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We present Miracle, a novel framework which extends ns2 to facilitate the simulation and the design of beyond 4G networks.
Miracle enhances ns2 by providing an efficient and embedded engine for handling cross-layer messages and, at the same time,
enabling the coexistence of multiple modules within each layer of the protocol stack. We also present a novel framework developed
as an extension of Miracle called Miracle PHY and MAC. This framework facilitates the development of more realistic Channel,
PHY and MAC modules, considering features currently lacking in most state-of-the-art simulators, while at the same time
giving a strong emphasis on code modularity, interoperability and reusability. Finally, we provide an overview of the wireless
technologies implemented in Miracle, discussing in particular the models for the IEEE 802.11, UMTS and WiMAX standards and
for Underwater Acoustic Networks. We observe that, thanks to Miracle and its extensions, it is possible to carefully simulate
complex network architectures at all the OSI layers, from the physical reception model to standard applications and system
management schemes. This allows to have a comprehensive view of all the interactions among network components, which play
an important role in many research areas, such as cognitive networking and cross-layer design.

1. Introduction

In the last few years, advances in the hardware for wire-
less networking and, especially, embedded microprocessor
technologies have made it possible to manufacture very
small radio equipments at low cost. This has enabled the
integration of different technologies in a single mobile
terminal. These multi-technology solutions are now available
on the market and open up the possibility of exploiting
new communication paradigms. Also, as multi-interface
hardware becomes available at low cost, there is a parallel
need for understanding its performance limits and devising
new networking protocols that will make full use of the
offered potential. Often, these systems are way too complex
to be fully characterized analytically, and we have to resort to
simulation tools for a more comprehensive understanding.

As a consequence of these facts, there has been an
increasing need for investigation tools, in particular network
simulators, to be conveniently exploited for these research
purposes. Many are the features that researchers seek in
network simulators. In this paper, we focus on the issues

which in our opinion are not addressed to a great extent by
current network simulators. These issues are the following.

(1) Accurate channel and PHY layer modeling: recently,
there has been an increasing need for accurate modeling of
channel and PHY layer aspects. While simplified models,
such as the disk propagation model, are still useful in
some contexts, a general purpose simulator is nowadays
expected to provide more realistic representations of the
signal propagation and reception processes.

(2) Modeling of a complete system: the increasing com-
plexity of communication systems has made performance
evaluation a truly complex task, due to the fact that subtle
interactions among the different components of the system
can play an important role in determining its overall
performance. These interactions are often not clear when
only one or a few of the system components are modeled in
isolation. This is a crucial issue in many novel research areas,
such as cross-layer design [1, 2] and Cognitive Networking
[3–5]. For this reason, a good general purpose network
simulator is nowadays expected to provide means to model
a complete communication system, from channel and PHY
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layer all the way through the protocol stack up to the
application layer.

(3) Rapid prototyping of new wireless technologies: new
wireless technologies have been proposed and released at
an amazing pace in recent years, and it is commonly the
case that researchers struggle to develop simulation tools
in a timely fashion to study these technologies as they
emerge. In the past, the majority of the code for wireless
networking simulation (especially at the PHY and MAC
layers) has mainly been designed for specific technologies,
without addressing code reusability during its design phase.
The ns2 simulator, in particular, was not originally designed
to simulate wireless networks, and support for this has been
added only in a second phase, and in a rather improvised
and nonsystematic way. As a consequence, the task of
properly designing and developing code for the simulation
of new wireless technologies is time consuming. Though
wireless systems can overall differ significantly from each
other, it is to be noted that there are many aspects and
components of the PHY and MAC layers which are very
similar across different technologies. An ideal simulator
would treat these components through the same set of
procedures and would leverage on well-defined Application
Programming Interfaces (APIs) for PHY and MAC modules
to allow easier and faster development of simulator code. All
of this should be done with a particular emphasis on code
modularity and reusability.

(4) Spectrum awareness: recently, research in fields such as
Cognitive Radio, Ultra Wide Band, MultiCarrier Modulation
schemes, and Underwater communications systems has
created a strong need for network simulators to provide
a better modeling of the Radio Frequency aspects of
communications systems, such as spectrum occupation,
RF filtering and inter-channel interference. State-of-the-art
network simulators such as ns2 lack support for a correct
modeling of how communication systems make use of the
frequency spectrum.

(5) Intertechnology interference: unlicensed bands, in
particular the 2.4 GHz ISM band, are characterized by the
simultaneous presence of different wireless technologies
interfering with each other; this is the case of popular
wireless communication technologies such as IEEE 802.11,
Bluetooth, and WiMAX, as well as noncommunicating
technologies such as microwave ovens. Therefore, the
introduction of spectrum awareness in wireless network
simulators should be made in such a way to allow proper
accounting of how different technologies interact among
themselves in the propagation medium. We note that this
goes beyond the issues discussed above. In fact, support
for spectrum awareness in a single-technology scenario can
be introduced by performing custom modifications to the
code implementing that particular technology, while the
simulation of Intertechnology interference requires that all
technologies use the same representation of interference and
spectrum usage.

(6) Multi-technology multi-interface communication ca-
pabilities: as more and more devices nowadays are equipped
with multiple interfaces using different communication
technologies, network simulators should provide support

for proper modeling of these scenarios, by means of a
flexible and modular protocol stack architecture together
with proper support for the development of the control
modules which are needed to manage such a complex
architecture.

(7) Support for cross-layer interactions and optimizations:
while traditional networking strongly relied on protocol layer
encapsulation to cope with system reliability and complexity
issues, in recent years wireless networking research has
shown that superior performance can actually be achieved
by exploiting cross-layer optimization, that is, by optimizing
the behavior of the whole communication system making
different protocol layers interact with each other. Cross-layer
optimization has now become a widely accepted paradigm
among researchers, and for this reason it is very important
that Network Simulators provide means to support the
prototyping and testing of cross-layer solutions.

(8) Support for heterogeneous networks: while traditional
networking research mainly focused on homogeneous net-
works, such as infrastructured, ad hoc, and mesh networks,
in recent years there has been an increasing interest in sce-
narios in which these types of networks coexist. Simulating
this type of scenarios today is very challenging, in particular
due to the fact that the routing layer of state-of-the-art
simulators is mainly designed for homogeneous networks.
As a consequence, there is a need for supporting this type
of heterogeneous network composition at all the layers of the
protocol stack.

