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This paper presents a novel technique for the computation of eigenvalues and eigenvectors of partially
enclosed basins such as harbours and bays. The procedure makes use of the finite element approximation
of the linear shallow water equations, and converts the time-depending problem into an eigenvalues one.
The main point of novelty of this research is the mathematical condition used at the boundary that separates
the computational domain from the open sea. While classical techniques impose a zero surface elevation (i.e.
a nodal line), here an approximate radiation condition is applied. The use of a radiation condition at the open
boundary gives a quadratic eigenvalue problem that admits as solution complex eigenvalues and eigenvec-
tors, thus describing the flow in terms of both standing and progressive waves. The new method is applied
to an idealized long and narrow harbour, for which an analytical solution of long wave resonance exists,
and to the harbour of Marina di Carrara (Italy), for which measurements and previous numerical computa-
tion results are available. In both cases the results show good agreement with the available data.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Transient forcings of long waves in the coastal areas, such as
storms and tsunamis, can excite the natural modes of semi-enclosed
basins. This can result in resonance conditions that can induce large
amplifications of long waves, increasing coastal hazards and flooding
risk. As a consequence, the study of the free and forced oscillations of
harbours and bays has a prominent role in Coastal Engineering. The
knowledge of the properties of free oscillations of the water surface
in a basin is also useful as it allows to identify the locations where
larger oscillations can be expected (see Kowalik and Murty, 1993;
Sobey, 2006).

A possible approach to identify the frequencies of the natural os-
cillations is that of reproducing the propagation of waves, from
offshore into the basin, using a suitable numerical model. By perform-
ing several computations, varying the frequency (and possibly the
direction) of the incoming waves, it is then possible to build the am-
plification diagram. This is defined as the variation, over the wave
frequency, of the ratio between the wave height at some points inside
the harbour and the height of the incoming waves (sometimes it is
ax: +39 06 57333441.

license.
used half the ratio). The peaks of the amplification diagram can
then be assumed to represent natural oscillation modes, and the
corresponding modal shape and frequencies can be deduced. Both
linear (Bellotti, 2007; Mei, 1990) and non-linear models (Losada
et al., 2004; Shi et al., 2003; Woo and Liu, 2004) can be used, and
the reproduced sea state can be either regular or random (Lee et al.,
2003).

A more direct approach is to compute the natural oscillations by
solving the eigenvalue problem associated to the homogeneous linear
shallow water equations, as done by Rao (1966), Sobey (2006),
Beltrami et al. (2003) and Beltrami and Bargagli (2005) among
others. This is derived by assuming harmonic solutions of the equa-
tions, which leads to a boundary value problem in the spatial vari-
ables only. In the past two types of boundary conditions have been
used: fully reflective conditions has been prescribed along solid
boundaries, while a zero surface elevation (i.e. a nodal line) has
been imposed at the open sea boundary. Both types of boundary
conditions are “adiabatic”, i.e. no energy is exchanged across these
boundaries. Under these conditions the boundary value problem is
of the Sturm–Liouville type. Therefore, the eigenvalues and the eigen-
vectors are real and describe the flow in terms of purely standing
waves. The eigenvectors form an orthogonal basis, hence they are
often referred as “normal modes”. This property allows to describe a
forced system as an expansion of these modes with time-dependent
coefficients (see Kowalik and Murty, 1993).
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Few analytical solutions have been obtained for simply shaped
basins (see Rabinovich, 2009); numerical solutions of the boundary
value problem are needed for real basins. The choice of the location
of the offshore nodal line has to be done a priori. As it will be better
specified in this paper, this is a drawback of the procedure, since it
implies to impose the length of those waves with flow across the off-
shore boundary. Among others, Lee (1971) states that the slope of the
water surface at the entrance of the harbour should not be imposed a
priori, but should be considered part of the solution itself. Several
strategies have been used in the past to overcome these limitations
in the computation of natural frequencies. In particular, Butcher and
Gilmour (1987) included in the computational domain a very large
portion of the ocean, in order to minimise the effect of the offshore
nodal line.

A further, alternative approach, is that by Tolkova and Power
(2011), who computed the natural modes and frequencies of two
natural bays, by applying the Empirical Orthogonal Function analysis
to the results of tsunamis simulations. The comparison with experi-
mental data suggests good performance of their method.

