (L13)⁷. In this case, we ex-

ploited Wikipedia abstracts as a corpus for the extrac-

tion of query suggestions, with the same set up ex-

plained in Subsection 4.3. From the original sample of

4,496 searchqueries,we removed thosewith termsnot

7 http://research.yahoo.com/Academic_Relations

Unauthenticated
Download Date | 3/5/20 12:09 AM

http://research.yahoo.com/Academic_Relations

222 | Gaetano Rossiello, Annalina Caputo, Pierpaolo Basile, and Giovanni Semeraro

Table 5: Comparison between the two methods on three queries extracted from Yahoo! Webscope (L13) dataset; suggestions are generated
from the corpus of Wikipedia abstracts.

Query (Qc+Qp) Baseline (BL) Factor Graph (FG)

land rover engi

land rover engineering land rover engine
land rover engine land rover engine plant
land rover engines land rover engine line
land rover engines the engines land rover engine production
land rover engines have been used for land land rover engineering centres
land rover engines some land
. . .

chinese ice sculp

chinese ice sculpture chinese ice sculpture
chinese ice sculptures chinese ice sculptor
chinese ice sculpture festival chinese chinese ice sculpture festival
chinese ice sculpture festival chinese ice sculpted vase
chinese ice sculptures throughout the city chinese ice sculptor nicolas coustou
chinese ice sculptures at sun island chinese ice sculpture decoration technology
. . .

lexmark fax solutions softw

lexmark fax solutions software
lexmark fax solutions software integrates
lexmark fax solutions software application
lexmark fax solutions software company
lexmark fax solutions software providers
lexmark fax solutions software division

covered inWikipedia, those that contained only punc-

tuations, and those made up of only one keyword. We

end up with a sample of 2,811 queries from which we

randomly picked up the final set.

For each query, we collected at most the top 10 sugges-

tions from each system. Then, 25 assessors selected by col-

leagues in our department assessed the suggestions pro-

duced by the systems in terms of meaningfulness and rel-

evance with respect to both the query context and the pre-

fix. The assessment is a binary value (relevant/non rele-

vant) associated to each suggestion for each query. The

presentation order of the two lists of suggestions was ran-

domly selected. Figure 3 shows a screenshot from theweb-

app we developed for the human assessment. Each query

was assessed by three different annotators, and the final

judgment was decided by a majority vote. In this evalua-

tion we perform a comparison between our method (FG)
and the baseline (BL) only in their original formulation.

This is because in this in-vivo experiment we want to eval-

uate the perception of the users about the two complete

systems.

4.4.1 Results and analysis

Table 6 reports the results of the user study conducted on

the two datasets: Yahoo! Webscope (L13) and Ubuntufo-

rums.org. This evaluation confirms the overall better per-

formance of the FGmethod. It can be noted that in general

the performance of the two systems on Ubuntuforums.org

dataset are very low. On average, the baseline returns a

relevant suggestion at the fifth position (MRR=0.23), while

our method is able to rank a relevant suggestion between

the second and the third position (MRR=0.43). These re-

sults are corroborated by the SR@1 figures: BL and FG are

able to return a relevant suggestion at the top position for

2 (SR@1 = 0.08) and 4 (SR@1 = 0.16) out of 25 queries,

respectively. A better trend can be observed on the Yahoo!

Webscope (L13) dataset. Here, BL gives a relevant result at
one of the top 3 positions (MRR = 0.40), while FG at one

of the top 2 (MRR = 0.66). Our system is able to give a

relevant suggestion on 24 out of the 50 queries (SR@1 =

0.48), while the baseline is successful only on 10 queries

(SR@1 = 0.20). On both datasets, MAP values are in line

with and corroborate the MRR values. Generally, the per-

formance of both systems improve dramatically if we con-

sider the success rate at the top 5 and top 10 suggestions.

However, it isworth tonotice that our system is always able

Unauthenticated
Download Date | 3/5/20 12:09 AM

Corpus-based query auto-completion | 223

Table 6: Comparison of the two QAC methods on Yahoo! Webscope
(L13) and Ubuntuforums.org datasets. Statistically significant im-
provements (p < 0.01) are reported (†).