In this paper we present Miracle, an extension for the
ns2 simulator that we developed with the aim of solving
the above issues and therefore facilitating the simulation of
modern communications systems. Our framework is called
Multi InteRfAce cross-layer extension (Miracle) for ns2 [6]. It
is conceived as a set of additional dynamic libraries which
provide ns2 with support for multi-technology and cross-
layering. Our architecture is highly modular as it allows the
interconnection of multiple down and upstream modules at
every layer of the protocol stack. In addition, a dedicated
communications facility provides the protocol stack of
each node with cross-layer interaction capabilities. After
discussing Miracle, we also present an additional framework
for the simulation of the physical and medium access layers,
developed on top of Miracle.

This paper is structured as follows. The next Section 2
presents the Miracle framework along with its main features.
In Section 2.1, we start with a discussion of the related
literature, where we motivate our work and contrast it with
existing approaches. Subsequently, in Section 2.2 we delve
into the description of the Miracle’s node architecture and
of its offered benefits in terms of modularity, cross-layer
support, and extensibility. In Section 2.3, we discuss how
existing ns2 modules can be reused within our framework.
Furthermore, in Section 3 we describe the Miracle PHY
and MAC extension, which we developed to allow accurate,
flexible and reusable modeling of physical propagation
channels and channel access procedures. In Section 4, we
review existing implementations of wireless technologies in
Miracle. Section 5 gives a quick overview of the projects that
used Miracle and Section 6 concludes the paper.



EURASIP Journal on Wireless Communications and Networking 3

2. Miracle

2.1. Related Work. The main motivation that led us to the
development of this library was the need for a flexible
and easy to use tool for the simulation of multilayer and
multistack architectures in mixed wired/wireless settings.
In this respect, there have recently been a few attempts to
add flexibility to ns2, and in particular to overcome the
current ns2 limit of no more than one wireless interface per
mobile node. For example, TENS [7], Hyacinth [8], and the
solution proposed by Agüero and Pérez [9] are extensions
to ns2 which introduce the possibility of using multiple
wireless interfaces within the same mobile node; however,
they are currently limited to the use of the same radio
technology (namely, IEEE 802.11) for all wireless interfaces.
MW-Node [10], in addition to the support for multiple
wireless interfaces, also allows coexistence of different radio
technologies and routing protocols within the same node;
still, its scope remains somewhat limited, since modularity is
addressed only at the network layer and below, and the fixed
protocol stack architecture of ns2 is maintained.

We note that the recently started ns3 project [11] shares
with Miracle some relevant goals, such as enhanced mod-
ularity of components, while at the same time addressing
some particular ns2 issues, such as support for distributed
simulation and emulation, which are not considered in
Miracle. Nevertheless, this choice for ns3 has required a
complete rewrite of the simulator, which prevents reusability
of the many valuable components already implemented for
ns2. Miracle on the other hand, allows the reuse of ns2
code and can consequently exploit many of the features
already included in ns2 with little or no development effort,
as we will discuss in Section 2.3. Furthermore, ns3 tries
to mimic as close as possible the protocol stack of real
systems (in particular Unix systems), whereas Miracle gives
total freedom to the researchers in specifying the way in
which their protocol stack is built. Finally, while in ns3
cross-layer functionalities have to be implemented using
general purpose tools such as Packet Tags and Callbacks,
Miracle provides a dedicated framework to handle cross-
layer interactions, which makes it easier to implement not
only complex cross-layer optimization solutions, but also
automatic discovery and configuration of modules at run-
time, which turns out to be very effective in reducing the
time taken to configure the simulator through dedicated
scripts.

2.2. Miracle Node Architecture. One of the primary goals
of Miracle is to facilitate the interconnection of different
protocol modules while uniforming the procedure by which
multiple protocol layers are plugged into the same node. We
may define, for instance, a node with multiple PHY, MAC,
or routing modules and we may use all of them in the same
simulation by making decisions on which ones to use at
runtime. This is the typical case of, for example, advanced
radio resource management (RRM) schemes, which has to
efficiently make a decision on which interface(s) is to be used
in order to meet quality of service (QoS) requirements for
the users.

We started our work from a few existing ns2 classes
that were extended to obtain the basic building blocks of
our framework. The reason for this choice was to maintain
backward compatibility with previously developed ns2 code.
In Figure 1, we show a diagram of the Miracle node
architecture. One of the most important blocks is probably
the Module class. As shown in the left side of this figure,
multiple Modules can coexist within the same protocol layer
and can be connected to up and downstream Modules.
Each Module contains a specific protocol or entity which
may be a PHY, MAC, routing layer, transport protocol,
application, and so forth. The Module class provides the
following methods for the communication with adjacent
Module instances:

(i) sendDown(Packet∗ p, double delay = 0) and
sendUp(Packet∗ p, double delay = 0) are
used to send a Packet, respectively, to the Module(s)
below and above with, possibly, a delay. Using these
two methods, a copy of the Packet is delivered to each
of the up or downstream Modules.

(ii) sendDown(int moduleId, Packet∗ p, double
delay = 0) and sendUp(int moduleId,
Packet∗ p, double delay = 0) allow to send
Packets to a specific Module below and above,
respectively. In this respect, we note that Module
instances are automatically assigned a unique
identifier; and a Module instance can know the
identifier of other instances either statically from
configuration or dynamically by using a discovery
process at run time.

Dedicated objects, referred to here as Connector-
Traces, are automatically allocated by Miracle to allow com-
munication across Modules through the above methods.
Hence, the user is only responsible for specifying where
each module appears in the protocol stack, and what other
module it needs to connect to; the necessary connectors are
put in place and configured automatically. In this case, since
we are referring to standard OSI communication, we used a
specific extension of the ConnectorTrace called SAP.

All Modules within the same stack are connected to a
unique structure called NodeCore. The role of the NodeCore
is twofold: (1) first, it enables communication among
Modules and thus facilitates cross-layer design and (2) the
NodeCore manages information coming from the Modules
and provides functionalities of common interest for all or a
group of them.

