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Multistage launch vehicles are employed to place spacecraft and satellites in their operational orbits. Trajectory optimization of
their ascending path is aimed at defining the maximum payload mass at orbit injection, for specified structural, propulsive, and
aerodynamic data. This work describes and applies a method for optimizing the ascending path of the upper stage of a specified
launch vehicle through satisfaction of the necessary conditions for optimality. The method at hand utilizes a recently introduced
heuristic technique, that is, the particle swarm algorithm, to find the optimal ascent trajectory. This methodology is very intuitive
and relatively easy to program. The second-order conditions, that is, the Clebsch-Legendre inequality and the conjugate point
condition, are proven to hold, and their fulfillment enforces optimality of the solution. Availability of an optimal solution to the
second order is an essential premise for the possible development of an efficient neighboring optimal guidance.

1. Introduction

Multistage rockets are employed to place spacecraft and sat-
ellites in their operational orbits. The optimization of their
ascending trajectory leads to determining themaximumpay-
load mass that can be inserted in the desired orbit. This goal
is achieved by finding the optimal control time history and
the optimal thrust and coast durations.

The numerical solution of aerospace trajectory optimiza-
tion problems has been pursued with different approaches in
the past. Indirect methods, such as the gradient-restoration
algorithm [1, 2] and the shooting method [3] or direct tech-
niques, such as direct collocation [4, 5], direct transcription
[6, 7], and differential inclusion [8, 9], are examples of such
techniques. However, only a relatively small number of publi-
cations are concerned with trajectory optimization of multi-
stage launch vehicles [1, 2, 10, 11]. A recently published paper
[12] describes a simple method for performance evaluation
through generation of a near optimal trajectory for a multi-
stage launch vehicle.

This research considers the optimal exoatmospheric tra-
jectory of the upper stage of the latter rocket, whose charac-
teristics are specified. The trajectory arc that precedes orbital

injection is composed of two phases: (1) coast (Keplerian) arc
and (2) thrust phase.More specifically, for the upper stage the
existence and duration of a coast arc (with no propulsion) and
the optimal thrust direction are being investigated through
the first-order necessary conditions for optimality, that is,
the Euler-Lagrange equations and the Pontryagin minimum
principle, in conjunction with a heuristic technique, that is,
the particle swarm algorithm. This technique is intended to
numerically determine the state, control, and adjoint vari-
ables (conjugate to the dynamics equations). The availability
of the latter quantities allows the direct evaluation of the
second-order conditions for optimality, that is, the Clebsch-
Legendre condition and the nonexistence of conjugate points.
The numerical process for verifying these conditions is based
on the sweep method and is illustrated in full detail in this
work.

The present paper is organized as follows. Section 2 deals
with fundamental concepts related to the multistage rocket
characteristics and dynamics. Section 3 is concerned with
optimal thrust programming and illustrates the first- and
second-order conditions for optimality. Section 4 contains an
overview of the numerical technique used to generate the
optimal ascending path and presents the numerical solution
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to the trajectory optimization problem, together with the
second-order conditions verification. Section 5 concludes the
paper, summarizing its main results and accomplishments.

2. Characteristics and Dynamics of
the Multistage Launch Vehicle

This work addresses the problem of optimizing the ascending
path of the upper stage of a multistage rocket with speci-
fied structural, propulsive, and aerodynamic characteristics,
through the determination of the optimal control time
history, leading to injecting the payload in the desired opera-
tional orbit. This is a circular orbit of radius 𝑅𝑑 and specified
spatial orientation. The launch vehicle is modeled as a point
mass, in the context of a three-degree-of-freedom problem.

2.1. Rocket Characteristics. The three-stage rocket that is
being considered is the MultiRole Air Launch Missile
(Muralm) [13]. It has specified structural, propulsive, and
aerodynamic characteristics, which are the same as those
described in [12] and are (partially) reported in the following.

For the sake of simplicity, the mass distribution of the
launch vehicle can be described in terms of masses of sub-
rockets: subrocket 1 is the entire rocket, including all the three
stages, subrocket 2 is the launch vehicle after the first stage
separation, and subrocket 3 is the launch vehicle after separa-
tion of the first two stages and therefore is represented by the
third stage only. Let𝑚(𝑖)

0
denote the initialmass of subrocket 𝑖.

Thismass𝑚(𝑖)
0
is composed of a structuralmass𝑚(𝑖)

𝑆
, a propel-

lant mass 𝑚(𝑖)
𝑃
, and a payload mass 𝑚(𝑖)

𝑈
(𝑚(𝑖)
0

= 𝑚
(𝑖)

𝑆
+ 𝑚
(𝑖)

𝑃
+

𝑚
(𝑖)

𝑈
). For the first two subrockets, 𝑚(𝑖)

𝑈
(𝑖 = 1, 2) coincides

with the initial mass of the subsequent subrocket (i.e., 𝑚(𝑖)
𝑈
≡

𝑚
(𝑖+1)

0
).With regard to the third subrocket,𝑚(3)

𝑈
is the (actual)

payload mass, which is to be maximized. The mass distribu-
tion for the Muralm three-stage rocket is the following:

𝑚
(1)

0
= 3608 kg 𝑚

(1)

𝑆
= 306 kg 𝑚

(1)

𝑃
= 2480 kg

𝑚
(1)

𝑈
= 822 kg 𝑚

(2)

0
= 822 kg 𝑚

(2)

𝑆
= 46 kg

𝑚
(2)

𝑃
= 370 kg 𝑚

(2)

𝑈
= 406 kg ≡ 𝑚

(3)

0
.

