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The availability of many genome sequences gives us abundant information, which is, however, very

difficult to decode. As a consequence, in order to advance our understanding of biological processes

at the whole-cell scale, it becomes very important to develop higher-level, synthetic descriptions of

the contents of a genome. At the protein level, an effective scale of description is provided by protein

domains [1]. Domains are independent unit-shapes (or “folds”) forming proteins [2]. They are struc-

turally stable and have thermodynamic origin. A domain determines a set of potential functions and

interactions for the protein that carries it, for example DNA- or protein-binding capability or catalytic

sites [1, 3]. Therefore, domains underlie many of the known genetic interaction networks. For exam-

ple, a transcription factor or an interacting pair of proteins need the proper binding domains [4, 5],

whose binding sites define transcription networks and protein-protein interaction networks respec-

tively. Protein domains, are found on genomes with notable statistical distributions, which bear a

high degree of similarity. A stochastic growth model with two universal parameters, related to a min-

imal number of domains and to the relative time-scale of innovation to duplication reproduces two

important features of these distributions: (i) the populations of domain classes (the sets, related to

homology classes, containing realizations of the same domain in different proteins) follow common

power-laws whose diversity is related to genome size, measured by the total number of proteins or

protein domains (ii) the number of domain families is sublinear in genome size. In this evolutionary

process, selective pressure can enter both as a global constraint on the innovation time-scale, and as

a regulator of the population of specific domain classes, related to their modularity: some shapes

are common to all genomes, some are contextual. These two features are sufficient to obtain general

quantitative agreement with data from hundreds of genomes, and show that robust self-organizing
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phenomena encase specific selective pressures during evolution.

Domains are related to sets of sequences of the protein-coding part of genomes. Multiple sequences

give rise to the same shape, and the choice of a specific sequence in this set fine-tunes the function, activity

and specificity of the inherent physico-chemical properties that characterize a shape. A domain then defines

naturally a “domain class”, constituted by all its realizations in the genome, or all the proteins using that

given shape for some function. Overall, domains can be seen as an “alphabet” of basic elements of the

protein universe. Understanding the usage of domains across organisms is as important and challenging as

decoding an unknown language. Much as the letters of linguistic alphabets, the domains observable today

are few, probably of the order of 105 [3]. This number is surprisingly lower than the number of possible

protein sequences (which are in general a hundred orders of magnitude more numerous). In the course

of evolution, domains are subject to the dynamics of genome growth (by duplication, mutation, horizontal

transfer, gene genesis, etc.) and reshuffling (by recombination etc.), under the constraints of selective

pressure [3, 6]. These drives for combinatorial rearrangement, together with the defining modular property

of domains, lead to the construction of increasingly richer sets of proteins [7]. In other words, domains are

particularly flexible evolutionary building blocks.

In particular, the sequence of two duplicate domains that diverged recently will be very similar, so that

one can also give a strictly evolutionary definition of protein domains [3], as regions of protein sequences

that are highly conserved. The (interdependent) structural and evolutionary definitions of protein domains

given above have been used to produce systematic hierarchical taxonomies of domains that combine infor-

mation about shapes, functions and sequences [8, 9]. Generally, one considers three layers, each of which

is a subclassification of the previous one. The top layer of the hierarchy is occupied by “folds”, defined by

purely structural means. It is then possible, though it seems quite rare, that a fold is polyphyletic, i.e. found

from different paths in evolution. The intermediate “superfamily” class is also mainly defined by spatial

shape, with the aid of sequence and functional annotations to guarantee monophyly. Finally, the “family”

class is defined by sequence similarity.