Regarding cross-layer interactions, we note that the
common practice in standard ns2 consists of either including
control messages within packet headers (e.g., as done in
[12]) or manipulating the ns2 node structure in a rather
ad hoc manner (as is the case for several ns2 extensions
which are discussed in [10]). In the former case, however,
control messages would be tightly bound to the packet flow,
whereas in the latter, it would likely be difficult to adapt the
code to additional needs. Note that these are static solutions
as communication interfaces among modules and cross-
layer algorithms must be defined in advance, that is, during
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Figure 1: Example of a general multilayer architecture within the Miracle framework.

the development of each module. In ns3, this functionality
can be achieved by means of Callbacks. However, the need for
explicitly connecting all callbacks puts a significant burden
on the user. Furthermore, this strategy only allows one-
to-one interactions where the communicating entities are
known at configuration time. Actually, in ns3, also Packet
Tags can be used to exchange cross-layer messages; however,
this practice consists of piggybacking cross-layer information
onto data packets, and for this reason its applicability
is limited to those cross-layer interactions which happen
concurrently with data exchange.

In contrast, the solution provided by Miracle adheres to
the widely accepted concept of having a bus for interlayer
communication [1]. This makes it possible to exchange
messages among Modules at any time and without the
need for interleaving them with the data flow. The way in
which cross-layer information is exchanged is defined by the
ClMessage abstract base class, which provides means for
addressing cross-layer information among modules within
the same node. In particular, a ClMessage can be addressed
to a particular module (unicast ClMessage), to all modules
in the node (broadcast ClMessage), or to all modules within
the same layer (layercast ClMessage); in all these cases, the
routing of ClMessagees is performed by the NodeCore
through a specific extension of the ConnectorTrace
class called ClSAP (i.e., cross-layer SAP). Furthermore, a
ClMessage can be addressed from a module to the modules
in the layer immediately above or below it; in this case, the
message is routed directly by the SAP between modules. The
applications of this last type of cross-layer messaging are very
useful for automatic configuration purposes; for instance,
the routing layer can discover, during the simulation, which
radio interfaces are available, by just sending a ClMessage to
all the modules in the layer below. The interface provided by
the Module class for the ClMessage management includes
the following methods:

(i) sendAsyncClMsgDown(ClMessage∗ m, double
delay = 0) and sendAsyncClMsgUp(ClMessage∗
m, double delay = 0): these methods allow to
send ClMessages, respectively, to the Modules
below and above in an asynchronous fashion,

that is, each method returns immediately and the
ClMessage will be scheduled for later delivery
according to the specified delay.

(ii) sendSyncClMsgDown(ClMessage∗ m) and send-
SyncClMsgUp(ClMessage∗ m): these allow to send
ClMessages, respectively, to the Modules below
and above in an synchronous fashion, that is, each
method returns only after the ClMessage has been
delivered and processed by all receiver Module(s).

As to the maintenance of common information and
functionalities, the NodeCore currently maintains the geo-
graphical position for each node. To this end, we defined a
generic interface which can be used for the implementation
of mobility models directly in C++. Currently, the frame-
work features deterministic and Gauss-Markov [13] mobility
models.

Another important piece of the architecture is the
PlugIn class. PlugIns are attached to the NodeCore
and are the perfect place for cross-layer algorithms, for
example, resource radio management modules, cognitive
engines, decision logic for the selection of optimal protocol
parameters, and so forth. Thanks to ClMessages, control
messages can be easily exchanged between PlugIns and
protocol Modules. In this case, the interface implements the
methods sendSyncClMsg and sendAsyncClMsg to delivery
ClMessages to the intended destination(s) in asynchronous
and synchronous fashions.

Finally, Miracle implements a brand new tracing tech-
nique: all packets and cross-layer messages are traced by
each specific extension of ConnectorTrace as they pass
through it. Hence, the development of tracing functionalities
is not bound to the implementation of Modules. The
level of verbosity of message traces is fully tunable and
programmable. With tunable, we mean that the tracing
functionality can be independently turned on/off for each
ConnectorTrace. Programmable means that the output of
the tracers can be fully defined by the user. Accordingly,
each implementation of a Module/PlugIn can define its
own tracing rules, which can be exploited for debugging or
collection of statistics.
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Figure 2: Class diagram for the Miracle framework.

An overview of the most important classes in Miracle
and their relationship is represented in Figure 2. A complete
guide on how to use Miracle (e.g., how to create a sim-
ulation script, or how to write a module with cross-layer
capabilities) is beyond the scope of this paper. We note,
however, that as a part of the development and maintenance
of Miracle, several user guides and tutorials have been
written, most of which are listed at the official Miracle web
page [14]. Furthermore, the current Miracle maintainers
also run a mailing list named nsmiracle-users (whose
information is also reported in [14]) to which Miracle
users can refer in case they encounter any problem which
is not addressed in the guides and tutorials just men-
tioned.

2.3. Porting ns2Modules inMiracle. Special care was taken, in
the design of our architecture, so as to facilitate the porting
of existing ns2 code. In particular, we defined the Module
class as a child of the NsObject class, as depicted in Figure 2.
Hence, we can encapsulate ns2 modules within the Miracle
Module class. This requires redirecting the input and the
output of the original ns2 modules to the Module class,
which is now in charge of connecting the original module
with the rest of the protocol stack. This allows the reuse of
existing ns2 code. However, in this case modifications to the
original ns2 modules amount to rewriting part of the original
module and recompiling the entire ns2 distribution in order
to make the changes effective. To solve this problem, we can

alternatively copy the code of the original ns2 module in the
extension of the related Miracle Module class. In this case,
the code becomes independent of the ns2 distribution, and
can be modified and recompiled separately (in most practical
cases, it will be built either as part of Miracle or as a separate
dynamic library).

2.4. Miracle Distribution and Development. Code and docu-
mentation related to Miracle can be found at the following
link [14]. We recently put the Miracle code in a repository
hosted at the Department of Information Engineering (DEI)
of the University of Padova; the procedure for connecting to
the repository is described in [14]. One of the key features
offered by the new repository is that we can provide access to
people outside this institution. This is a significant change,
since it means that the development of Miracle will be from
now on much more open to the community. Users, in order
to have access to advanced functionalities, may want to work
with the latest version of the code stored in the repository,
instead of the latest stable release. This of course comes at the
cost of some degree of instability of the code. This repository
is freely accessible in read-only mode, while write access can
be requested by interested contributors.