(1)

The initial mass of the third stage is specified and this
implies that minimizing the third stage propellant expen-
diture implies maximizing the payload mass that can be
injected in the desired orbit.

The propulsive characteristics of the launch vehicle can
be described in terms of thrust magnitude 𝑇 and specific
impulse 𝐼SP. Both these quantities are assumed as time-
independent for all of the stages. For the upper stage, the
following propulsive data are assumed:

𝑇
(3)

= 7500N, 𝐼
(3)

SP = 320 sec, (2)
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Figure 1: ECI-frame and geometry of orbits.

where the superscript refers to stage 3. For each subrocket 𝑖,
it is then straightforward to derive the thrust acceleration as
a function of the time 𝑡:

𝑇
(𝑖)

𝑚(𝑖)
=

𝑛
(𝑖)

0

1 − 𝑛
(𝑖)

0
(𝑡 − 𝑡
(𝑖)

𝑖𝑔𝑛
) / (𝑔0𝐼

(𝑖)

SP)
, (3)

where 𝑛
(𝑖)

0
is the thrust acceleration at ignition of stage 𝑖

(which occurs at the time 𝑡
(𝑖)

𝑖𝑔𝑛
) and 𝑔0 is the gravitational

acceleration at sea level.
The aerodynamics of the Muralm rocket has been mod-

eled through the Missile DATCOM database for the first two
stages, whereas it is irrelevant for the upper stage, because the
flight is approximated as entirely exoatmospheric, because of
the altitude reached at the second stage separation.

2.2. Equations of Motion. Orbital motion is usually described
in an Earth-centered inertial frame (ECI), with origin coin-
cident with the Earth center, and axes associated with the
unit vectors (𝑐1, 𝑐2, 𝑐3); 𝑐1 corresponds to the vernal axis,
whereas 𝑐3 is alignedwith the Earth rotation axis and directed
toward North (cf. Figure 1). The orbital plane contains the
unit vectors 𝑁̂, associated with the ascending node crossing
(corresponding to the point at which the space vehicle crosses
the equatorial plane from South to North), 𝑒, aligned with the
direction of perigee, and 𝑟, directed toward the instantaneous
position of the spacecraft. Two angles suffice to define the
orbit plane orientation in the ECI frame, that is, the right
ascension of the ascending node (RAAN) Ω (0 ≤ Ω < 2𝜋)

and the orbit inclination 𝑖 (0 ≤ 𝑖 ≤ 𝜋). The argument of
perigee 𝜔 defines the position of perigee on the orbit plane,
whereas the instantaneous true anomaly 𝑓(𝑡) identifies the
position of the space vehicle.

The entire trajectory of the upper stage entirely belongs
to the desired orbital plane, which has been selected during
the ascending trajectory of the first two stages (cf. [12]). This
circumstance implies that the orbit inclination 𝑖 and RAAN
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Ω do not vary during the last stage propulsion. In contrast,
the remaining orbit elements, that is, the orbit semimajor axis
𝑎, eccentricity 𝑒, and argument of perigee 𝜔, change up to
reaching the desired final values (denoted with the subscript
“𝑑”); that is, 𝑎𝑑 = 𝑅𝑑 and 𝑒𝑑 = 0 (𝜔 is not defined for circular
orbits).

At separation of the second stage, the previously men-
tioned orbit elements are known and denoted with 𝑎2, 𝑒2,
and 𝜔2. The third stage trajectory is assumed to be composed
of two phases: a coast arc and a thrust phase. It is relatively
straightforward to prove that during the coast arc the true
anomaly variation, denoted with Δ𝑓, suffices to describe the
rocket dynamics. In fact, if 𝑡2 and 𝑡3 represent, respectively,
the time of the second stage separation and the ignition time
of the upper stage, then 𝑓3 ≜ 𝑓(𝑡3) = 𝑓(𝑡2) + Δ𝑓 = 𝑓2 + Δ𝑓.
The orbital elements 𝑎2, 𝑒2, and𝜔2 do not vary along the coast
(Keplerian) arc. As a result, the radius 𝑟, inertial velocity V𝐼,
and inertial flight path angle 𝛾𝐼 at 𝑡3 are simply given by

𝑟 (𝑡3) −

𝑎2 (1 − 𝑒
2

2
)

1 + 𝑒2 cos𝑓3
= 0, (4)

𝛾𝐼 (𝑡3) − arctan [
𝑒2 sin𝑓3

1 + 𝑒2 cos𝑓3
] = 0, (5)

V𝐼 (𝑡3) − √
𝜇𝐸

𝑎2 (1 − 𝑒
2

2
)