The large-scale data stemming from this classification effort enable to tackle the challenge of under-

standing the alphabet of protein domains [1, 10–12]. In particular, they have been used to evaluate the laws

governing the distributions of domains and domain families [6, 13–16]. These laws are notable and have a
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high degree of universality. Using the number of domains n to measure the size of a genome, we have the

following observations, that confirm (and in part extend) previous ones. (i) The number of domain families

(or distinct hits of the same domain) concentrates around a curve F (n) that is markedly sublinear (figure

1A), perhaps saturating. (ii) The number F (j, n) of domain classes having j members (in a genome of size

n) follows the power-law ∼ 1/j1+α, where the fitted exponent 1 + α typically lies between 1 and 2 (figure

2). (iii) The exponent of this power-law appears to decrease with genome size (figure 2A), and there is evi-

dence for a cutoff that increases linearly with n (figure 2C). We tested these observations with data on folds

and superfamilies (Supplementary Note S2). Recent modeling efforts focused mainly on (ii), and explored

two main directions. First, a “designability” hypothesis [17], which claims that domain occurrence is due

to accessibility of shapes in sequence space. While the debate is open, this alone seems to be an insufficient

explanation, given for example the monophyly of most folds in the taxonomy [3, 18]. A second, “genome

growth” hypothesis ascribing the emergence of power-laws to a generic preferential-attachment principle

due to gene duplication seems to be more successful. Growth models were formulated as nonstationary,

duplication-innovation models [6, 19, 20] and as stationary birth-death-innovation models [14, 21–23], and

were successful in describing to a consistent quantitative extent the observed power laws. However, in

both cases, each genome needed a specific set of kinetic coefficients, governing duplication, influx of new

domain classes, or death of domains.

Here, we first define and relate to the data a non-stationary duplication-innovation model in the spirit of

Gerstein and coworkers [6]. Compared to this work, our main idea is that a newly added domain class is

treated as a dependent random variable, conditioned by the preexisting genome structure. We will show that

this model explains observations (i-iii) with a unique underlying stochastic process having only two univer-

sal parameters of simple biological interpretation, the most important of which is related to the relative time

scales of adding a domain belonging to a new family and duplicating an existing one. Subsequently, we

argue that the scaling of this parameter can be related to the computational cost for adding a new domain

class in a genome, and thus to a global property related to evolutionary selection. Finally, we show how a

specific selective property, introduced in the model by inferred data on the usage of domain classes across

genomes can predict the saturation of F (n), and recalibrate the two universal parameters to obtain better

quantitative agreement with data.
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The basic ingredients of the model are pO, the probability to duplicate an old domain (modeling gene

duplication), and pN , the probability to add a new domain class with one member (which describes domain

innovation, for example by horizontal transfer). Iteratively, either a domain is duplicated with the former

probability or a new domain class is added with the latter. A necessary feature for duplication is preferential

attachment, stating the fact that duplication is more likely in a larger domain class. In other words, if the

duplication probability is split as the sum of per-class probabilities pi
O, preferential attachment requires that

pi
0 ∝ ki, where ki is the population of class i. It is important to notice that in this model, while n can

be used as an arbitrary measure of time, the ratio of the time-scales of duplication and innovation is not

arbitrary, and is set by the ratio pN/pO. In the model of Gerstein and coworkers, this is taken as a constant,

as the innovation move considered to be statistically independent from the genome content. This choice has

two problems. First, it does not give the observed sublinear scaling of F (n). Second, it implies that for

larger genomes the influx of new domain families is heavily dominant on the flux of duplicated domains.

On the contrary, motivated by the observation (i), we consider dependent moves, or, in the simplest scheme

a dependence of pN by n and f where f is the number of domain classes in the genome. Specifically, we

chose pN to be asymptotically inversely proportional to the mean class population n/f . In other words, it

is harder to add a new domain class in a larger, or more heavily populated genome. As we will see, this

implies pN/pO → 0 as n → ∞, and we will show that this choice reproduces properties (i-iii). Precisely,

we take pi
O = ki−α

n+θ (hence pO = n−fα
n+θ ), and pN = θ+fα

n+θ , where θ ≥ 0 and α ∈ [0, 1] Here, α, is the most

important parameter, which will set the scaling of the duplication/innovation ratio (table I), and θ is less

important, representing a characteristic number of domain classes needed for the preferential attachment

principle to set in, which defines the behavior of F (n) for n → 0.