3. Miracle PHY andMAC

3.1. Related Work. Accurate channel and PHY layer model-
ing has drawn a significant amount of attention in recent
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years, and much work has been done in this respect. The
ns2 simulator, in particular, was well known for its poor
channel and PHY layer modeling, and for this reason several
enhancements have been proposed [15–17]. However, the
addition of this functionality has always been done in a
technology-specific manner, and often in a “quick-and-
dirty” fashion. The ns2 mobile node, in particular, does not
have a good separation of functionalities between the MAC
and the physical layer [16]. As an example, some key PHY
functionalities, such as in particular the determination of
the end of the reception of a packet, are performed at the
MAC layer, making it difficult to introduce functionalities
such as interference calculation, as well as making the
code notoriously hard to read and to debug. In fact,
the introduction of features such as enhanced error and
interference models has required significant modifications,
such as those introduced in dei80211mr [15], and improving
the architecture of the code for the sake of easier debugging
and readability has required its complete redesign, as is the
case of the new IEEE 802.11 model of [16]. Moreover, the
introduction of the support for new wireless technologies
has required extensive tweaking, if not even the use of the
ns2 code as a mere entry point for completely customized
code, as is the case of [18]. To summarize, every time a
new technology is to be implemented, significant developer
effort is needed, which is exacerbated by the fact that the
basic ns2 mobile node does not provide good channel
models, and that all extensions in this respect have been
too much technology-specific and cannot be easily reused
for different technologies. Regarding other simulators, it is
to be noted that some of them, such as ns3, allow the
specification of customized callbacks between modules at
different layers of the protocol stack. However, the type
of interactions in use commonly varies depending on the
technology being considered as well as on the particular
implementation, and a well-defined set of callbacks to be
exploited for channel, PHY and MAC layer modeling is still
lacking. Finally, to the best of our knowledge, no well-known
simulator provides a good and generic model addressing how
different wireless technologies make use of the frequency
spectrum and mutually interact.

3.2. The Miracle PHY and MAC Framework. The Miracle
PHY and MAC framework was explicitly designed to over-
come these issues. In our effort to develop a modular and
extensible framework for channel and PHY layer modeling,
we chose an object-oriented design and we defined a set of
classes, as shown in Figure 3.

The channel model we developed is based on the mod-
eling of a fundamental entity, the PHY Layer Transmission
(PLT) of a packet. We define a PLT by the attributes
characterizing it; choosing these attributes corresponds to
choosing our PHY and channel modeling assumptions. PLTs
instances have a 1 : 1 association with ns2 Packet instances,
and therefore PLT attributes are conveniently gathered in
a new ns2 packet header named hdr MPhy. The attributes
we define for PLTs, and the consequent channel modeling
assumptions we make, are as follows:

(i) duration: a PLT is an event which extends over a
given time interval. The length of this interval is given by the
duration attribute.

(ii) Pt: a PLT is characterized by its transmission power,
as set by the PHY layer of the transmitter. This attribute refers
to the PLT as a whole; in other words, power is considered
to be constant during the whole duration of a transmission.
This choice is intended to achieve a reasonable tradeoff
between modeling accuracy and complexity. We note that,
while this is the approach in use by the vast majority of
simulators, it is nevertheless a simplifying assumption of
which we should be aware.

(iii) Pr: the processes performed on the reception of
a PLT are modeled by mathematical operations performed
on the Pt attribute, which result in the Pr attribute, that
represents the received power. Examples of these processes
are propagation effects, antenna gains, RF filtering, and
signal processing at the PHY layer (e.g., interleaving, coding,
etc.).

(iv) Position: a PLT is characterized by the geographical
position of the transmitter (srcPosition) and that of the
receiver (dstPosition). These attributes are references to
instances of classes belonging to the Position class hierar-
chy defined in Miracle, which we discussed in Section 2. They
can provide additional information such as the direction and
the speed of motion in case the nodes are mobile. This can
be used for enhanced channel modeling features, such as the
determination of the effects of fast fading as a function of
speed.

(v) modulationType: this is a value univocally identi-
fying the particular modulation and coding scheme in use
by the physical layer. The main purpose of this attribute
is to provide support for modeling the acquisition process
in multi-technology scenarios (by acquisition process here
we mean the set of tasks such as preamble detection,
which are commonly performed by the PHY layer at the
beginning of a reception). We note that this solution can
accommodate perfect acquisition models, where the receiver
always correctly acquires signals of the desired type and
discards all others, as well as more complex solutions such
as stochastic models for preamble detection.

(vi) srcSpectralMask: a transmission consists of
power radiated nonuniformly into the frequency spectrum.
We assume that the specification of the power spectral den-
sity function of the transmission (normalized with respect
to the transmission power) can account in sufficient detail
for this fact. srcSpectralMask is a pointer to a class of the
MSpectralMask hierarchy which is intended to implement
this function. We chose to use an abstract class for this
purpose, in order not to pose any particular limitation on
how this function is implemented. Nevertheless, piece-wise
constant or linear functions should be enough for most
purposes, and for this reason the only implementations we
provide for MSpectralMask use a rectangular function.

(vii) dstSpectralMask: each reception process is char-
acterized by an RF filter, which is represented by means of its
frequency response. The implementation issues for this are
the same as for the spectrum usage information discussed
above. For these reasons, as we did for the power spectral
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Figure 3: Class diagram for MPhy and related classes.

density of PLTs, RF filters are represented by instances of the
MSpectralMask class. The RF filtering process is modeled as
a gain applied to the received power of the PLT; this gain is
determined as a function of the spectral mask applied to the
transmission and the carrier frequency.

(viii) Pn: the noise power at the receiver. The value of
this attribute is calculated by the receiving MPhy instance
in a technology-dependent fashion. For most wireless tech-
nologies, we argue that it will suffice to determine the
noise power according to an AWGN model by integrating
a predetermined noise spectral power density over the
frequency response of the RF filter (which is implemented
by dstSpectralMask). We note that for some particular
models, such as the underwater acoustic communications
model that we will describe in Section 4.3, more complex
calculations need to be involved.