√1 + 𝑒
2

2
+ 2𝑒2 cos𝑓3 = 0, (6)

where 𝜇𝐸(= 398600.4 km3/sec2) denotes the Earth gravita-
tional parameter. In the powered phase, the third stage
motion can be conveniently described through the use of the
equations of motion for 𝑟, V𝐼, and 𝛾𝐼:

̇𝑟 = V𝐼 sin 𝛾𝐼,

V̇𝐼 =
𝑇
(3)

𝑚(3)

cos𝛼𝐼
V𝐼

−
𝜇𝐸

𝑟2
sin 𝛾𝐼,

̇𝛾𝐼 =
𝑇
(3)

𝑚(3)

sin𝛼𝐼
V𝐼

+ (
V𝐼
𝑟
−

𝜇𝐸

𝑟2V𝐼
) cos 𝛾𝐼,

(7)

where the subscript “3” will be omitted henceforth and can
be written in compact form as state equations:

ẋ = f (x, u, a, 𝑡) . (8)

The thrust direction is specified through the thrust angle
𝛼𝐼(≡ u), which is the only time-varying control variable and
is taken clockwise from the direction of the inertial velocity
vector k𝐼. The operational orbit is assumed to be a circular
orbit of radius𝑅𝑑.Thismeans that the final conditions at orbit
injection (which occurs at 𝑡𝑓) are

𝑟 (𝑡𝑓) − 𝑅𝑑 = 0 V𝐼 (𝑡𝑓) − √
𝜇𝐸

𝑅𝑑

= 0 𝛾𝐼 (𝑡𝑓) = 0.

(9)

The left-hand sides of (4) through (6) and (9) are collected in
the vector 𝜓(x0, x𝑓, a, 𝑡0, 𝑡𝑓)(= 0) (𝑡0 ≡ 𝑡3).

3. Optimal Thrust Programming

The trajectory of the upper stage is obtained by minimizing
fuel consumption, which is equivalent to minimizing the
thrust duration. Hence, the objective function for the third
stage trajectory optimization is

𝐽 = 𝑡𝑓 − 𝑡3. (10)
Hence, the optimization problem for the upper stage is the
following: determine the optimal control law 𝛼𝐼(𝑡) and the
optimal true anomaly 𝑓3 such that 𝐽 is minimized. The
ignition time 𝑡3 is then calculated through the Kepler’s law,

𝑡3 = 𝑡2 +
√
𝑎
3

2

𝜇𝐸

× {𝐸 (𝑡3) − 𝐸 (𝑡2) − 𝑒2 sin [𝐸 (𝑡3)] + 𝑒2 sin [𝐸 (𝑡2)]} ,
(11)

where 𝐸(𝑡𝑘) is the eccentric anomaly associated with 𝑓(𝑡𝑘)

(𝑘 = 2, 3).
Letting x ≜ [𝑥1 𝑥2 𝑥3]

𝑇
= [𝑟 V𝐼 𝛾𝐼]

𝑇, to obtain the
necessary conditions for an optimal solution a Hamiltonian
𝐻 and a function of the boundary conditions Φ are intro-
duced as

𝐻 ≜ 𝜆
𝑇f = 𝜆1𝑥2 sin𝑥3 + 𝜆2 [

𝑇
(3)

𝑚(3)

cos𝛼𝐼
𝑥2

−
𝜇𝐸

𝑥
2

1

sin𝑥3]

+ 𝜆3 [
𝑇
(3)

𝑚(3)

sin𝛼𝐼
𝑥2

+ (
𝑥2

𝑥1

−
𝜇𝐸

𝑥
2

1
𝑥2

) cos𝑥3] ,

Φ ≜ 𝐽 + 𝜐
𝑇
𝜓 = (𝑡𝑓 − 𝑡3) + 𝜐1 [𝑥10 −

𝑎2 (1 − 𝑒
2

2
)

1 + 𝑒2 cos𝑓3
]

+ 𝜐2 [𝑥20 − √
𝜇𝐸

𝑎2 (1 − 𝑒
2

2
)

√1 + 𝑒
2

2
+ 2𝑒2 cos𝑓3]

+ 𝜐3 [𝑥30 − arctan
𝑒2 sin𝑓3

1 + 𝑒2 cos𝑓3
]

+ 𝜐4 [𝑥1𝑓 − 𝑅𝑑] + 𝜐5 [𝑥2𝑓 − √
𝜇𝐸

𝑅𝑑

] + 𝜐6𝑥3𝑓,

(12)
where 𝑥𝑘0 = 𝑥𝑘(𝑡3) and 𝑥𝑘𝑓 = 𝑥𝑘(𝑡𝑓) (𝑘 = 1, 2, 3);
𝜆 (≜ [𝜆1 𝜆2 𝜆3]

𝑇
) and 𝜐 (≜ [𝜐1 𝜐2 𝜐3 𝜐4 𝜐5 𝜐6]

𝑇
)

represent, respectively, the adjoint variable conjugate to the
dynamics equations (7) and to the boundary conditions (4)–
(6) and (9). With these definitions, the objective function
assumes its extended form