This kind of model has previously been explored in a different context in the mathematical literature

under the name of Pitman-Yor, or Chinese Restaurant Process (CRP) [24–27]. In the Chinese restaurant

metaphor, domains are customers and tables are domain classes. In a duplication event, a new customer

is seated at a table with a preferential attachment (or packing) principle, and in an innovation event, a new

table is added. The natural random variables involved in the process are f , the number of tables or domain

classes, ki the population of class i, and ni, the size at birth of class i. Rigorous results for the probability

distribution of the fold usage vector {k1, ..., kf} confirm the results of our scaling argument. It is important
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to note that in this stochastic process, large n limit values of quantities such as ki and f do not converge to

numbers, but rather to random variables [24].

Despite of this property, it is possible to understand the scaling of the averages Ki and F (of ki and f

respectively) at large n, writing simple “mean field” equations, for continuous n. From the definition of

the model, we obtain ∂nKi(n) = Ki−α
n+θ , and ∂nF (n) = αF (n)+θ

n+θ . These equations have to be solved with

initial conditions Ki(ni) = 1, and F (0) = 1. Hence, for α �= 0, one has Ki(n) = (1 − α) n+θ
ni+θ + θ, and

F (n) =
1
α

[
(α + θ)

(
n + θ

θ

)α

− θ

]
∼ nα ,

while, for α = 0

F (n) = θ log(n + θ) ∼ log(n) .

The solution can be used to compute the asymptotics of P (j, n) = F (j, n)/F (n) [28]. This works as

follows. From the solution, j > Ki(n) implies ni > n∗, with n∗ = (1−α)n−θ(j−1)
j−α , so that the cumulative

distribution can be estimated by the ratio of the (average) number of domain classes born before size n∗

and the number of classes born before size n, P (Ki(n) > j) = F (n∗)/F (n). P (j, n) is then obtained by

derivation. For n, j → ∞, and j/n small, we find

P (j, n) ∼ j−(1+α)

for α �= 0, and

P (j, n) ∼ θ

j

for α = 0. The above formulas give the correct average behavior of observation (iii). The trend of the

model of Gerstein and coworkers can be found for constant pN , pO. A comparative scheme of the results is

presented in table I. We also verified that these results are stable for introduction of domain loss and global

duplications in the model (Supplementary Note S4).

Going beyond scaling, the probability distributions generated by a CRP contain large finite-size effects

that are relevant for the experimental genome sizes. In order to evaluate the behavior and estimate parameter

values keeping into account stochasticity and the small system sizes, performed numerical simulations of

different realizations of the stochastic process (figures 1B and 2B and C). The simulations allow to measure

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
37

6.
1 

: P
os

te
d 

30
 N

ov
 2

00
7



6

f(n), and F (j, n), and confirm the asymptotic predictions. Moreover, comparing the histogram of domain

occurrence of model and data, it becomes evident that the intrinsic cutoff set by n causes the observed drift

in the exponent (figure 2A and B). One can measure the cutoff as the population of the largest domain class,

and verify that both model and data follow a linear scaling (figure 2C). This can be expected from the above

asymptotic argument, since Ki(n) ∼ n. While the slope of F (n) is compatible with a model having α = 0,

the internal distribution of domain families P (j, n) and the behavior of the cutoff resembles more a CRP

with α between 0.5 and 0.7 (figure 1B and Supplementary Note S1 and S2). Overall, although one can

clearly obtain from the model all the qualitative phenomenology, the quantitative agreement seems to be not

completely satisfactory.