(ix) Pi: the multiuser interference is summarized by
the interference power attribute Pi, calculated aggregating
all simultaneous PLTs (whose transmissions overlap in
time), and with respect to a particular PLT for which
reception is being attempted. We do not pose any particular

constraint on the exact model to be used for this purpose.
Rather, interference models are to be implemented by
inheriting from the MInterference, and implementing the
addToInterference() and getInterferencePower()
methods according to the chosen model. We provide
one particular implementation of these classes, called
InterferenceMIV, which aggregates all simultaneous PLTs
(also referred to as interfering PLTs) into a single piece-wise
constant function of time using the well-known Gaussian
model (i.e., summing power values), and returns the total
interference power on a given packet calculated as the mean
integral value of the aggregation of interfering PLTs.

The other important element of our channel and PHY
modeling framework is the MPhy class: it is an abstract
class providing channel modeling functionalities and the
API for the development of PHY layer implementations.
Channel modeling is implemented by associating each
MPhy instance with instances of other objects which imple-
ment the different components of a channel model. We
define the following classes of objects for channel model-
ing:
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(i) MPropagation: similarly to the Propagation class of
ns2, implementations of this class account for the
attenuation of the power of a PLT due to effects such
as path loss, fading, and shadowing;

(ii) MAntenna: similarly to the Antenna class in ns2, this
class hierarchy provides means to implement the gain
of directional antennas as a function of PLT attributes
(the most useful for this purpose being the position
attributes);

(iii) MCorrelation: this class of objects is intended to
implement the gains due to the signal processing
performed by the receiver. A remarkable use case for
this class of objects is the processing gain of direct
sequence spread spectrum (DSSS) and code division
multiple access (CDMA) systems.

(iv) MInterference: this class of objects handles the
calculations of multi-user interference.

The first three of the above mentioned classes are only
required to implement a getGain(Packet∗ p) method
which is expected to provide the gain value to be applied to
a given PLT. On the other hand, the MInterference class is
required to produce the interference perceived by a particular
PLT. This task is more complex since in general interference
depends on all PLTs whose transmission overlaps in time and
frequency with the particular PLT being considered (target
PLT). For this reason, classes implementing MInterference
are expected to keep track of all currently active PLTs (i.e.,
whose transmission is ongoing), by providing implementa-
tion of two methods: addToInterference(Packet∗ p),
which has to be called at the beginning of the transmission
of every PLT so it can be added to the set of active PLTs, and
getInterferencePower(Packet∗ p), which returns the
interference caused by all active PLTs on the target PLT.

The MPhy class is meant to only provide support for
functionalities which are shared by different channel mod-
els and wireless technology implementations. Technology-
specific PHY layer functionalities are taken into account
by inheriting from the MPhy class and implementing the
following virtual methods:

(i) getTxDuration(Packet∗ p): must be provided
by the transmitting PHY to determine the duration
of a transmission.

(ii) getTxPower(Packet∗ p): must be provided by
the transmitting PHY to determine the transmission
power to be used for a given PLT.

(iii) getNoisePower(Packet∗ p): must be provided
by the receiving PHY to determine the noise power
at the receiver for a given PLT.

(iv) getTxAntenna(Packet∗ p) and
getRxAntenna(Packet∗ p): must be provided by,
respectively, the transmitting and receiving PHYs to
determine the antenna being used for a given PLT.

(v) getTxSpectralMask(Packet∗ p): must be pro-
vided by the transmitting PHY to determine the
spectrum used by a PLT.

(vi) getRxSpectralMask(Packet∗ p): must be pro-
vided by the receiving PHY to determine the RF filter
used for receiving a PLT.

(vii) getModulationId(Packet∗ p): must be pro-
vided by the transmitting PHY to determine the
modulation and coding scheme to be used for a PLT.

(viii) startTx(Packet∗ p): the entry point for the
code that is to be executed at the beginning of a
transmission. The implementation of this method is
responsible for actually sending the Packet instance
on the channel.

(ix) endTx(Packet∗ p): the entry point for the code
that is to be executed at the end of a transmission.

(x) startRx(Packet∗ p): the entry point for the code
that is to be executed at the beginning of a reception.
This code should handle the PLT acquisition process,
for example, implementing preamble detection, syn-
chronization, and so forth.

(xi) endRx(Packet∗ p): the entry point for the code
that is to be executed at the end of a reception. This
code is responsible for determining the presence of
errors in the packet, using an error model suitable
for the PHY technology being implemented, and for
the eventual forwarding of the Packet instance to the
upper layers.

One of the reasons for which we developed APIs for PHY
and MAC layer development is that the ns2 MobileNode did
not natively provide support to simulate the different phases
of transmission and reception of packets, neither at the MAC
nor at the PHY layer. A diagram of this is shown in Figure 4:
at the transmitter, only the beginning of a transmission is
considered, both at the MAC and PHY layers; at the receiver,
the PHY layer is only aware of the beginning of the reception,
while the MAC layer has notion of both the beginning and
the end of the reception. This in our opinion is not a good
design. First of all, whenever the MAC and the PHY layers
need to perform any operation upon packet termination
(i.e., change the status of the PHY or the MAC state
machine), dedicated events need to be generated. Secondly,
the duration of a transmission is determined at the PHY
layer, since it depends on the packet size, the modulation and
coding scheme, and possibly other PHY-specific aspects such
as the length of synchronization preambles; consequently,
having to determine it at the MAC layer to schedule the
necessary events involves the duplication at the MAC layer
of PHY layer attributes and functionalities, which can lead to
inconsistencies and poor readability and maintainability of
the code. Finally, this design has led to the misplacement of
the implementation of several functionalities; for example,
this is the case of PHY error models, which in several
implementations had to be placed within the recv timer()
method of the MAC code.

Our design, represented in Figure 5, attempts to solve
these issues. First of all, the duration of a PLT is always
determined by the PHY layer; furthermore, the scheduling of
the start/end of transmission and reception events is a func-
tionality provided by the MPhy base class, which takes care of
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Figure 4: Sequence diagrams for packet TX/RX events in the ns2 MobileNode.
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Figure 5: Sequence diagrams for packet TX/RX events in the Miracle Phy and Mac framework.
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calling the entry points for the technology-specific PHY layer
code. Third, a set of cross-layer messages (a functionality
natively provided by the Miracle framework) is defined
so that MPhy-derived classes can trigger the transmis-
sion/reception start/end events on the MAC layer. Finally, the
base MMac class defines some methods (Phy2MacEndTx(),
Phy2MacStartRx(), and Phy2MacEndRx()) which are
called upon reception of the above mentioned messages,
and can therefore be used by classes inheriting from MMac
to implement protocol-specific code which needs to be
executed in response to the corresponding events. We note
that our design is significantly closer than that of the
MobileNode to the way in which real devices operate, for the
same reasons which are discussed in [16] for the particular
case of IEEE 802.11.