In the present paper we propose to remove the constraint of a
nodal line at the offshore boundary by using an approximate radiation
condition. As it is known, this condition states that waves radiate to-
wards infinity (after reflection at the coast and/or at the basin/harbour
boundaries) and the wave energy leaves the computational domain
(radiation damping). As it will be shown later on in the present paper,
the resulting eigenvalue problem is quadratic, and is similar to that
obtained in Structural Dynamics when viscous damping is considered
(see He and Fu, 2001). Analogous eigenvalue problems have also been
extensively studied in the context of astrophysics (see Kokkotas and
Schmidt, 1999), although with reference to the Schrödinger equation.
The resulting problem admits complex eigenvalues and eigevectors,
thus describing both standing and progressive waves. The eigenvectors
are not perfectly orthogonal to each other, so that are sometimes
also referred to as “quasi-normal” modes. To the knowledge of the au-
thors, eigenanalysis of semi-enclosed water bodies including radiation
damping, has not been previously applied in the context of Coastal
Engineering.

The paper is structured as follows. The next section describes the
mathematical/numerical procedure. Then the resonance of an idea-
lised long and narrow harbour, for which the analytical solution by
Mei (1990) is available, is studied. Then, modal analysis of the har-
bour of Marina di Carrara, Italy, is carried out. The results are com-
pared with available field measurements of harbour resonance,
presented by Bellotti and Franco (2011). In the Conclusions of the
paper a brief discussion of how the present technique may be of
help in the engineering practice is carried out.

2. Description of the numerical model

We start from the homogeneous linear shallow water equations in
two dimensions:

∂η
∂t þ

∂ huð Þ
∂x þ ∂ hvð Þ

∂y ¼ 0 ð1Þ

∂u
∂t þ g

∂η
∂x ¼ 0 ð2Þ

∂v
∂t þ g

∂η
∂y ¼ 0 ð3Þ

where η is the water free surface elevation, u, v are the components of
the depth averaged horizontal velocity along the x and y horizontal
coordinates respectively, g the gravity acceleration, t is the time.
Hereinafter derivation will be indicated with subscripts to have a
more compact notation. Performing the derivative in time of Eq. (1),
and using Eqs. (2) and (3), leads to

ηtt−∇gh∇η ¼ 0; ð4Þ

that is the classical long waves equation. Purely oscillatory in time
solutions are found in traditional modal analysis:

η ¼ Re X x; yð Þe−iωt
h i

ð5Þ

whereω is the real modal frequency and X(x, y) is the real modal spa-
tial structure; i is the imaginary unit. As stated in the Introduction, a
set of adiabatic boundary conditions is traditionally applied along
the contours of the computational domain, i.e.:

ηn ¼ 0 ð6Þ

η ¼ 0; ð7Þ

where n is the outgoing normal to boundaries. The condition (6)
holds along fully reflective boundaries, while Eq. (7) is a nodal line
condition applied along the open sea boundary. Using Eq. (5), the
Eq. (4) and the boundary conditions (6), (7) become respectively:

ω2X−∇gh∇X ¼ 0 ð8Þ

Xn ¼ 0 ð9Þ

X ¼ 0: ð10Þ

Eqs. (8)–(10) represent a Sturm–Liuville boundary value problem
in space. This problem admits real solutions for ω and a set of real
orthogonal real eigenvectors X(x, y), representing purely standing
waves. It should be noted that the square of the modal frequency ω
appears into the field Eq. (8), while the boundary conditions are inde-
pendent from it; the implications of this on the resulting eigenvalue
problem will be discussed later on in the present section.

We now formulate the boundary value problem in the case of an
open offshore boundary along which a radiation boundary condition
is applied. The traditional radiation condition by Sommerfeld (1949)
is valid at infinite distance from the scattered waves source. Extensive
research (1992; Bayliss et al., 1982, Givoli, 1991; Panchang et al.,
2000; Steward and Panchang, 2000; Van Dongeren and Svendsen,
1997; Xu et al., 1996) has been carried out in order to derive an
approximate form of such a condition, to be used at the artificial
boundary, placed at a finite distance from the scattering source, that
separates the actual computational domain from the semi-infinite
sea. Here the following approximate first order condition is applied:

∂
∂nþ 1

C
∂
∂t þ

1
2R

� �
η ¼ 0; ð11Þ

where C ¼
ffiffiffiffiffiffi
gh

p
is the wave celerity in the shallow water approxima-

tion. The open boundary is assumed to be a circular sector of radius R
centred on the source of scattered/radiating waves. It is to be noted
that the present approach differs from the classical methods based
on the simulation of waves coming from offshore and propagating
into partially closed basins or harbours. In those methods it is possible
to decompose the wave field into incident, reflected and scattered
waves (Mei, 1990). Here on the contrary no waves incoming from
the sea are reproduced, but rather free oscillations of unforced
waves are modeled. These oscillations generate a system of scattered
waves that radiates toward the semi-infinite sea, with a direction
mostly orthogonal to the boundaries at which the condition (11) is



Fig. 1. Sketch of the long and narrow bay; the dashed line represents the offshore
boundary, that separates the computational domain from the semi-infinite sea. The
amplification diagram reported in Fig. 2 is calculated at the point P.
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applied. In analogy with the classical modal analysis procedure, η is
expressed as

η ¼ Re X x; yð Þest
h i

ð12Þ

where s is a complex eigenvalue (e.g. He and Fu, 2001, page 125),
defined as s=−ζ− iω, X(x, y) is the complex spatial structure of
the solution. Note that the imaginary part of s represents the angular
frequency of the mode, while the real part represents the exponential
damping in time. By using the Euler formula it is easy to see that the
time dependence of η is e− ζtcos(−ωt). The boundary value problem
becomes:

s2X−∇gh∇X ¼ 0 ð13Þ

and the boundary conditions

Xn ¼ 0 ð14Þ

and:

sþ
ffiffiffiffiffiffi
gh

p
2R

 !
X þ

ffiffiffiffiffiffi
gh

p
Xn ¼ 0: ð15Þ

Note that the complex eigenvalue s now appears both into the
field Eq. (13) and into the radiation boundary condition (15). What
is more relevant is that different powers of s are now found in the
mathematical problem: as shown in the following this implies that
the eigenvalue problem is now quadratic.

The Finite Element Method (FEM) is applied to find an approxi-
mate solution of the mathematical problem. Following for example
Beltrami et al. (2001) and Bellotti et al. (2003) it is easy to derive
the following weak formulation for the problem (Eqs. (8)–(10)),
that uses the nodal line at the offshore boundary:

0 ¼ ∫∫Ω ∇vgh∇X−vω2X
� �

dΩ; ð16Þ

v is a test function that satisfies the essential boundary condition (10)
along the offshore boundary, where it is required that X=0; Ω repre-
sents the computational domain. For the problem represented by
Eqs. (13)–(15), that uses the approximate radiation condition along
the boundary ∂Ωrad, the weak formulation is:

0 ¼ ∫∫Ω ∇vgh∇X þ vs2X
� �

dΩþ ∫∂Ωrad
Xv

ffiffiffiffiffiffi
gh

p
sþ

ffiffiffiffiffiffi
gh

p
2R

 !
d ∂Ωð Þ: ð17Þ

Usual techniques of FEM (e.g. Reddy, 1984) are used to convert
the weak formulations into a linear system of equations. The compu-
tational domain is discretized using triangular elements (linear or
nonlinear), and a vector {X} of the N discrete values of X represent
the solution of the problem (N is the number of the nodes). Eq. (16)
then can be transformed into the following system (in matrix form):

ω2 M½ � Xf g þ K½ � Xf g ¼ 0 ð18Þ

while (17) becomes

s2 M½ � Xf g þ s C½ � Xf g þ K½ � Xf g ¼ 0: ð19Þ

Note that the matrices [M] and [K] are not identical in the systems
(18) and (19). The system (18) is a (non damped) classical linear
eigenvalue problem, that admits N real eigenvectors and eigenfre-
quencies. The system (19), on the other hand, is a damped problem,
is quadratic, and admits as solution a set of N complex eigenvectors
and eigenvalues in complex conjugate pairs. The matrix form derived
so far allows to establish an analogy with Structural Dynamics: [M],
[C] and [K] can be seen respectively as the mass, damping and stiff-
ness matrices of a general time-marching mathematical problem
(He and Fu, 2001). The damping matrix [C] is here related to the ef-
fects of the radiation condition applied at the offshore boundary
∂Ωrad. As already stated, wave energy is not dissipated, but it is radi-
ated away from the computational domain (Mei, 1990), in agreement
with the complex nature of the solution of the eigenproblem (19).