We will now show how a simple variant of the model that includes selective pressure based on em-

pirically measured domain family usage can bypass the problem, without upsetting the underlying ideas

presented above. Before we do that, we want to argue that the model already contains the signature of

selective pressure in the parameter α. We suppose that, given a genome with n domains (or for simplicity

monodomain genes) and F domain families, the process leading to the acceptance of a new domain family,

and thus to a new class of functions, will need a readaptation of the population of all the domain families

causing an increase δn in the number of genes. This increase is due to an underlying optimization problem

that has to adapt the new functions exploited by the acquired family to the existing ones (by rewiring and

expanding the interaction networks, etc.) Now, generically, the computational cost for this optimization

problem (which, conceptually, may be regarded as a measure of the evolvability of the system) could be

constant (and thus δn ∼ δF ), or else polynomial or exponential in F (i.e. δn ∼ F dδF , where d is some

positive exponent, or δn ∼ exp(F )δF respectively). Integrating and inverting these relations, it is simple to

verify that the first choice leads to the scaling of the model of Gerstein and coworkers, while the second two

correspond to the CRP, and to a sublinear F (n). In other words, following this argument, the CRP supposes

that accepting a new domain family becomes harder with increasing number of already available domain

families, which is a (global) effect of selective pressure. On the other hand, there exist also specific effects

of selection, due to the precise functional significance and interdependence of all domain classes. These

give rise to correlations and trends that are clearly visible in the data, which we have analyzed in detail in

a parallel study [29]. Here, we will consider simply the empirical probabilities of usage of domain families
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for 327 bacterial genomes in the SUPERFAMILY database [30] (figure 1C). The variant of the model can be

thought of as a genetic algorithm, where the above duplication-innovation model generates a population of

candidate genome domain compositions, subsequently selected using specific criteria that keep into account

observed features of the data. We have examined in more detail the analytically approachable case where

two virtual moves are considered. The moves are compared on the basis of a fitness function based on the

empirical domain usage and only one of the two is chosen (see Supplementary Note S3). With this modi-

fication, we introduce a significance to the index of the domain class, or a colored “tablecloth” to the table

of the Chinese restaurant. In other words, while the probability distributions in the model are symmetric by

switch of labels in domain classes (or exchangeable [26]), this cannot be true for the empirical case. The

empirical domain family usage can be used to break the symmetry. Figures 1B and 2B show the comparison

of simulations with empirical data. The agreement is very good. In particular, the values of α that better

agree with the empirical behavior of the number of domain classes as a function of domain size F (n) are

also those that generate the best slopes in the internal usage histograms F (j, n). Furthermore, the fitness

generates a critical value of n, where F (n) becomes flat, as observed empirically. A mean field calculation

of the same style as the ones presented above predicts the existence of this plateau (Supplementary Note

S3).

In conclusion, model and data together indicate that evolution acts conservatively on domain families,

with a preference to exploiting available shapes rather than adding new ones. Specific biological and physi-

cal properties, such as function and designability [1, 18, 31] come in at the more detailed level of description

of how domains are actually used to form functional proteins. A final point can be made regarding the num-

ber of observed domains. The model assumes that the new domain classes are drawn from an infinite family

of shapes, which can be even continuous [24], and leads to a discrete and small number of classes at the rel-

evant sizes. Although physical considerations point to the existence of a small “menu” of shapes available

to proteins [32], the validity of our model would imply that the empirical observation of a small number of

folds in nature does not count as evidence for this thermodynamic property of proteins, but may have been

a simple consequence of evolution.

We thank S. Maslov, H. Isambert, F. Bassetti, S. Teichmann, and M. Babu for helpful discussions,
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Ki
pN

pO

pN

pi
O

F (n) F (j, n)/F (n)

CRP α = 0 ∼ n ∼ n−1 ∼ n−1 ∼ log(n) ∼ θ
j

CRP α > 0 ∼ n ∼ nα−1 ∼ nα−1 ∼ nα ∼ j−(1+α)

Qian et al. ∼ npO = R ∼ n1−pO ∼ n ∼ j−(2+R)