Yahoo! Webscope (L13)

Ret Rel MAP MRR SR@1 SR@5 SR@10

BL 8.9 2.7 0.36 0.40 0.20 0.70 0.92
FG 5.9 3.1 0.63† 0.66† 0.48† 0.90 1.00

Ubuntuforums.org

BL 9.9 1.6 0.20 0.23 0.08 0.40 0.80
FG 9.7 3.7 0.45† 0.43† 0.16 0.92† 1.00

to give at least one relevant suggestion in the completion

list (SR@10 = 1), while the baseline fails on 4 queries

of the Yahoo! dataset and on 5 queries of the Ubuntufo-

rums.org dataset, respectively. We ascribe the lower per-

formance of both systems on Ubuntuforums.org dataset

to the noisy nature of this corpus, which contains posts

written by users that did not undergo any review process.

Table 6 reports the average number of returned sugges-

tions (Ret) and the average number of relevant sugges-

tions (Rel) for each dataset. From this figures we can see

that FG is able to give more relevant completions than BL,
which in general produces more suggestions. The higher

number of completions generated by FG on the dataset of

Ubuntuforums.org is due to the fact that the posts on this

dataset are on average longer than Wikipedia abstracts.

Then, when the algorithm retrieves the top n relevant doc-
uments, it has more text from which to extract the candi-

date suggestions. Finally, Table 5 shows some examples

of top six suggestions generated fromWikipedia abstracts

for three queries extracted from theYahoo!Webscope (L13)

dataset. From the first query, “land rover engi”, it can be

observed that the n-gram model BL produces, among in-

teresting suggestions, also meaningless results, like “land

rover engines have been used for land”, which contains

both verbs and stop-words. On the other hand, by working

on noun phrases, the FG method is able to produce com-

pletions that have a semantics on their own. The use of the

backwardn-grammechanism shows its benefits in the sec-

ond query “chinese ice sculp”. For example, considering

the completing noun phrase “sculptor nicolas coustou”, a

traditional n-gram mechanism would have produced also

“sculptor nicolas” as a candidate, which is an incomplete

and redundant suggestion. The last is an example of query

for which the baseline did not produce any result. Indeed,

BL computes the correlation between the context and the

suggestion as the number of terms that belong to the in-

tersection between the context and the suggestion. If such

a number is zero, the final score will be zero for each sug-

gestion extracted from the corpus. We overcome such lim-

itation by applying the scoring function to all those sug-

gestions extracted from the top n relevant documents that

match the query context. The set of relevant documents

is retrieved by a language model that does not force the

AND between the query terms. For this reason our method

is able to suggest completions even when not all the query

terms co-occurwithin the samedocument. Finally, thefirst

two examples showas theBLmethodusually returnsmore

suggestions for each partial query.

5 Conclusions and future work
This paper described a novel corpus-based query auto-

completion mechanism based on factor graphs for

modeling concepts and their relationships. The proposed

method showed several advantages. First, it was always

able to generate suggestions for a partial query. More-

over, the evaluations highlighted that in most cases the

proposed method provides at least one relevant sugges-

tion. Second, a thoroughly in vivo evaluation showed

the robustness of our method, which exhibited a stable

behavior regardless the length of the prefix. Third, the

results of the user study attested the good quality of the

completions in terms of meaningfulness and relevance to

the query context. The proposed model is flexible and can

be easily extended by defining new factor nodes. Thus,

we are planning to define new factors in order to infuse

further information into the model. Specifically, in our

model we can encode session information to predict the

user intent in order to provide a personalized service. In

this context, we would like to integrate also a suggestion

diversification method. Another promising future work is

to extend our model by introducing information coming

from external sources like knowledge graphs and/or query

logs in order to design a hybrid approach. Finally, we plan

to introduce embedding representation of the concepts

from the text using, for instance, deep learning models

[37, 38] in order to add new factors into factor graph to

enhance the concept similarity capabilities of the QAC

method proposed in this paper.

Acknowledgements This work was supported by the

ADAPT Centre for Digital Content Technology, funded un-

der the SFI - Science Foundation Ireland Research Cen-

tres Programme (Grant SFI 13/RC/2106) and is co-funded

under the European Regional Development Fund and by

the EU2020 - European Unions Horizon 2020 research and

Unauthenticated
Download Date | 3/5/20 12:09 AM

224 | Gaetano Rossiello, Annalina Caputo, Pierpaolo Basile, and Giovanni Semeraro

innovation programme under the Marie Skodowska-Curie

grant agreement No.: EU2020-713567.