It is interesting to point out some physical interpretations of the
complex and real eigenvectors. As clearly described by He and Fu
(2001), each point of the complex eigenvector {X}, solution of the
problem (19), has a different phase; this implies that the surface ele-
vation will pass through the zero (equilibrium) level not at the same
time, as for (partially) progressive waves. Therefore the nodal points
are not fixed. On the contrary, real eigenvectors (as those of the solu-
tion of the system (18)) represent oscillations that are perfectly in
phase. In this case the surface elevation will pass through the zero
level at the same time, and it is certainly possible to state that nodal
lines exist. A further relevant difference is that eigenvectors of
Eq. (18) are orthogonal, while those of Eq. (19) are not.

3. Applications

3.1. A long and narrow harbour

The investigated harbour is 0.30 m long, 0.06 m wide, and 0.01 m
deep (see Fig. 1). It is similar to that used by Madsen (1987) and
Bellotti et al. (2003), although the water depth differs from those
computations; here we consider a depth such that the lowest order
modes are very long waves. The walls of the harbour are fully reflec-
tive and its entrance is located along a straight fully reflective coast.

An analytical solution for this simple harbour configuration
was presented by Mei (1990). The solution, based on the linear
wave theory, is provided in terms of the wave amplification factor
Ca ¼ 1

2
HP
Hinc

, where HP is the wave height measured at point P in Fig. 1
and Hinc is the incoming wave height. Ca is expressed as:

Ca ωð Þ ¼ 1
Zj j ; ð20Þ

where Z is the bay impedance given by:

Z ¼ cos kLð Þ þ 2kα=πð Þsin kLð Þln 2γkα=πeð Þ−ikαsin kLð Þ: ð21Þ

with k the wave number, L and 2α respectively the harbour length
and width, and γ=1.78107248. The amplification factor is plotted
against the angular frequency in Fig. 2. It can be seen that, for some
resonant frequencies, Ca is very large. We assume that the eigen-
frequencies of the dynamic system are given by those values of ω at
which Ca presents relative maxima.



0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

ω

C
a

Fig. 2. Amplification diagram of the long and narrow harbour according to the analytical
solution by Mei (1990). Horizontal line indicates half power bandwidth for each of the
four modes considered.
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The analytical solution takes into account the radiation damping.
Therefore, as already stated, the waves are free to propagate towards
the semi-infinite sea after reflection at the solid boundaries. As dis-
cussed by Bellotti (2007), an estimate of the damping factor ζn (for
each mode n), can be obtained from the amplification factor diagram
of Fig. 2. Using simple concepts from the theory of one-dimensional
resonators (and under the hypothesis that the damping factor is
much smaller than one), it can be shown that ζn=Δωn/2, where
Δωn is the width of the portion of the amplification diagram with
values larger than max Cað Þ=

ffiffiffi
2

p
for the mode n. Δωn is also referred

to as the half-power spectral bandwidth.
The present technique and the classical one that uses the nodal

line at the offshore boundary were compared in a series of parametric
tests aimed at showing the effect of the radius r of the outer semicir-
cular boundary on the results. In each test, the mesh within the har-
bour was kept constant. Results are presented in Fig. 3 that shows
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Fig. 3. Angular frequency of the first four modes of the long and narrow harbour. Results of
the nodal line at the offshore boundary (squares) and with the radiation condition after t
derived by the analytical solution by Mei (1990) (horizontal lines).
the angular frequencies of the first four modes of the harbour plotted
against r. Each subplot refers to a single mode. The frequencies corre-
sponding to the peaks of the amplification diagram, considered as
reference values, are shown by solid horizontal lines.

In the case of the first mode, the computations carried out using
either the nodal line at the offshore boundary or the radiation condi-
tion are in good agreement with results from the analytical solution.
However for the higher modes it appears that the nodal line tech-
nique, although providing good estimates, is not very stable, and
tends to compute scattered frequencies. For the low order modes (1
and 2) the frequency calculated using the nodal line seems to depend
linearly on the radius r of the outer computational domain (for the
mode 2 this is evident for r≤0.2 m). This is due to the fact that
using a nodal line as the offshore boundary condition, in turn, forces
the length of the standing waves in the cross-shore direction. Assum-
ing a radiation condition does not result in the imposition of the slope
and value of the solution at the offshore boundary, and makes it pos-
sible to obtain these quantities as part of the solution to be found.

When looking at the Fig. 3 it is clear that the present technique
provides some sensible improvement with respect to the classical
one that uses the nodal line, in terms of frequencies. It is to be
noted that for larger values of r, the accuracy does not increase. On
the contrary, when using large values of r the solver finds eigenvalues
of the system made of the two basins, i.e. the harbour and the outer
domains. The latter becomes very large with respect to the former
as r grows. As a guideline to the model application it is our feeling
that the dimension of the outer domain should be kept as small as
possible, so that the normal modes of the harbour are those more sig-
nificant in the computation.