TABLE I: Salient features of the proposed model in terms of scaling of the number of domain classes, compared to

the model of Gerstein and coworkers [6, 19]. The first three columns indicate the resulting average population of a

class Ki, and the ratios of the probability to add a new class pN to the total and per-class probabilities of duplication,

as a function of genome size n. These latter two quantities are asymptotically zero in the CRP, while they are constant

or infinite in the model of Gerstein and coworkers. The last two columns indicate the resulting scaling of number of

domain classes F (n) and fraction of classes with j domains F (j, n)/F (n). The results of the CRP agree qualitatively

with observations (i-iii) in the text.
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FIG. 1: Number of domain classes versus genome size. A. Plot of empirical data for 327 prokaryotes, 75 eukaryotes,

and 27 archaeal genomes. Data refer to superfamily domain classes from the SUPERFAMILY database [30]. Larger

data points indicate specific examples. Data on SCOP folds follow the same trend (Supplementary Note S2). B.

Comparison of data on prokaryotes (red circles) with simulations of 500 realizations of the model (cyan, grey, and

green shade), for fixed parameter values, different in each panel. Data on archaea are also shown (squares). α = 0

(left panel, graph in log-linear scale) gives a trend that is more compatible with the observed scaling than α > 0

(mid panel). However, the empirical distribution of folds in families is quantitatively more in agreement with α > 0

(see table I and figure 2). The model that includes specific selection based on domain family usage (right panel)

predicts a saturation of this curve even for high values of α, resolving this quantitative conflict. C. Usage profile of

SUPERFAMILY domain classes in prokaryotes, used to generate the fitness in the model with selection. In the x-axis,

domain families are ordered by the fraction of genomes they occur in. The y-axis reports their occurrence fraction.

The red lines indicate occurrence in all or none of the prokarotic genomes of the data set.
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FIG. 2: Internal usage of domains. A. Histograms of domain usage; empirical data for 327 prokaryotes. The x-axis

indicates the population of a domain class, and the y-axis reports the number of classes having a given population

of domains. Each of the 327 curves is a histogram referring to a different genome. The genome sizes are color-

coded as indicated by the legend on the right. Larger genomes (black) tend to have a slower decay, or a larger cutoff,

compared to smaller genomes (red). The continuous (red) and dashed (black) lines indicate a decay exponent of 3

and 1 respectively. B. Histograms of domain usage for 50 realizations of the model at genome sizes between 500

and 8000. The color code is the same as in panel A. All data are in qualitative agreement with the empirical ones.

However, data at α = 0 appear to have a faster decay compared to empirical data. This is also evident looking at the

cumulative distributions (Supplementary Note S1). The right panel refers to the model with selection, at parameters

values that reproduce well the empirical number of domain classes at a given genome size (figure 1). C. Population of

the maximally populated domain class as a function of genome size. Empirical data of prokaryotes (green circles), are

compared to realizations of the CRP, for two different values of α, the lines indicate averages over 500 realizations,

with error bars indicating standard deviation. α = 0 can reproduce the empirical trend only qualitatively (not shown).

Data from the SUPERFAMILY database[30].
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SUPPLEMENTARY NOTES

S1. CUMULATIVE DISTRIBUTIONS FOR THE INTERNAL USAGE OF DOMAINS

This section briefly discusses the cumulative histograms of domain usage for data and models. Figure

S1.1 confirms the markedly power-law behavior observed for the histograms and predicted by the model.

Comparison with the predictions of the CRP model (figure S1.2) shows faster decay for α = 0. While in

good agreement with the observed number of domain classes with increasing size (figure 1B), this parameter

choice is unsatisfactory on the quantitative side for the domain distribution in classes. This feature, already

visible in figure 2B of the main text, is even more marked from the cumulative histograms. Better-fitting

values are in the range α = 0.5 − 0.7. The CRP with selection (figure S1.3) has the same qualitative

behavior as the standard model for the distributions, while fitting well the scaling of the classes of higher

values of α (figure 1B and section S3 below).