𝐽
󸀠
= Φ (x0, x𝑓, 𝑓3, 𝑡0, 𝑡𝑓) + ∫

𝑡𝑓

𝑡0

[𝐻 (x, u, 𝑡) − 𝜆𝑇ẋ] 𝑑𝑡. (13)

3.1. First-Order Conditions. The first-order necessary condi-
tions for (local) optimality [14] include the adjoint equations:

𝜆̇ = −[
𝜕𝐻

𝜕x
]

𝑇

, (14)
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which yield the following scalar relations for the costate 𝜆 (≜
[𝜆1 𝜆2 𝜆3]

𝑇
):

𝜆̇1 = (𝑥2𝜆3 cos𝑥3)
1

𝑥
2

1

− (2𝜇𝐸𝜆2 sin𝑥3 + 2𝜇𝐸𝜆3

cos𝑥3
𝑥2

)
1

𝑥
3

1

,

(15)

𝜆̇2 = − 𝜆1 sin𝑥3

− 𝜆3 [cos𝑥3 (
1

𝑥1

+
𝜇𝐸

𝑥
2

1
𝑥
2

2

) −
𝑇
(3)

𝑚(3)

1

𝑥
2

2

sin𝛼𝐼] ,
(16)

𝜆̇3 = − 𝑥2𝜆1 cos𝑥3

+ 𝜇𝐸𝜆2

cos𝑥3
𝑥
2

1

+ 𝜆3 sin𝑥3 (
𝑥2

𝑥1

−
𝜇𝐸

𝑥
2

1
𝑥2

) ,

(17)

in conjunction with the respective boundary conditions:

𝜆0 = −[
𝜕Φ

𝜕x0
]

𝑇

󳨐⇒ 𝜆𝑘0 = −𝜐𝑘 (𝑘 = 1, 2, 3) (18)

𝜆𝑓 = [
𝜕Φ

𝜕x𝑓
]

𝑇

󳨐⇒ 𝜆𝑘𝑓 = 𝜐𝑘+3 (𝑘 = 1, 2, 3) , (19)

where the subscripts “0” and “𝑓 ” refer to 𝑡3 and 𝑡𝑓, respec-
tively. In the presence of initial conditions depending on a
parameter (a ≡ 𝑓3) a pair of additional necessary conditions
must hold [15]:

Φa = 0 󳨐⇒
𝜕Φ

𝜕𝑓3

= 0, Φaa ≥ 0 󳨐⇒
𝜕
2
Φ

𝜕𝑓
2

3

≥ 0. (20)

The first equation yields a relation that expresses 𝜆30 as a
function of 𝜆10, 𝜆20, and 𝑓3,

𝜆30 = 𝜆20

sin𝑓3√1 + 𝑒
2

2
+ 2𝑒2 cos𝑓3

𝑒2 + cos𝑓3

− 𝜆10

𝑎2 (1 − 𝑒
2

2
)

𝑒2 + cos𝑓3
1 + 𝑒
2

2
+ 2𝑒2 cos𝑓3

(1 + 𝑒2 cos𝑓3)
2

.

(21)

In addition, the optimal control 𝛼∗
𝐼
can be expressed as a

function of the costate through the Pontryagin minimum
principle:

𝛼
∗

𝐼
= argmin

𝛼𝐼

𝐻 󳨐⇒ sin𝛼∗
𝐼
= −

𝜆3

𝑥2

[(
𝜆3

𝑥2

)

2

+ 𝜆
2

2
]

−1/2

,

cos𝛼∗
𝐼
= −𝜆2[(

𝜆3

𝑥2

)

2

+ 𝜆
2

2
]

−1/2

,

(22)

which implies the fulfillment of the stationarity condition of
𝐻 with respect to u; that is,

𝐻
𝑇

u = 0. (23)

Lastly, as the final time is unspecified, the following transver-
sality condition must hold:

𝐻(𝑡𝑓) +
𝜕Φ

𝜕𝑡𝑓

= 0 󳨐⇒
𝑛
(3)

0

1 − 𝑛
(3)

0
(𝑡𝑓 − 𝑡3) / (𝑔0𝐼

(3)

SP )

× √[

𝜆3𝑓

𝑥2𝑓

]

2

+ [𝜆2𝑓]
2

− 1 = 0.

(24)

The necessary conditions for optimality allow translating the
optimal control problem into a two-point boundary-value
problem involving (15)–(24), with unknowns represented by
the initial values of 𝜆, 𝑓3, and 𝑡𝑓.