Note that the proposed technique (i.e. with the radiation condi-
tion), directly produces an estimate of the radiation damping, calcu-
lated as the real part of each eigenvalue. The Fig. 4 shows the
damping factor for the first four modes. In particular, it compares
the results of the computations carried out varying the radius r of
the outer computational domain (and using the radiation condition)
with the damping factors obtained measuring the width of each
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computations carried out varying the radius r of the outer computational domain with
he iterative process has converged (black dots) are compared against the frequencies
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peak of the amplification diagram resulting from the analytical solu-
tion. There is an overall good agreement between the reference and
the calculated values of the damping factor for the four considered
modes. However for this parameter it appears that the accuracy of
the model results slightly improves with the size of the outer domain.

3.2. Marina di Carrara harbour

The harbour of Marina di Carrara is located along the North-West
microtidal Italian coast. The harbour basin has an almost square,
regular planshape (Fig. 5) with a total wet surface of about
362,000 m2. Field measurements of short and long waves and other
Fig. 5. Plan of harbour of Marina di Carrara and bathymetry, position of pressure sen-
sors (P1–9) and other instruments. The small panel at the bottom left indicates the po-
sition of the harbour.
meteoceanographic parameters, have been carried out since October
2005 (Melito et al., 2006), in order both to manage the harbour
quays, and to collect useful information to support the future expan-
sion of the harbour.

Incoming waves have been recorded by a directional wave buoy
(Datawell Waverider), located around 1 km offshore the harbour en-
trance, at a water depth of 13.5 m. The buoy provides short wave con-
ditions with a time interval of 30 min. Furthermore, a current meter
and a pressure transducer are installed at the same location of the
buoy in order to measure currents and long waves. Long waves inside
the harbour are measured by 8 pressure transducers. The location of
each of these devices is shown in Fig. 5, where the sensors are num-
bered from P1 to P8 starting from the harbour entrance in counter-
clockwise direction. An additional pressure transducer is located
outside the harbour basin at the breakwater (P9). The data, collected
at a sampling frequency of 2 Hz, are stored in 1 day long bursts. Fur-
ther instruments installed in the harbour are: a tidal gauge and a
side-looking horizontal acoustic-doppler current-profiler located at
the harbour entrance. Finally, a meteorological station is used to mea-
sure both the wind velocity and direction, the atmospheric pressure
and the air temperature.

Analysis of the measurements has been presented in previous
papers. Cuomo et al. (2007) and Melito et al. (2007) discussed, by
coupling field measurements and linear/non-linear numerical model
results, non-stationarity and non-linearity of harbour resonance.
Recently Bellotti and Franco (2011) carried out analysis of three
years of records (December 2005–October 2008) of the pressure
transducers located inside the harbour. Among other analyses they
have presented frequency spectra of the 100 more energetic sea
states, and numerical computations to evaluate the amplification
diagram of long waves.

As far as the frequency spectra are concerned, Bellotti and Franco
(2011) firstly converted the pressure records to surface elevation
time series. Then they have divided the one-day bursts into 12 re-
cords, each covering 2 h. A frequency spectrum of each 2-hour record,
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was obtained using the Fast Fourier Transform. Furthermore, each
spectrum was smoothed by means of a moving average filter. The
procedure was applied to the signal recorded by all the pressure
transducers. Each spectrum was divided into two frequency bands.
The first band (fb0.003 Hz) was referred to Very Long Waves
(VLW), while the second one (0.003b fb0.030 Hz) to Long Waves
(LW). The significant wave height was calculated for each of the
two frequency bands, by integrating the energy density over the
appropriate frequencies. The significant wave heights, calculated on
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Fig. 6. Eigenfrequencies of the Carrara harbour (vertical blue lines) computed using the rad
lines) and the amplification diagram obtained by numerical model (black lines). Each panel r
reproduced for each spectra is the amplitude of the Fourier Transform normalized using th
the basis of the LW frequency band, were arranged in descending
order, making it possible to select the first 100 more energetic
records.