Supporting Figure S1.1: Empirical cumulative distributions of domain usage for domain classes of the SUPERFAM-

ILY database. The x-axis reports domain class sizes in number of domains D while the y-axis refers to the histogram

of the number of domain classes containing more than D domains. The left panel is based on the same data on the

327 prokaryotes of figure 2A in the main text. The right panel refers to the 75 eukaryotes in the data set. The genome

sizes are not color-coded to show individual plots.

S2. RESULTS FOR FOLD DOMAIN CLASSES

All data shown in the main text refer to the superfamily taxonomy level, and come from the SUPER-

FAMILY database. In this section, we report the results of the same analysis in terms of SCOP folds,

which show that this category has essentially the same behavior as the previous one (figure S2.4). While
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Supporting Figure S1.2: Cumulative histograms of domain usage for 50 realizations of the CRP at genome sizes

between 500 and 8000. Increasing values of α are plotted in lexicographic order.

Supporting Figure S1.3: Cumulative histograms of domain usage for 100 realizations of the CRP with selection at

genome sizes between 1000 and 8000. In this size range the model variant produces essentially identical distributions

to the conventional CRP, with better agreement on the growth in terms of domain classes (see section S3). The left

panel is color-coded as figure 2B of the main text.

by definition there are more superfamilies than folds, the number of domain classes versus genome size has

very similar scaling in the two cases. The two plots collapse almost exactly, when folds are rescaled by the

ratio (1443/884) of superfamilies per folds (S2.5). Furthermore, power-law fits of the experimental data for

prokaryotes yield an exponent α between 0.3 and 0.4 for both categories, and logarithmic fits are also in

agreement.
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Supporting Figure S2.4: Top: Number of fold classes versus genome size, the plot is equivalent to figure 1A, except

that the x-axis reports number of proteins scored in the genome, rather than genome size in domains. Since these

two quantities are quite markedly linearly related, the two plots are equivalent. Bottom: histogram (left panel) and

cumulative histogram (right panel) of domain classes for all genomes in the data set (eukaryotes, prokaryotes and

archaea).

Supporting Figure S2.5: Comparison of the scaling of folds and superfamilies plot as a function of genome size. The

plots refer to all genomes in the SUPERFAMILY database. The plot for folds (blue small circles) overlaps quite well

with the plot for superfamily (large grey circles) when multiplied by the ratio of the total number of domain classes in

the two taxonomies (1443/884).
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S3. ANALITYCAL MEAN FIELD EQUATIONS FOR THE CRP MODEL WITH SELECTION

In this section we discuss the analytical treatment of the variant of the CRP model introduced in the main

text. We first give some more details on the definition of the model. Generically, we consider the following

algorithm. For each genome size n, which measures time in some arbitrary units, the configuration is a

set or “population” of M genomes {g1(n), ..., gM (n)}, where each genome is a set of D domain classes

populated by some domains. An iteration is divided into two steps. A first “proliferation” step generates

qM genomes, where q is a positive integer, {g′
1(n), ..., g

′
qM (n)}, using the standard CRP move. A second

“selection” step discards the (q − 1)M individuals with lower fitness. The fitness, for a generic model

genome g, can be a function F(g), that takes into account some phenomenological features observed in

the data. We choose to include in F a minimal amount of empirical information on the occurrence of each

domain class contained in figure 1C. In other words, we distinguish between “universal” domain classes,

used in most of the genomes, and “contextual” ones, occurring only in a few examples. As discussed in the

main text , this is sufficient to obtain quantitative agreement with the observed domain distributions (figures

1B and 2B), which are not given to the model as an input. If domain classes are indexed by i = 1..D

(D = 1443 for Superfamilies), we define the variable σg
i as follows

σl
i =

⎧⎪⎨
⎪⎩

1 if domain class i is present in genome g

−1 if domain class i is absent in genome g
.

The fitness of that genome is then defined as

F(g) = exp

(
D∑

i=1

σg
i 〈σEMP

i 〉
)

,

where 〈σEMP
i 〉 is the empirical average of the same observable:

〈σEMP
i 〉 =

1
G

G∑
g=1

σg,EMP
i .