However, the transversality condition can be proven to be
ignorable. First, homogeneity of the costate equations (15)–
(17) can be easily recognized. This circumstance implies that
if an optimization algorithm is capable of finding some initial
value of 𝜆 such that 𝜆1(0) = 𝑘𝜆𝜆

∗

1
(0), 𝜆2(0) = 𝑘𝜆𝜆

∗

2
(0), and

𝜆3(0) = 𝑘𝜆𝜆
∗

3
(0) (𝑘𝜆 > 0) (where the superscript “∗” denotes

the actual optimal value of a variable), then the same propor-
tionality holds between 𝜆 and 𝜆∗ at any 𝑡, due to homogeneity
of (15)–(17). Second, if the control 𝛼𝐼 is written as a function
of 𝜆(= 𝑘𝜆𝜆

∗
) through (22), then one can recognize that 𝛼𝐼

coincides with 𝛼∗
𝐼
:

sin𝛼𝐼 = −
𝜆3

𝑥2

[(
𝜆3

𝑥2

)

2

+ 𝜆
2

2
]

−1/2

= −
𝑘𝜆𝜆
∗

3

𝑥2

[(
𝑘𝜆𝜆
∗

3

𝑥2

)

2

+ (𝑘𝜆𝜆
∗

2
)
2
]

−1/2

≡ sin𝛼∗
𝐼
,

cos𝛼𝐼 = −𝜆2[(
𝜆3

𝑥2

)

2

+ 𝜆
2

2
]

−1/2

= −𝑘𝜆𝜆
∗

2
[(

𝑘𝜆𝜆
∗

3

𝑥2

)

2

+ (𝑘𝜆𝜆
∗

2
)
2
]

−1/2

≡ cos𝛼∗
𝐼
.

(25)

This circumstance implies that if 𝜆 is proportional to 𝜆∗, then
the final conditions are fulfilled at the minimum final time
𝑡
∗

𝑓
even when the control is expressed as a function of the

nonoptimal 𝜆. In contrast, using 𝜆(= 𝑘𝜆𝜆
∗
) the transversality

condition is violated, because the value of𝐻(𝑡
∗

𝑓
), due to (24),

turns out to be

𝐻(𝑡
∗

𝑓
) = −

𝑛
(3)

0

1 − 𝑛
(3)

0
(𝑡
∗

𝑓
− 𝑡
∗

3
) / (𝑔0𝐼

(3)

SP )

× √[

𝜆3𝑓

𝑥2𝑓

]

2

+ [𝜆2𝑓]
2

= −𝑘𝜆 ̸= − 1.

(26)

Hence, if the proportionality condition 𝜆 = 𝑘𝜆𝜆
∗ holds, then

optimal control 𝛼∗
𝐼
can be determined without considering

the transversality condition, which in fact is ignorable in this
context.
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3.2. Second-Order Conditions. The derivation of the second-
order optimality conditions, which have local character as the
first-order conditions, involves the definition of an admissible
comparison path, located in the neighborhood of the (local)
optimal path, associated with the optimal state x∗, costate 𝜆∗,
and control u∗. The nonexistence of alternative neighboring
optimal solutions is to be proven in order to guarantee
optimality of the solution of interest.

3.2.1. Weierstrass and Legendre-Clebsch Conditions. An
admissible comparison path can be defined by introducing a
comparison control u such that

u − u∗ = 0 if 𝑡0 ≤ 𝑡 ≤ 𝑡𝑝

u − u∗ = const. if 𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑞

u − u∗ such that Ψx𝑓𝛿x𝑓 = 0 if 𝑡𝑞 ≤ 𝑡 ≤ 𝑡𝑓,

(27)

where 𝑡0 < 𝑡𝑝 < 𝑡𝑞 < 𝑡𝑓 and Δ𝑡(≜ 𝑡𝑞 − 𝑡𝑝) is small. Under
the assumption that Ψ depends only on x𝑓, the condition
Ψx𝑓𝛿x𝑓 = 0 ensures fulfillment of the boundary conditions to
first order (𝛿x𝑓 is the variation of the state at the final time).
The comparison control is not located in the neighborhood
of the optimal solution and for this reason the variation (u −
u∗) belongs to the class of strong variations. In contrast, the
resulting state variation 𝛿x(= x − x∗) is reasonably small, and
the comparison state x is sufficiently close to the optimal state
x∗. Let 𝐽󸀠

∗
denote the local minimum value of the objective

(associated with u∗) and 𝐽
󸀠 the value corresponding to u.

After expanding Δ𝐽󸀠(= 𝐽
󸀠
− 𝐽
󸀠

∗
) in Taylor series, one obtains

(cf. [15])

Δ𝐽
󸀠
= [𝐻 − 𝐻∗]𝑝

Δ𝑡, (28)

where 𝐻 and 𝐻∗ are associated with u and u∗. The quantity
Δ𝐽
󸀠 must be positive for any choice of u. Since 𝑡𝑝 is arbitrary

and Δ𝑡 > 0, the condition

𝐻 −𝐻∗ > 0 (29)

must hold at any point along the minimizing path. Equation
(29) represents the Weierstrass condition for a strong local
minimum. For weak variations, that is, when u = u∗ + 𝛿u
(with 𝛿u sufficiently small), (29) can be expanded in Taylor
series about the optimal solution:

𝐻 −𝐻∗ ≃ (𝐻𝑢)∗
𝛿u + 1

2
𝛿u𝑇(𝐻𝑢𝑢)∗𝛿u. (30)

Along the optimal path (𝐻𝑢)∗ = 0, this property and the fact
that 𝛿u is arbitrary imply that theHessianmatrix (𝐻𝑢𝑢)∗must
be positive definite; that is,

(𝐻𝑢𝑢)∗
> 0. (31)

Equation (31) is the Clebsch-Legendre sufficient condition
for a minimum; in the necessary (weak) form the sign “≥”
replaces the inequality sign (i.e., the Hessian must be positive
semidefinite).