In order to compare the spectral shape at each pressure transduc-
er, the wave spectra given by the Fourier Transform were normalized
with respect to the significant wave height. The normalization was
carried out by keeping separate the VLW and LW frequency bands,
i.e. for each band it was used the appropriate wave height. When
comparing the 100 more energetic normalized spectra of each
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iation condition, compared against the normalized experimental average spectra (red
efers to a pressure gauge, indicated by the number at the y label. Note that the quantity
e significant wave height and is, therefore, nondimensional.
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pressure transducer, Bellotti and Franco (2011) found them to be
very similar, suggesting that they have always the same shape. This
made it possible to calculate a single average spectrum for each pres-
sure transducer. It is to be noted that Maa et al. (2011) recently have
drawn similar conclusions analyzing resonance at a harbour in
Taiwan.

The average spectra corresponding to the 8 pressure transducers
located in the inner harbour of Marina di Carrara are shown in the
Fig. 6 by red solid lines. The spectra have several peaks, that can
reasonably be considered to correspond to the eigenmodes of the
harbour. In the present study a frequency representing these modes
has been estimated at the peaks that are evident and sharp. Table 1
reports these frequencies, specifying (superscripts) the pressure
gauges used for their estimation.

Bellotti and Franco (2011) also compared the analysis to the re-
sults of numerical computations, performed using a linearized equa-
tions wave model based on the Mild Slope Equation (Bellotti et al.,
2003). By performing many computations of the wave penetration
into the harbour, they have built the amplification diagram at the po-
sition of the 8 pressure transducers located inside the harbour. The
computations were carried out without bottom friction and for a di-
rection of the incoming waves identical to the dominant direction of
the short waves, i.e. from South-West. The wave frequency was var-
ied in a wide range between 0.0001 Hz and 0.03 Hz. The amplification
diagrams are reported in Fig. 6 using solid black lines. It is worth to
stress that the amplification diagrams were built using incoming
wave height of unit height, and that they were scaled arbitrarily in
order to compare their shape with the experimental ones. Using
unit height coincides with assuming that the spectrum of the incom-
ing long waves is rectangular, i.e. constant over the frequency. Also
the numerical amplification diagram shows several peaks, most of
these in good agreement with the experimental ones. Frequencies
of the peaks of the amplification diagram, are reported in the
Table 1, specifying as before (superscripts) the location of the pres-
sure gauges used for their estimation.

Eigenmodes of the harbour have been calculated using the compu-
tational domain shown in the Fig. 7. At the artificial boundary that
separates the harbour from the sea, it has been first applied the
nodal line condition, and then the radiation one, in order to compare
the results. As for the rectangular harbour the offshore boundary is
a circular sector centred on the harbour entrance. For the computa-
tional domain shown in the figures the radius of the circular sector
used is 160 m.
Table 1
Frequencies (Hz) of the eigenmodes of the Marina di Carrara harbour, as computed by
the present numerical model using the nodal line and the radiation condition at the off-
shore boundary; frequency of the peaks of the experimental spectra and of the ampli-
fication diagram of Bellotti and Franco (2011). Superscripts indicate what gauges have
been used to estimate the frequency of each mode.

Mode Freq. estimated Freq. estimated Freq. estimated Freq. estimated

number by the nodal
line

by the rad.
cond.

by the exp.
spectra

by the num.
res.