In the above formula G is the number of observed genomes in the data set. For example, in the case of

prokaryotes in the SUPERFAMILY database, G = 327 and, calling Ξi the function plotted in figure 1C, we

have simply 〈σEMP
i 〉 = 2Ξ − 1.

For the analitycal treatment, we considered the case M = 1, q = 2, where at each iteration, one genome

is selected from a population of two. Starting from configuration g(n), in the proliferation step genomes
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g
′
, g

′′
are generated with CRP rules, and the selection step chooses g(n + 1) = argmax(F(g

′
),F(g

′′
)). In

this case, since the selection rule chooses strictly the maximum, it is able to distinguish the sign of 〈σEMP
i 〉

only. For this reason, it is sufficient to account for the positivity (which we label by “+”) and negativity

(“-”) of this function for a given domain index i. The genomes g
′

and g
′′

proposed by the CRP proliferation

step can have the same (labeled by “1”), higher (“1+”) or lower (“1−”) fitness than their parent, depending

on pO, pN and by the probabilities to draw a universal or contextual domain family, p+ and p− respectively.

Using these labels, the scheme of the possible states and their outcome in the selection step is given by the

table below.

proliferation (g
′
, g

′′
) probability selection

(1, 1) p2
O old

(1, 1−) 2 pO pN p− old

(1, 1+) 2 pO pN p+ new+

(1+, 1+) p2
N p2

+) new+

(1+, 1−) 2 p2
N p− p+ new+

(1−, 1−) p2
N p2− new−

From this table, it is straightforward to derive the modified probabilities p̂O and p̂N of the complete

iteration:

p̂O = pO (pO + 2 pNp−)

p̂N = pN (pN + 2 pOp+) = pN+ + pN− ,

where pN+ = pNp+(2 − pNp+) and pN− = p2
N (1 − p+)2 are the probabilities that the new domain is

drawn from the universal or contextual families respectively.

We now write the macroscopic evolution equation for the number of domain families using the same

procedure as in the main text. Calling k+(n) and k−(n) the number of domain classes that have positive or

negative 〈σEMP
i 〉 and are not represented in g(n),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂nF (n) = p̂N

∂nk+(n) = −p̂N+

∂nk−(n) = −p̂N−

.
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Now, p+ = k+/(k− + k+) = k+/(D − F (n), so that we can rewrite

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂nF (n) = (αF (n)+θ
n+θ )

[
αF (n)+θ

n+θ + 2k+(n)
D−F (n)(

n−αF (n)
n+θ )

]
∂nk+(n) = −(αF (n)+θ

n+θ ) k+(t)
D−F (n)

[
2 − (αF (n)+θ

n+θ ) k+(n)
D−F (n)

]
∂nk−(n) = −(αF (n)+θ

n+θ )2 ( k+(n)
D−F (n))

2

(1)

Supporting Figure S3.6: Numerical solutions of the mean-field equations of the CRP model with selection. Left panel:

fitness F(n) for different values of α. Right panel: F(n) plotted in linear and logarithmic (inset) scales.

The above equations have the following consistency properties

• ∂n

(
k+ + k− + F

)
= 0, hence k+ + k− + F = D ∀n.

• ∂nF ≤ 1, hence F (n) ≤ n.

• ∂nF ≥ 0, ∂nk+ ≥ 0 and ∂n(F + k+) ≥ 0 so that F grows faster than k+ decreases.

Choosing the initial conditions from empirical data n0, F (n0) size and number of domain classes of the

smallest genome, we have, since F (n0) < n0 and α ≤ 1,

αF (n0) + θ

n0 + θ
< 1 .

It is simple to verify that under this condition the system always has solutions that relax to a finite value

F∞ < D. Indeed, after the time n∗ where k+(n∗) = 0, the equations reduce to ∂nk+ = 0, k− = D − F

and

∂nF (n) =
(

αF (n) + θ

n + θ

)2
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immediately giving our result.