3.2.2. Conjugate Point Condition. In general, a comparison
path fulfills the state equations and boundary conditions to
first order. This means that the state, costate, control, param-
eter, and final time displacements (𝛿x, 𝛿u, 𝑑a, 𝑑𝑡𝑓) satisfy the
linear equations (deriving from (8), (14), and (23)):

𝛿ẋ = f𝑥𝛿x + f𝑢𝛿u + f𝑎𝑑a (32)

𝛿𝜆̇ = −𝐻𝑥𝑥𝛿x − 𝐻𝑥𝑢𝛿u − 𝐻𝑥𝜆𝛿𝜆 − 𝐻𝑥𝑎𝑑a (33)

𝐻𝑢𝑥𝛿x + 𝐻𝑢𝑢𝛿u + 𝐻𝑢𝑎𝑑a + 𝐻𝑢𝜆𝛿𝜆 = 0 (34)

accompanied by the boundary conditions (deriving from the
boundary conditions (4)–(6), (9), (18), (19), and (24)):

𝜓x𝑓𝛿x𝑓 + 𝜓x0𝛿x0 + 𝜓a𝑑a + 𝜓
󸀠
𝑑𝑡𝑓 = 0 (35)

𝛿𝜆0 = −Φx0x0𝛿x0 − Φx0a𝑑a − 𝜓
𝑇

x0𝑑𝜐 (36)

𝛿𝜆𝑓 = Φx𝑓x𝑓𝛿x𝑓 + Φx𝑓a𝑑a + 𝜓
𝑇

x𝑓𝑑𝜐 + Φ
󸀠𝑇

x𝑓𝑑𝑡𝑓 (37)

Λ x𝑓𝛿x𝑓 + Λ x0𝛿x0 + Λ a𝑑a + 𝜓
󸀠𝑇
𝑑𝜐 + Λ

󸀠
𝑑𝑡𝑓 = 0 (38)

Φax0𝛿x0 + Φax𝑓𝛿x𝑓 + Φaa𝑑a + Φa𝑡𝑓𝑑𝑡𝑓 + 𝜓a𝑑𝜐 = 0, (39)

where Λ ≜ 𝐻𝑓 + Φ𝑡𝑓
. After solving (34) for u,

𝛿u = −𝐻
−1

𝑢𝑢
(𝐻𝑢𝑥𝛿x + 𝐻𝑢𝑎𝑑a + 𝐻𝑢𝜆𝛿𝜆) , (40)

and inserting the resulting expression in (32)-(33), one
obtains

𝛿ẋ = 𝐴𝛿x − 𝐵𝛿𝜆 + 𝐷𝑑a (41)

𝛿𝜆̇ = −𝐶𝛿x − 𝐴
𝑇
𝛿𝜆 − 𝐸𝑑a, (42)

where the matrices 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 are defined in terms
of the quantities appearing in (32)–(34). The final conditions
(35) and (37) justify the definition of the sweep variables,
introduced through the following relations:

𝛿𝜆 = 𝑆𝛿x + 𝑅𝑑𝜐 + 𝑚𝑑a (43)

0 = 𝑅
𝑇
𝛿x + 𝑄𝑑𝜐 + 𝑛𝑑a (44)

0 = 𝑚
𝑇
𝛿x + 𝑛

𝑇
𝑑𝜐 + 𝛼𝑑a. (45)

After inserting (43) through (45) into (32)-(33), one obtains

̇𝑆 = −𝐶 − 𝐴
𝑇
𝑆 − 𝑆𝐴 + 𝑆𝐵𝑆

𝑅̇ = (𝑆𝐵 − 𝐴
𝑇
) 𝑅

𝑚̇ = (𝑆𝐵 − 𝐴
𝑇
)𝑚 − 𝑆𝐷 − 𝐸

𝑄̇ = 𝑅
𝑇
𝐵𝑅

̇𝑛 = 𝑅
𝑇
(𝐵𝑚 − 𝐷)

𝛼̇ = 𝑚
𝑇
(𝐵𝑚 − 𝐷) − 𝐷

𝑇
𝑚 − 𝐹

(46)
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with final conditions that must be consistent with (35)
through (39); that is,

𝑆𝑓 = Φx𝑓x𝑓 𝑄𝑓 = 0

𝑅𝑓 = 𝜓
𝑇

x𝑓 𝑛𝑓 = 𝜓a

𝑚𝑓 = Φx𝑓a 𝛼𝑓 = Φaa.