1 0.0016 0.0014 0.00151,3 0.00141–8

2 0.0073 0.0073 0.00722,3,5 0.00731–8

3 0.0078 0.0079 0.00778 0.00768

4 0.0108 0.0107 0.01092 0.01091–4,6,8

5 0.0127 0.0130 0.01255,7 0.01261–5,7,8

6 0.0139 0.0139 0.01366 0.01401,3–7

7 0.0153 0.0151 – 0.01501,4,5,7

8 0.0171 0.0170 0.01691,2 –

9 0.0199 0.0198 0.02013 0.01991,2,4

10 0.0209 0.0207 – 0.02072,4

11 0.0215 0.0215 0.02161,2,4 0.02151,3,5,7

12 0.0238 0.0239 0.02406 0.02392,3,8

13 0.0243 0.0242 – 0.02421,7,8

14 0.0252 0.0252 – 0.02531,3–6,8

15 0.0265 0.0265 – 0.02661,2,4,6–8
Eigenfrequencies are summarized in the Table 1, and are repre-
sented in the Fig. 6 using vertical blue lines. The corresponding eigen-
modes are shown in the Fig. 8, where the position of the 8 pressure
transducers is shown using small black circles. There the mass nor-
malized absolute value of each mode has been plotted. In order to
make easier the following analysis, for each eigenmode it has been
evaluated whether or not some of the pressure transducers are
expected to measure small surface elevation. For example, referring
to the eigenmode 6, it is clear that transducers 1 and 3 are at the po-
sition of crest and trough, while transducer 2 can hardly detect this
mode, being at the quasi-nodal line. Finally in Fig. 6, an eigenfre-
quency is plotted using a dashed line in the case that the transducer
is at a quasi-nodal line, while a solid line is used in the case that
it is expected to measure large surface elevation. In the following
each relevant mode is analyzed, and the corresponding eigenfre-
quency compared with the experimental and the numerical results
of Bellotti and Franco (2011). Note that we often use terms like
“quasi-standing” waves and “quasi-nodal” lines. This is done in anal-
ogy with the definition of “quasi-normal” modes given by Kokkotas
and Schmidt (1999).

Mode 1 is the Helmoltzmode of the harbour. The surface elevation is
in phase, almost constant in the inner harbour. The computed frequency
for this mode is in very good agreement with that desumed by the
field measurements, while it appears that the numerical model results
by Bellotti and Franco (2011), slightly underestimate the frequency.

Modes 2 and 3 are “quasi-standing” waves inducing minimum
surface elevation along the diagonals of the harbour. A trough will
be on one side of the harbour when a crest is on the other side. The
eigenfrequencies of mode 2 resulting from the calculation carried
out imposing either a nodal line or the radiation condition are coinci-
dent (see Table 1). Mode 2 has the minimum surface elevation at the
harbour entrance; the corresponding mode calculated with the nodal
line technique, not represented in the figure, shows a nodal line at the
entrance. As shown by Bellotti (2007), this mode tends to be more
trapped in the basins with respect to mode 3, that has an antinode
near the entrance and therefore is able to generate radiating waves.
This is also explained by the damping factors. In fact, while the damp-
ing factor of mode 2 (ζ=0.000139) is of the order of 10−4, that of
mode 3 (ζ=0.003639) is of the order of 10−3. Due to the almost
square planshape of the harbour, the frequencies of these modes are
very similar. By comparing these eigenfrequencies with the experi-
mental data, it can be desumed that mode 2 is more likely excited,
or has larger amplification coefficients than mode 3. The peaks in
the spectra pertaining to these frequencies are however quite broad.
Therefore, it is reasonable to assume that both modes contribute to
the surface oscillations at these frequencies. However the peak
frequencies of most of the pressure gauges suggests that mode 2 is
more important. This does not apply for the gauges 1 and 8, that for
mode 2 are in areas of small amplification.

Mode 4 appears to be dominated by a quasi-standing wave at the
North-East boundary of the harbour. The analysis of the correspond-
ing eigenmode suggests that maxima of surface elevation should be
observed at gauges 4 and 3, while smaller but still detectable eleva-
tions should be observed at gauges 2 and 8. This expectation is con-
firmed by the comparison of the computed frequency of this mode
with the corresponding peak in the experimental spectra. Neverthe-
less, the peak frequency desumed by the measurements appears
larger than that computed.

Mode 5 gives very large surface elevations at the gauge 5. Also
gauges 3, 6 and 7 are expected to detect waves pertaining to this
mode. The corresponding peak frequency of the average spectra is
consistent with what expected. Surprisingly at gauge 6, the numerical
results obtained by Bellotti and Franco (2011) using the forcing
waves, show no amplification, while the experimental results indicate
relevant energy around that frequency. The present technique detects
the eigenmode.



Fig. 7.Marina di Carrara harbour. Left panel: water depth over the computational domain. Right panel: coarse version of the FEMmesh. Note that the offshore boundary is a circular
sector centred on the harbour entrance.
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Mode 6 appears similar to mode 2, but with two quasi-nodal lines
across the diagonal of the harbour. Relevant amplifications are expected
at nodes 1, 3, 4, 5, 6. The experimental spectra show peaks around these
frequencies for gauges 1, 4, 5, 6. Some energy is also present at gauge 3,
but there is not a clear peak in the corresponding average spectrum. The
numerical amplification diagram by (Bellotti and Franco, 2011) shows
for this mode sharp peak with frequencies well in agreement with
those found with the present technique.

Mode 7 gives large amplifications around gauges 4 and 5; however
no peaks around this frequencies are found in the measurements.