Numerical solutions of Eq. (1) give the same behavior for F (n) as the direct simulations (figures S3.6A,

figure 1B). In particular, while this function grows as a power law for small genome sizes, it saturates at

the relevant scale, giving good agreement with the data. This behavior is connected to the finite size of the

pool of universal domain families, which we can interpret as the effect of a certain optimality in the core

functions of the different organisms. The internal laws of domain usage of this model were obtained from

direct simulations only, and, as discussed in the main text, give a more quantitative agreement with the data

(figure 2B). Finally, one interesting point can be made about the dynamics of the fitness. Figure S3.6B,

shows that, for large values of α (above 0.7) this function reaches a maximum at sizes between 2000 and

4000. This is also where most of the genomes in the data set are found, indicating that this range of genome

sizes allows the optimal usage of universal and contextual domain families.

S4. OTHER VARIANTS OF THE CRP

We discuss here mean-field arguments for the robustness of our results on the asymptotics of F (n) for

two variants of the original model, including a small domain loss rate and global duplications.

a. Global Duplications. One can consider the presence of global duplication moves. At each time

step, if duplication is chosen, a number of domains selected with q > 1 trials from a binomial distribution

with parameter pi
O is duplicated in the same time step. The innovation step remains the same. In this case,

it is not possible to measure time with the size n of the genome, but this observable follows the evolution

equation

ṅ = qpO + pN , (2)

where ˙ indicates the derivative with respect to time t. In terms of t, our mean field equations are worked

out simply as Ḟ (t) = pN and K̇i(t) = qpi
O. Using Eq. (2), they can be simply converted in terms of n,

yielding

∂nF (n) =
αF (n) + θ

qn + (q − 1)αF (n) + θ
,
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and

∂nKi(n) =
Ki − α

n + θ
q

.

The first equation gives as leading scaling F (n) ∼ n(α/q), showing that the growth of F is pushed towards

effectively lower values of α by global duplications, as a consequence of the rescaling of time by the

global moves. The dynamics for Ki, instead, is affected only by a renormalization of the parameter θ. The

qualitative results of the model are therefore stable to the introduction of a global duplication rate, in the

hypothesis that the extent of these duplications does not scale with n.

Supporting Figure S4.7: The number of domain classes with one member, related to F (1, n), as observed from the

prokariote data set for superfamilies. The linear scaling is evident. A fit yields γ � 0.7.

b. Domain Loss. A second interesting variant of the model considers the introduction of a homo-

geneous domain deletion, or loss rate. Domain loss is known to occur in genomes. However, it is not

considered in our basic model for simplicity and economy of parameters. In order to introduce it in the

CRP, we define a loss probability pL = δ. This is equally distributed among domains, so that the per class

loss probability is pi
L = δ Ki

n . Consequently, the duplication and innovation probability pO and pN are

rescaled by a factor (1 − δ). The mean-field evolution equation for the number of domain classes becomes
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then

Ḟ (t) = (1 − δ)
αF + θ

n + θ
− δ

F (1, n)
n

,

where the sink term for F derives from domain loss in classes with a single element, quantified by F (1, n).

In order to solve this equation, one needs an expression for F (1, n). Here, we report an argument based

on the fact that empirically, F (1, n) = γF (n), with 0 < γ < 1 (figure S4.7). Using this experimentally

motivated ansatz, we can show that for small δ, the scaling of F (n) is subject only to a small correction.

Again, since time does not count genome size, one has to consider the evolution of n with time t, given in

this model simply by ṅ = 1 − 2δ. Using this equation it is possible to obtain the evolution equation for

F (n). Considering an expansion in small δ and large n, this reads to first order

∂nF (n)
F (n)

=
α

n

[
1 + δ

(
α − γ

α

)]
.

The above equation gives the conventional scaling for F (n), with the aforementioned correction. Note that

the correction could be positive or negative, depending on the relative values of α and γ. An analogous

argument holds for α = 0.
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