(47)

Equations (44) and (45) can be solved simultaneously at 𝑡0 to
yield

[
𝑑𝜐

𝑑a] = −𝑉
−1

0
𝑈
𝑇

0
𝛿x0, (48)

where

𝑈 = [𝑅 𝑚] , (49)

𝑉 = [
𝑄 𝑛

𝑛
𝑇

𝛼
] . (50)

If (48) is used at 𝑡0, then

𝛿𝜆0 = (𝑆0 − 𝑈0𝑉
−1

0
𝑈
𝑇

0
) 𝛿x0. (51)

Letting 𝑆 ≜ 𝑆 − 𝑈𝑉
−1
𝑈
𝑇, it is relatively straightforward to

demonstrate that the first of (46) holds also for 𝑆 (with 𝑆 in
place of 𝑆), with boundary condition 𝑆 → ∞ as 𝑡 → 𝑡𝑓.
It is worth remarking that all the matrices introduced in this
section are evaluated along the optimal path. From (51), it is
then straightforward to conclude that 𝛿𝜆0 → 0 as 𝛿x0 →

0, unless 𝑆 tends to infinity at an internal time 𝑡 (𝑡0 ≤ 𝑡 <

𝑡𝑓), which is referred to as conjugate point. If 𝛿𝜆0 → 0 and
𝛿x0 → 0, then also 𝛿u → 0, due to (40)–(42) and (48). This
means that no neighboring optimal path exists, unless 𝑆 →

∞ at a certain time 𝑡 (𝑡0 ≤ 𝑡 < 𝑡𝑓). In other words, the non-
existence of conjugate points is

𝑆 < ∞ ∀𝑡 ∈ [𝑡0, 𝑡𝑓[ . (52)

It is worth remarking that the numerical backward integra-
tion for 𝑆 can start by integrating (46) up to a time 𝑡𝑠𝑤

sufficiently close to 𝑡𝑓; then one can switch to 𝑆 for the
remaining time interval [𝑡0, 𝑡𝑠𝑤].

4. Optimal Ascending Trajectory

This section is focused on the numerical solution to the tra-
jectory optimization problemdefined in the previous sections
and regarding the upper stage of the Muralm launch vehicle.
To this end, the first-order conditions for optimality are
used, in conjunction of a simple implementation of swarming
algorithm.

4.1. Outline of the Particle Swarm Optimization Method. The
particle swarm optimization (PSO) method is a heuristic
technique aimed at finding the optimal values of a set of
unknown parameters, for a generic dynamical system. In this

research, the optimization problem involves a continuous
time-dependent control variable and is translated into a
parameter optimization problem through the necessary con-
ditions for optimality, which allow expressing the control
variable as a function of the adjoint variables conjugate to the
dynamics equations. This means that unknown parameters
for the problem at hand are

{𝜆10, 𝜆20, 𝜆30, 𝑓3, 𝑡𝑓} . (53)

In general, unconstrained parameter optimization prob-
lems can be stated as follows: determine the optimal values of
the 𝑛unknownparameters {𝜒1, . . . , 𝜒𝑛} such that the objective
function 𝐽 is minimized. The PSO technique is a population-
based method, where the population is represented by a
swarm of𝑁 particles. Each particle 𝑖 (𝑖 = 1, . . . , 𝑁) is associ-
atedwith a position vector𝜒(𝑖) andwith a velocity vectorw(𝑖).
The position vector includes the values of the 𝑛 unknown
parameters of the problem,𝜒(𝑖) ≜ [𝜒1(𝑖), . . . , 𝜒𝑛(𝑖)]

𝑇, whereas
the velocity vector, whose components are denoted with
𝑤𝑘(𝑖) (𝑘 = 1, . . . , 𝑛), determines the position update. Each
particle represents a possible solution to the problem and
corresponds to a specific value of the objective function. The
initial population is randomly generated by introducing 𝑁

particles, whose positions and velocities are (stochastically)
uniformly distributed in the respective search spaces. The
expressions for position and velocity update determine the
swarm evolution toward the location of the globally optimal
position, which corresponds to the globally optimal solution
to the problem of interest. The algorithm terminates when
the maximum number of iterations 𝑁IT is reached or an
alternative convergence criterion is met. The position vector
of the best particle is expected to contain the optimal values
of the unknown parameters, which correspond to the global
minimum of 𝐽.

The central idea underlying the method is contained in
the formula for velocity updating.This formula includes three
terms with stochastic weights: the first term is the so-called
inertial component and for each particle is proportional to
its velocity in the preceding iteration; the second component
is termed the cognitive component, directed toward the
personal best position, that is, the best position experienced
by the particle; and finally the third term is the social
component, directed toward the global best position, that is,
the best position yet located by any particle in the swarm.
Further details are reported in [16, 17].

Constrained optimization problems involve equalities
and/or inequalities, regarding (directly or indirectly) the
unknown parameters. Equality constraints narrow consider-
ably the search space where feasible solutions can be located.
This is due to the fact that (nonredundant) equality con-
straints actually reduce the degree of freedom of the problem
according to their number. In fact, 𝑚 equality constraints
reduce the degree of freedomby𝑚.Therefore, in the presence
of 𝑛 unknown parameters, at most𝑚 = 𝑛 equality constraints
are admissible (𝑚 ≤ 𝑛): 𝑙𝑟(𝜒) = 0 (𝑟 = 1, . . . , 𝑚). The most
popular approach for dealing with these constraints consists
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in penalizing them by adjoining additional terms to the
objective function:

𝐽 = 𝐽 +

𝑚

∑

𝑟=1

𝜂𝑟
󵄨󵄨󵄨󵄨𝑙𝑟 (𝜒)

󵄨󵄨󵄨󵄨 . (54)

This approach is employed also in this research, with 𝜂𝑟 =

1 (𝑟 = 1, 2, 3, 4) and equality constraints given by (9) and
(21). As the necessary conditions for optimality are used to
express the control variable, the PSO assumes the expression
(54) (with 𝐽 ≡ 0) as the objective. Satisfaction of the first-
order conditions is indicative of optimality of the solution.