4. Wireless Technologies Implemented
inMiracle

Several types of wireless technologies have been imple-
mented using the Miracle PHY and MAC framework. A
first set of modules implements very generic technology
such as a BPSK-based PHY layer and an ALOHA-based
MAC; these modules were developed mainly as a proof
of concept and for debug purposes, but still the fact that
they have been implemented using the Miracle PHY and
MAC framework provides them with features that, while
rather trivial, could not have been easily implemented
in other network simulators. For instance, the fact that
the communication rate provided by the BPSK PHY is
proportional to the spectrum that is assigned to it, and
that the ALOHA MAC adapts its transmission rate to the
communication rate of the underlying PHY without having
to know how it is calculated, just by receiving a notification
upon the end of the packet transmission. A second set of
modules provides implementations of more realistic wireless
technologies. In this set we include modules for standard
radio technologies such as IEEE 802.11, UMTS, and WiMAX,
as well as models for the realistic simulation of Underwater
Acoustic Networks. In the remainder of this section, we will
describe these modules in detail.

4.1. dei80211mr. IEEE 802.11 support in Miracle is pro-
vided by dei80211mr, which was originally conceived as an
enhancement of the original ns2 implementation of IEEE
802.11. As such, it does not only work with Miracle, but also
with plain ns2. dei80211mr provides the following features:

(i) support for multiple transmission rates, modulation
and coding schemes as defined in the IEEE802.11b/g
standards. This includes support for rate adaptation,
that is, for dynamically switching at runtime the
modulation and coding scheme used;

(ii) a realistic interference model which calculates the
signal to interference plus noise ratio (SINR) for each
connection by considering all packets in flight. The
packet error rate is determined as a function of SINR
according to packet error rate curves. These for IEEE

802.11g are obtained off-line by means of a dedicated
OFDM physical layer simulator. For IEEE802.11b,
we instead used an analytical model of the direct
sequence spread spectrum (DSSS) technique. Note
that the SINR-based packet error model provides a
capture model which is more realistic with respect
to the one adopted by ns2, which relies on a
predetermined capture power threshold.

(iii) several well-known bugs present in the original ns2
802.11 model [19] were fixed, in particular the ones
regarding “Direct Access Denial”, “Random Backoff
Time”, and “Capture Model” (we note that “Capture
Model” in [19] actually refers to a synchronization
issue, which therefore differs from the capture model
issue we discussed earlier in this section).

Furthermore, an extended version of dei80211mr has
been developed which achieves a tighter integration with
Miracle by porting all the traditional PHY and MAC codes to
the MPhy/MMac architecture. In doing this, it was possible
to introduce additional features, such as the following.

(i) An improved code architecture. As discussed in [16],
the code of the original ns2 IEEE 802.11 model is the result of
years of incremental development, and for this reason it does
not have a clear and well-defined architecture, but rather it
is very complicated and difficult to understand and modify
without causing undesired side effects. The first releases of
dei80211mr, in spite of the new features they introduced,
largely shared that garbled code architecture, together with
its problems. The porting of dei80211mr to the MPhy/MMac
framework, thanks to its well-designed API, made it possible
to restructure the code of dei80211mr to yield a clearer
architecture with a more meaningful split of functionalities
among PHY and MAC layers.

(ii) Enhanced Clear Channel Assessment (CCA) model.
The IEEE 802.11 standard specifies that three different
methods can be used for CCA: (1) energy Detection (ED),
(2) preamble detection, (3) a combination of the former
two. Most IEEE 802.11 simulation modules, including the
old ns2 model and the current official ns3 WiFi stack, only
implement ED. The MPhy-enabled dei80211mr exploits the
Carrier Sense functionality of the MPhy/MMac interface to
implement all three CCA methods defined by the standard.

(iii) Support for Adjacent Channel Interference calcu-
lation. The IEEE 802.11 standard for the 2.4 GHz band
specifies the use of a number of channels (11 in the
US, 13 in Europe) which are 20 MHz wide and whose
central frequencies are separated by 5 MHz. As a result,
nearby channels overlap in frequency, and wireless devices
operating in nearby channels experience the so-called Adja-
cent Channel Interference (ACI). While traditionally it has
always been considered a good practice to use only sets
of orthogonal channels (e.g., channels 1, 6, and 11) for
frequency assignment in IEEE 802.11 deployments, recent
research showed that, in some scenarios, the use of partially
overlapped channels can increase the capacity of wireless
networks [20, 21]. Most network simulators, unfortunately,
do not provide means for simulating these scenarios. On the
other hand, thanks to the spectrum-awareness of the MPhy
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Figure 7: Performance in adjacent channel interference scenarios.

framework, it is possible to simulate WiFi scenarios with
Adjacent Channel Interference using dei80211mr.

As an example study, we used the MPhy-enabled version
of dei80211mr to obtain the performance of the scenario
represented in Figure 6 for different choices of the set of
channels to be allocated to the access points (APs); a detailed
description of the simulation setup, as well as a more
comprehensive set of results, can be found in [22]. The
results of Figure 7 show that when the distance between
APs is greater than a given threshold, the use of partially
overlapping channels is effective in enhancing the capacity
of the network; on the other hand, when the APs are close
to each other, the effects of adjacent channel interference
prevail, and it is therefore more convenient to use orthogonal
channels.