References
[1] Fabrizio Silvestri. Mining query logs: Turning search usage data

into knowledge. Foundations and Trends in Information Re-
trieval, 4(1–2):1–174, 2010.

[2] Fei Cai andMaarten de Rijke. A survey of query auto completion
in information retrieval. Foundations and Trends in Information
Retrieval, 10(4):273–363, 2016.

[3] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mitra. Query
suggestions in the absence of query logs. In Proceedings of the
34th international ACMSIGIR conference on Research and devel-
opment in Information Retrieval, pages 795–804. ACM, 2011.

[4] P Deepak, Sutanu Chakraborti, and Deepak Khemani. Query
suggestions for textual problem solution repositories. In ECIR,
pages 569–581. 2013.

[5] Michael Bendersky and W Bruce Croft. Modeling higher-order
term dependencies in information retrieval using query hyper-
graphs. In Proceedings of the 35th international ACM SIGIR con-
ference on Research and development in information retrieval,
pages 941–950. ACM, 2012.

[6] Catherine L Smith, Jacek Gwizdka, and Henry Feild. The use of
query auto-completion over the course of search sessions with
multifaceted information needs. Information Processing&Man-
agement, 53(5):1139–1155, 2017.

[7] Xi Niu and Diane Kelly. The use of query suggestions during
information search. Information Processing & Management,
50(1):218–234, 2014.

[8] Diane Kelly, Amber Cushing, Maureen Dostert, Xi Niu, and Karl
Gyllstrom. Effects of popularity and quality on the usage of
query suggestions during information search. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 45–54. ACM, 2010.

[9] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza.
Query recommendation using query logs in search engines. In
Proceedings of the 2004 International Conference on Current
Trends in Database Technology, pages 588–596, 2004.

[10] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner.
Generating query substitutions. InProceedings of the 15th inter-
national conference on World Wide Web, pages 387–396. ACM,
2006.

[11] M. Barouni-Ebrahimi and Ali A. Ghorbani. A novel approach for
frequent phrase mining in web search engine query streams. In
CNSR, pages 125–132. IEEE Computer Society, 2007.

[12] Yanan Li, Bin Wang, Sheng Xu, Peng Li, and Jintao Li. Query-
trans: Finding similar queries based on query trace graph. In
Web Intelligence, pages 260–263. IEEE, 2009.

[13] Yang Song and Li-wei He. Optimal rare query suggestion with
implicit user feedback. In Proceedings of the 19th international
conference on World wide web, pages 901–910. ACM, 2010.

[14] Ziv Bar-Yossef and Naama Kraus. Context-sensitive query auto-
completion. In Proceedings of the 20th international conference
on World wide web, pages 107–116. ACM, 2011.

[15] Hao Ma, Haixuan Yang, Irwin King, and Michael R Lyu. Learn-
ing latent semantic relations from clickthrough data for query

suggestion. In Proceedings of the 17th ACM conference on In-
formation and knowledge management, pages 709–718. ACM,
2008.

[16] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong
Chen, and Hang Li. Context-aware query suggestion by mining
click-through and session data. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and
data mining, pages 875–883. ACM, 2008.

[17] Eugene Kharitonov, Craig Macdonald, Pavel Serdyukov, and
Iadh Ounis. Intent models for contextualising and diversify-
ing query suggestions. In Proceedings of the 22nd ACM inter-
national conference on Conference on information & knowledge
management, pages 2303–2308. ACM, 2013.

[18] F. Cai, S. Liang, and M. de Rijke. Prefix-Adaptive and Time-
Sensitive Personalized Query Auto Completion. IEEE Transac-
tions on Knowledge and Data Engineering, 28(9):2452–2466,
2016.

[19] Fei Cai, Ridho Reinanda, and Maarten De Rijke. Diversifying
Query Auto-Completion. ACM Transactions on Information Sys-
tems, 34(4):25:1–25:33, June 2016.

[20] Liangda Li, Hongbo Deng, Jianhui Chen, and Yi Chang. Learning
parametric models for context-aware query auto-completion via
hawkes processes. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining, WSDM ’17,
pages 131–139, New York, NY, USA, 2017. ACM.

[21] Bhaskar Mitra. Exploring session context using distributed rep-
resentations of queries and reformulations. In Proceedings of
the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 3–12. ACM, 2015.

[22] Bhaskar Mitra and Nick Craswell. Query auto-completion for
rare prefixes. In Proceedings of the 24th ACM International on
Conference on Information and KnowledgeManagement, pages
1755–1758. ACM, 2015.