4.2. Numerical Results. The ascending trajectories are deter-
mined by employing canonical units: the distance unit (DU)
is the Earth radius (𝑅𝐸), whereas the time unit (TU) is such
that 𝜇𝐸 = 1DU3/TU2. Thus, 1DU = 6378.136 km and
1TU = 806.8 sec. The desired final radius is 𝑅𝑑 = 𝑅𝐸 +

280 km; the true anomaly 𝑓2 (at 𝑡0) is specified.
The swarming optimizer is employed with the following

settings: 𝑁 = 50 (number of particles) and 𝑁IT = 500

(maximum number of iterations). The algorithm terminates
prematurely its execution if the objective 𝐽 (cf. (35)) decreases
below the value 10

−6. The optimal values of the unknown
parameters are sought in the following ranges: −1 ≤ 𝜆𝑘0 ≤

1 (𝑘 = 1, 2, 3), 𝑓2 ≤ 𝑓3 ≤ 𝑓2 + 𝜋, and 0.01TU ≤ 𝑡𝑓 ≤ 0.2TU.
It is worth noticing that constraint reduction allows arbi-
trarily defining the search space for the initial values of the
Lagrange multipliers. This means that they can be sought in
the interval −1 ≤ 𝜆𝑘0 ≤ 1 by the PSO algorithm.

Only 126 PSO iterations were needed to generate the
optimal solution to the specified accuracy, corresponding to
the following in-plane orbit elements and mass at burnout:

𝑎𝑓 = 𝑅𝐸 + 280.004 km

𝑒𝑓 = 7.260 ⋅ 10
−7

𝑚𝑓 = 140.4 kg.

(55)

Figures 2, 3, and 4 portray the state components, that is,
altitude (directly related to the radius 𝑟), inertial velocity,
and flight path angle. Figure 5 illustrates the costate variables,
whereas Figure 6 depicts the optimal control time history. It is
apparent that the thrust direction is nearly aligned with the
velocity for the entire time of powered flight of the upper
stage.

Two second-order conditions are described in
Section 3.2, that is, the Clebsch-Legendre condition on
the Hessian 𝐻𝑢𝑢 and the nonexistence of conjugate points
(52). These conditions are checked for the optimal ascending
path. First, due to (22),𝐻𝑢𝑢 assumes the form

𝐻𝑢𝑢 =
𝑇
(3)

𝑚(3)
√(

𝜆3

𝑥2

)

2

+ 𝜆
2

2
, (56)

which is nonnegative. From inspecting Figure 7, it is apparent
that 𝐻𝑢𝑢 is positive for the entire time of flight. Moreover,
backward integration of (46) yields the time history of 𝑆.
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Figure 2: Optimal ascending trajectory: altitude time history.
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Figure 6: Optimal ascending trajectory: optimal thrust direction
time history.

Figure 8 reports the absolute value of the determinant of 𝑆
(in logarithmic scale) and proves that 𝑆 is finite at any time
in the interval [𝑡0, 𝑡𝑓[. This suffices to demonstrate the two
previously mentioned second-order conditions, which
enforce optimality to second order.

5. Concluding Remarks

Trajectory optimization of multistage launch vehicles is a
challenging problem, treated with different approaches in
the past. In this research, the final objective of minimizing
fuel consumption is achieved by finding the optimal control
time history and the optimal thrust and coast durations.
Specifically, for the upper stage the existence and duration of
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Figure 7: Optimal ascending trajectory: Hessian𝐻𝑢𝑢.
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Figure 8: Absolute value of the determinant of 𝑆.

a coast arc (with no propulsion) and the optimal thrust direc-
tion are determined through the first-order necessary con-
ditions for optimality, that is, the Euler-Lagrange equations
and the Pontryagin minimum principle, in conjunction with
a heuristicmethod, that is, the particle swarm algorithm.This
technique is very intuitive and easy to implement and leads to
numerically determining the state, control, and adjoint vari-
ables (conjugate to the dynamics equations). A further advan-
tage is represented by the fact that the swarming approach
does not need any starting guess to yield an accurate solution.
In addition, the availability of the adjoint variables allows the
direct evaluation of the second-order conditions for opti-
mality, that is, the Clebsch-Legendre condition and the
nonexistence of conjugate points. The numerical process for
verifying these conditions is based on the sweep method and
is illustrated in full detail in this work. The satisfaction of the
second-order conditions enforces optimality of the ascending
path found in this study and represents an essential premise
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for the possible development of an efficient neighboring
optimal guidance.
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