Mode 8 induces a quasi-standing wave along the North-West
boundary of the harbour, between gauges 5 and 6. The spectra show
for these gauges quite broad peaks, with frequencies similar to that
given by the numerical model. Small peaks are detectable also for
gauges 1 and 2, for which the numerical results predict large wave
amplitudes. A relevant peak is also clear for the gauge 8, although the
peak frequency is smaller than that from the numerical calculation.

As far as mode 9 is concerned, it is possible to identify a peak in
the experimental average spectra only at gauge 3. No relevant surface
elevation has been measured at gauge 5, although the modal shape
predicts large amplitudes at that point. The numerical results show
some amplifications for the corresponding frequency only at gauge 1.

Modes 10 and 11 have very similar frequencies and modal shapes.
Mode 10 appears to induce larger waves at the North-West side (i.e.
between gauges 5 and 6), while mode 11 predicts larger waves at
the North-East side of the harbour. The damping factors show the
same order of magnitude. Peaks around these frequencies are found
in the experimental spectra at gauges 1, 2, 3, and 4. The frequencies
of these peaks suggest that mode 11 is more energetic than the 10.

For the modes from 12 to 15 it is not easy to find peaks in the ex-
perimental spectra. The results are however in reasonable agreement
with the numerical computations carried out by Bellotti and Franco
(2011), that show sharp peaks at frequencies compatible with those
derived with the present method.

To conclude it appears that modal analysis of the harbour of
Marina di Carrara has provided results well in agreement with avail-
able analyses of field data and numerical modelling.

4. Conclusions

We have presented a FEM model for the computation of eigen-
modes and eigenfrequencies of partially enclosed basins such har-
bours and bays. The novelty of the model is the treatment of the
mathematical condition used at the boundary that separates the com-
putational domain from the open sea. While the classical approach is
that of imposing a nodal line at that boundary, requiring the surface
elevation to be zero, here a suitable radiation condition has been
applied. This allows to reproduce the effects of the radiation damping
on the free oscillations of the water surface in the basin. The most im-
portant practical consequence of this is that it is possible to estimate
the damping factor of the natural modes of the basin. This is an indi-
cator of the degree of trapping of each mode, and of the persistence of
the free water surface oscillations inside the basin.

The method was applied to an idealized long and narrow harbour,
for which the analytical solution by Mei (1990) is available. Compar-
ison of the analytical solution with the results obtained using the
nodal line and the radiation condition, suggests that the new method
based on the radiation condition gives some improvements with re-
spect to the classical one, since eigenfrequencies of the harbour ap-
pear more accurate. Furthermore it shows that the estimate of the
radiation damping is fairly accurate, especially for the two lowest
order modes.

The application of the method to the harbour of Marina di Carrara
was also successful, since comparison with available experimental
data and previous numerical modeling suggests good performance
of the present modal analysis technique. However, for this latter
test, the difference between the use of the nodal line and the radia-
tion condition in terms of modal frequencies is modest. This is also
a consequence of the shape of the harbour, that has a relatively
small entrance, inducing a small radiation damping. Nevertheless
the use of the radiation condition has the relevant advantage of
allowing the calculation of the damping factor. Furthermore we be-
lieve that, despite the real part of the eigenfrequencies provided by
the two methods are similar, the modal shapes (e.g. the eigenvectors)
calculated by the new method that uses the radiation condition (i.e. a
condition that makes it possible to describe the wave field in terms of
both standing and progressive waves), are more realistic than those
given by the classical one that uses a nodal line at the offshore bound-
ary (i.e. a method that inherently describes the wave field in terms
of purely standing waves, given the real value of the solution).

We believe that modal analysis of harbours, with the improve-
ment of the radiation condition at the offshore boundary, is a useful
tool to support engineering practice. In fact the computation of the
eigenmodes easily allows to identify the areas/points of the basin
that are expected to experience large surface oscillations, and the
frequency of the long waves that can resonate inside the harbour.
However the model presented in this paper is not alternative to the
methods used for the computation of the amplification diagram as
that used by Bellotti and Franco (2011). Given the theory and the nu-
merics developed so far, the present method allows identification of
modal shapes and frequencies, but not amplifications. It is also
worth to remember that in the practice it is important to look not
only at the response of the basin, i.e. how it would react when forced
by long waves of given frequencies, but also at the forcing long waves
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Fig. 8. Eigenmodes of the Carrara harbour computed using the radiation condition. The mass normalized absolute value of each eigenvector is represented.
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(Bellotti and Franco, 2011; Bowers, 1977; De Girolamo, 1996; Madsen
and Sørensen, 1993; Stiassnie and Drimer, 2006).
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