4.2. UMTS. The UMTS library was developed starting from
MPhy (see Section 3.2) and the eurane extension for ns2
[23]. eurane focused mostly on the implementation of the
UMTS RLC protocols and of the UMTS access network
architecture, but used a rather simplistic model for the
PHY layer. Thanks to MPhy, it was possible to implement
a much more accurate PHY model for UMTS Release 4. In
particular, we used the Correlation model to account for
the processing gain of CDMA; this allowed us to effectively
model the interuser interference and, in turn, the soft
capacity of CDMA networks. Other features offered by the
Miracle UMTS library are the accurate implementation of
the uplink and downlink physical control channels and
data channels, including inner loop power control, and the
full configurability of user scrambling codes in accordance
with the UMTS Release 4 standard. As to the channel
modeling, SINR measurements are translated into packet
errors using suitable approximations, which we calculated
off-line (similar to the fittings in [24]). This increases the
simulation speed while preserving the required accuracy.
Regarding radio link control (RLC) features, we ported the
acknowledged mode (AM) RLC from eurane, which imple-
ments packet fragmentation, selective repeat ARQ (with a
bitmap acknowledged mode), and data concatenation. We
added the SDU discard functionality in order to avoid
infinite retransmission loops (as is often done in practical
systems). An example of a typical UMTS architecture which
can be simulated with the Miracle UMTS module is depicted
in Figure 8.

4.3. Underwater Acoustic Communications. The underwa-
ter library deeply relies on the MPhy framework (see
Section 3.2) to deal with multi-user interference, propaga-
tion gain, channel delay, and noise power. The library comes
in two flavors:

(1) a simplified version uses empirical equations for the
calculation of delay, attenuation, and noise power.
These equations can be found in [25, 26];

(2) a more powerful configuration called World Ocean
Simulation System (WOSS) [27]. Actual propagation
theories [28] aim to model channel power delay
or frequency attenuation profiles. WOSS is a multi-
threaded framework that permits the integration into
Miracle of any existing underwater channel simulator
that expects environmental data as input and that
provides as output a channel realization represented
using the channel profiles just mentioned. Currently,
WOSS integrates the Bellhop ray-tracing program
[29] while retaining the previous formula for the
noise power.

In both cases, the propagation effects are considered con-
stant over the duration of the packet. Specifically, Bellhop
calculations are performed across the whole bandwidth with
custom resolution, while noise calculations are performed
at the geometric frequency (let f� and fu be, respectively,
the lower and upper limits of the frequency band, then the

geometric frequency is
√
f� fu [30]). To calculate the solution
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Figure 8: Example architecture which can be simulated with the Miracle UMTS module. ME is the mobile user, Node B is the UMTS
base station (BS), RLC is the radio link control (hosting ARQ algorithms), RNC is the Radio Network Controller (in charge of connection
handling, handovers, QoS control, call admission control, etc.), SGSN and GGSN are, respectively, the serving and gateway GPRS support
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of the propagation equations between a transmitter and a
receiver, Bellhop requires the knowledge of the Sound Speed
Profile (SSP), the Bathymetric Profile (BP), and the type of
Bottom Sediments (BS), required to model acoustic power
losses from bottom reflections. The Sound Speed Profile is the
propagation speed of sound considered as a function of water
depth. Different profiles lead to potentially very different
propagation effects, including surface sound channels, deep
sound channels, convergence zones, shadow zones, and so
on; see [28]. In this respect, WOSS offers a technology
independent database API and a number of classes to
manipulate SSP, BP, and BS data. For the SSP, we employ a
custom implementation of the World Ocean Database [31], a
collection of SSPs measured during a number of experiments
all around the world; the measurements are divided by
location and day or season of the year when the measurement
was performed (recall that sound propagation is affected
by water temperature, which in turn undergoes seasonal
changes, especially in the superficial layer). The bathymetric
data have been taken from the General Bathymetric Chart
of the Oceans [32], a public database offering samples of
the depth of the sea bottom with an angular spacing of
30 seconds of arc. Finally, the type of bottom sediments is
provided by a reasoned geo-acoustic analysis of the National
Geophysical Data Center’s Deck41 data-base [33]. The effort
of interfacing all components pays off, in that the user only
has to specify the location in the world and the time where
the simulation should take place. This is done by setting
the simulated date and the wanted latitude and longitude
of every node involved. The simulator automatically handles
the rest. In more detail, the simulator picks the location (i.e.,
latitude, longitude, and depth) of the transmitter and the
receiver and queries the database manager for samples of
bottom sediments, measured SSPs (for simplicity, the SSP
can also be assumed to be constant, on average, throughout
the network area) and for bathymetric data along the path.
Full customization of “surficial”, bathymetric and SSP data

is also possible if more accurate data is available (with the
term “surficial” we refer to the surface of the sea bottom,
as opposed to superficial, which usually refers to the water
surface). The power delay profile obtained with Bellhop can
be used to schedule the reception of replicas of the packet: in
detail the user can choose to coherently combine the complex
channel gains with a custom resolution time window and
obtain one or more complex channel taps.

In Figures 9 and 10, we show the coherent sum of all
channel taps, obtained with WOSS for an example scenario.
Figure 9 represents the attenuation incurred by an acoustic
wave at 4 kHz transmitted in August, approximately 20 km
offshore the harbor of Taranto, Italy, with the transmitter
located at 40.32◦N, 17.12◦E. Darker shades of gray represent
stronger signal power. The figure shows that the signal
reaches the surface near the harbor (top right corner, about
11 km from the transmitter) bearing sufficient power to allow
correct reception. By contrast, Figure 10 shows the same
scenario in March: in this case, the average temperature of
the water is lower, changing the way the sound is refracted
and reflected by the sea bottom. Here, any acoustic receiver
deployed between 9 and 11 km from the transmitter may
be unable to acquire the transmitted signal. Furthermore,
a shadow zone of about 2 km appears in front of the
transmitter, causing failure in a hypothetical short range
communication scenario.

4.4. WiMAX. WiMAX [34, 35] is a standard defined by
IEEE802.16 task group for wireless broadband access net-
works, designed to provide high-speed wireless access. Sev-
eral extensions of ns2 providing WiMAX support have been
proposed in the last few years; one of the most popular is that
implemented by the NIST laboratories [36]. This work has
been subsequently adapted to Miracle by the DISCO group
of the University of Karlstad [37]; this version provides more
accurate modeling of a Time Division Duplexing (TDD)
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Figure 9: Attenuation incurred by acoustic waves at 4 kHz trans-
mitted in August approximately 20 km offshore Taranto harbor,
40.32◦N, 17.12◦E. A darker shade of grey represents a stronger
signal. Surficial sediments are a mixture of sand and clay; a sharply
increasing sea bottom profile can be seen in the lower half of the
picture.