[23] Milad Shokouhi. Learning to personalize query auto-
completion. In Proceedings of the 36th international ACM SI-
GIR conference on Research and development in information re-
trieval, pages 103–112. ACM, 2013.

[24] Fei Cai and Maarten de Rijke. Learning from homologous
queries and semantically related terms for query auto comple-
tion. Information Processing & Management, 52(4):628–643,
2016.

[25] Giovanni Di Santo, Richard McCreadie, Craig Macdonald, and
Iadh Ounis. Comparing approaches for query autocompletion.
In Ricardo A. Baeza-Yates, Mounia Lalmas, Alistair Moffat, and
Berthier A. Ribeiro-Neto, editors, Proceedings of the 38th Inter-
national ACMSIGIR Conference on Research andDevelopment in
Information Retrieval, Santiago, Chile, August 9-13, 2015, pages
775–778. ACM, 2015.

[26] Holger Bast and Ingmar Weber. Type less, find more: fast au-
tocompletion search with a succinct index. In Proceedings of
the 29th annual international ACMSIGIR conference onResearch
and development in information retrieval, pages 364–371. ACM,
2006.

[27] David Maxwell, Peter Bailey, and David Hawking. Large-
scale generative query autocompletion. In Bevan Koopman,
Guido Zuccon, and Mark James Carman, editors, Proceedings of
the 22nd Australasian Document Computing Symposium, ADCS
2017, Brisbane, QLD, Australia, December 7-8, 2017, pages 9:1–
9:8. ACM, 2017.

Unauthenticated
Download Date | 3/5/20 12:09 AM

Corpus-based query auto-completion | 225

[28] Meher T. Shaikh, Maria Soledad Pera, and Yiu-Kai Ng. A prob-
abilistic query suggestion approach without using query logs.
In 25th International Conference on Tools with Artificial Intelli-
gence, pages 633–639. IEEE Computer Society, 2013.

[29] Youngho Kim, Jangwon Seo, W. Bruce Croft, and David A. Smith.
Automatic suggestion of phrasal-concept queries for literature
search. Information Processing and Management, 50(4):568–
583, 2014.

[30] Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer,
and Yonghui Wu. Exploring the limits of language modeling.
CoRR, abs/1602.02410, 2016.

[31] Chengxiang Zhai and John Lafferty. A study of smoothing
methods for language models applied to information retrieval.
ACM Transactions on Information Systems, 22(2):179–214, April
2004.

[32] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs
and the sum-product algorithm. IEEE Transactions on Informa-
tion Theory, 47(2):498–519, 2006.

[33] David J.C. MacKay and Linda C. Bauman Peto. A hierarchical
dirichlet language model. Natural Language Engineering, 1:1–
19, 1994.

[34] MarkDSmucker, JamesAllan, andBenCarterette. A comparison
of statistical significance tests for information retrieval evalua-
tion. In Proceedings of the sixteenth ACM conference on Confer-
ence on information and knowledge management, pages 623–
632. ACM, 2007.

[35] Yuanhua Lv and ChengXiang Zhai. Positional language models
for information retrieval. In Proceedings of the 32Nd Interna-
tional ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’09, pages 299–306, New York, NY,
USA, 2009. ACM.

[36] Sumit Bhatia and Prasenjit Mitra. Adopting inference networks
for online thread retrieval. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, pages 1300–1305, At-
lanta, Georgia, USA, July 11-15 2010.

[37] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learn-
ing. Nature, 521(7553):436–444, 5 2015.

[38] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Represen-
tation learning: A review and new perspectives. IEEE Transac-
tions on Pattern Analysis andMachine Intelligence, 35(8):1798–
1828, August 2013.

Unauthenticated
Download Date | 3/5/20 12:09 AM

	1 Introduction
	2 Related work
	2.1 Query log-based approaches
	2.2 Corpus-based approaches

	3 Methodology
	3.1 Candidate suggestion extraction
	3.2 Probabilistic factor graph model
	3.2.1 Suggestion without context
	3.2.2 Suggestion with context

	3.3 Query auto-completion framework

	4 Evaluation
	4.1 Baseline system and evaluation metrics
	4.2 System Setup
	4.3 Wikipedia title completion task
	4.3.1 Results and analysis

	4.4 User study
	4.4.1 Results and analysis

	5 Conclusions and future work