Orthogonal Frequency Division Multiplexing (OFDM) sys-
tem, together with additional functionalities such as network
entry, flow management, scheduling and mobility extension.
In order to extend this WiMAX module for Miracle, several
enhancements have been developed during the Democles
project [38] resulting in a new library called WiMAX for
Democles (WiDe) [39], as we discuss in the following.

First of all, our work focused on providing a more
accurate model of the PHY layer. Previously, the WiMAX
Miracle module relied on a simple disk propagation model,
where the packet reception behavior was determined by
simply comparing the received power with a predetermined
threshold, equal for all transmission schemes. This assump-
tion is too simplistic, since the different modulation and
coding schemes which can be used in WiMAX offer a
range of different tradeoffs between transmission speed and
reliability. Moreover, the physical transmission of OFDM
systems such as WiMAX is affected by complex propagation
phenomena due to the time and frequency selective nature of
the channel. What happens is that the different subcarriers
(from 256 up to 2048 in WiMAX) in which the available
bandwidth is subdivided may experience frequency selective
fading, in which case they are affected by different channel
gains. In order to address these aspects, we introduced
the possibility of simulating the effect of propagation (i.e.,
path loss, shadowing, and fading components) for each of
the subcarriers. This allows the calculation of signal-to-
interference plus noise ratios (SINR) for each channel, which
are ultimately used to compute packet error probabilities
(PER). The mapping SINRs → PERs is done through
curves obtained off-line using a link level simulator. These
curves were mapped using the Mutual Information Effective
SINR Mapping technique (MIESM) [40], according to the
methodology described in [41]. We adopted this approach
to extend the OFDM module of the NIST code and to
design a new PHY layer module supporting the Orthogonal
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Figure 10: Attenuation incurred by acoustic waves at 4 kHz
transmitted in March approximately 20 km offshore Taranto
harbor, 40.32◦N, 17.12◦E. A darker shade of grey represents a
stronger signal. The figure refers to the same geographical area of
Figure 9.

Frequency Division Multiple Access (OFDMA) technology,
which is adopted by mobile WiMAX. The implemented
subchannelization scheme is the Partial Usage of the Sub-
Channels (PUSC) where the 1024 subcarriers are mapped
to 30 logical nonadjacent channels so as to improve the
independence of the channel response across subcarriers.

From a data link layer perspective, we added support for
Automatic Repeat reQuest (ARQ) and for the relay architec-
ture detailed in the IEEE802.16j [42] standard. The latter is
an extension to WiMAX systems according to which Relay
Stations (RS) are deployed in order to expand the coverage
and possibly improve the throughput of the WiMAX access
network. In this extension of the Miracle WiMAX module,
we considered the case of nontransparent RSs, which implies
that relay nodes are in charge of generating their own MAC
signaling and of autonomously managing the connection
with both base stations and mobile terminals.

Finally, WiDe supports the simulation of the WiMAX
network reference model defined by the WiMAX Forum
[43]. This model is composed by three main components: the
mobile station (MS), the network access provider (NAP), and
the network service provider (NSP). The MS corresponds
to the subscriber station (SS) in the IEEE standard nomen-
clature. The NAP is composed by the set of entities that
are needed to provide and manage a link layer connection
with the SSs, therefore it can be composed of a single base
station (BS) or a set of them. The NSP is the entity in
charge of managing the incoming connectivity requests and
negotiating the service requirements. A sketch of a possible
architecture is given in Figure 11.

5. Projects UsingMiracle

As a final note, we would like to mention here some research
projects that used or are using Miracle.
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Figure 11: Example architecture which can be simulated with the WiDe module. Mobile station is what has been called subscriber station
(SS) from IEEE standard nomenclature, the network access provider (NAP) is composed by the set of functionalities to manage a connection
from radio point of view with the SSs (therefore can be a single BS or a set of them) and the network service provider (NSP) is the entity in
charge of managing the incoming requests of connectivity and negotiating the service requirements.

(i) The Ambient Networks Phase2 project [44] targeted
transparent wireless access and services in a multi-
technology environment. One of its main objectives
was to provide support for multi-technology termi-
nals, that is, to allow users to seamlessly migrate
between different technologies and networks and,
in addition, to dynamically manage the business
relations with their access providers. Many research
activities have been carried out using Miracle in order
to test the proposed architecture.

(ii) The ARAGORN project [45] explores key enabling
technologies that facilitate the application of machine
intelligence and adaptive communications technolo-
gies in the optimization of resource usage in wireless
networks. Part of the research activity carried out
within ARAGORN is being performed using Miracle.

(iii) NURC [46] is one of three research and technology
organizations of NATO. It conducts world class
maritime research in support of NATO’s operational
and transformation requirements. The Centre has the
ability to conduct maritime and undersea research
from concept formulation to validation at sea with
its exceptional combination of expertise and steady
rotation of staff from and to the Nations. Mission
evaluation, network analysis, and protocol dimen-
sioning for underwater acoustic communications
systems will be done using Miracle.

(iv) The Democles project [38] is an internal project
carried out at CTTC with the aim of developing a
framework for simulating next generation wireless
networks. As part of the most recent activity within
this project, Miracle has been integrated with the pre-
existing simulation framework, and is being actively
used for several research activities.

We would like to note that many researchers have used and
are using Miracle in their work, as is proved from the amount
of interactions seen on the nsmiracle-users mailing list.
Furthermore, many research publications have been reported
to use Miracle for their performance evaluation; a complete
list would be very long and is therefore omitted.

6. Conclusions

In this paper, we presented the Miracle framework, dis-
cussing its architecture, its features, and the wireless technol-
ogy models it provides. We are confident that the features
of Miracle, in particular its multi-interface and cross-
layer capabilities, together with the possibility of simulating
several different wireless technologies, make it a very effective
tool for the simulation of 4G networks and beyond. Further-
more, the fact that Miracle is open-source, its community-
based development model, and the modularity of its code
base and its APIs make it a very good tool for research
institutions and universities.

As a final note, we would like to point out that
Miracle is still being actively developed, and therefore there
are several interesting opportunities for future research
and development activity, among which we would like to
mention validation studies for the models currently included
in Miracle, as well as the development of modules for the
simulation of emerging wireless technologies such as LTE
and Cognitive Radio.

Acknowledgments

The work at the Centre Tecnològic de Telecomunications de
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