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Abstract 

The aim of increasing the share of renewable energy sources to the total energy production has brought a significant 
increase of the interest in marine energies over the last years. Within them, tidal currents resources have been gaining 
ground for their advantages in terms of predictability, nonexistence of extreme flows, high load factor, minimal land 
occupation and visual impact. The authors, working in this field since many years, have been designing a new turbine 
able to work in the water like a kite, with no support structures, but easily connected to the coast by a rope. The 
constructive easiness, together with lower installation costs, are the main machine characteristics. Moreover it is able 
to overturn itself when the tidal current changes direction. The turbine equilibrium and mainly the transients related 
to the sink and surface phases, machine overturning, represent a critical aspect of the design. In the present work, 
starting from a phenomenological analysis, a simulation of the transients has been carried out in Simulink  
environment. The study, related to the center of gravity, has pointed out the importance of the correct floating 
stabilizer design which helps the turbine to reach the equilibrium conditions even in case of flow instability. 
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Nomenclature 

b viscous damping coefficient 

Lrope maximum length of the rope 

Lrod length of the rod 

lT length of the stabilizer-turbine connector  

m turbine mass 
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rS stabilizer radius 

rT turbine radius  

VT total volume of the turbine  

 empty/full ratio 

 water density 

m material density 

1. Introduction 

The tidal stream energy is an emerging form of renewable energy which, unlike many other ones, is a 
huge source of kinetic energy due to the regular tidal cycles influenced by the moon phases [1-4]. 
Intermittency is a problem for wind, wave and solar power since the sun doesn’t always shine and the 
wind doesn’t always blow. These renewable energy sources often require a backup from traditional forms 
of power generation. However, the inherent predictability of tidal power is highly attractive for grid 
management, avoiding the backup mostly powered by fossil fuel plants [5-7]. The tidal turbines can be 
installed on the seabed where high velocities or strong continuous ocean currents are available, and draw 
energy from the water flow.  

A key point of each project is the ability to reduce the installation costs so that the plant quickly begins 
profitable. The machines actually working by tidal currents are moored to floating structures, or a wide 
supporting pylons like the Kobold [8], Darreius [9], Cormat [10], Seagen [11] turbines. Recently, 
hydrokinetic turbines [12] are gaining ground thanks to their simpleness.  

The Unical-Sintenergy team deals with these issues for several years and, in addition to an 
international patent, has produced several scientific works [13-19]. The turbine developed by the authors 
is very simple because it does not need any bulky infrastructure: it is connected to the coast by a steel rope 
and works like a kite. The turbine works with bidirectional flows, being the installation suitable in sites 
where periodic inversion of the tides occurs. This possibility is offered by the particular connection to the 
ground: a special device, implemented in the machine, overturns it when tidal inversion occurs. During 
the positioning phases, useful to place the machine in the sea, in order to start the energy production, some 
transients happen. The geometrical parameters have to be chosen so that the turbine can sink and surface 
in the right way.  

2. Functional turbine pattern  

The turbine, see figgs. 1 and 2, has 
been widely described in previous 
works [13-19]. To briefly describe, it 
is set up by a double rotor, a deflector 
installed in the middle of the blade 
disc, a floating stabilizer, a built in 
generator, a frame whose a steel rope 
is connected, a rigid rod hinged to the 
coast. The working principle is quite 
similar to a kite: the rate of change of 
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Fig. 1 Tridimensional view 
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the axial momentum (T) is balanced by the lift force (Lr) produced by the tidal current over the central 
deflector. The resultant force (R*) stretches the rope and moves the turbine to an equilibrium position 
which, in the xy plane, doesn’t change when the tidal velocity changes. This position depends only on the 
geometrical turbine configuration and it is characterized by the angle  [13-19]. As explained before, the 
machine operations are deployed 
as: working conditions and 
transient phases. In the next 
section a phenomenological 
analysis is described. 

  

3. Phenomenological analysis of 
transients 

The machine, thanks to a 
special device, is able to manage 
its movements during the 
transient phases. The rope is 
subjected to a load equal to the 
drag force applied to the turbine, 
so, in order to balance the drag, a 
counterweight has been introduced running coaxially to the rod. A hoist is connected to the rope making 
possible any counterweight positions, following the same rules of the turbine configuration. The transient 
phases can be split in: positioning in the sea, machine startup – power production, rope rewinding, tidal 
current direction change. 

3.1. Positioning in the sea 

At the beginning the turbine is connected to the rod, at position 1, floating thanks to the stabilizer 
immersed for a half part (fig. 3), as long as the current velocity reaches the right value able to produce a 
thrust Tr , greater than the one due to a counterweight installed in the rod. When the drag begins growing 
up, the rope rolls out towards the sea side. Now the machine, and the stabilizer too, leaves the rod and 
begins to sink, along the rod direction with an angle  (see positions 1, 2, 3 of fig. 3). While the rope 
gradually unrolls, the machine sinks and pulls down the stabilizer, which produces an Archimedes' thrust 
gradually increasing, avoiding any sudden sinking. By the way, the machine becomes less heavy as long as it 
sinks and the angle  reduces as shown in fig. 3. During this phase the 1 angle (between the rope and the 
coast) doesn't change till the rope is completely unrolled (see fig. 4). Finally, the stabilizer will be more 
immersed producing the maximum Archimedes' thrust. 
 

3.2. Machine startup - power production 

When the current velocity (position 3 of figs. 3 and 4, machine startup) becomes equal to the machine 
startup one (vstartup), the dragging thrust Tt is replaced by the Tr  one, due to the blades rotation (the values can 
be evaluated with the Betz theory) [20-21]. The power production starts at position 4 and the angle changes 
from 1 to 2 (see fig. 4). This angle won’t change during the working phase [13-19] because it depends only 
on the machine geometric parameters.  
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Fig 3  Operations during the transients – front view 

 

Fig. 4 Operations during the transients – top view 

The machine reaches the equilibrium position: its coordinates (x, y) – see fig. 1 – don’t change during this 
phase. It is important to highlight that the force Tr , due to the blade rotation, grows up as long as the tidal 
current, reducing the angle  (fig. 3); consequently the machine begins quickly to surface, changing the z 
coordinate: meanwhile the stabilizer Archimedes' thrust opposes it, so the surfacing, in a short time, reduces 
its speed. 

3.3. Rewinding of the rope 

When the flow velocity reduces under certain values, the rope is rolled by the implemented counterweight 
fixture. The counterweight runs along the rod towards the sea, the machine, thanks to the rope, begins to 
move back to the coast. The turbine, moving through the positions 3, 2, 1 (see fig. 4), hooks the rigid rod 
linked to the coast by a hinge. 

3.4. Tidal current direction change 

When the tidal current changes its direction a machine rotation of 180° is requested in order to have the 
same side facing the flow: the rod rotates around the hinge, following the flow which drags the machine on 
the same direction. The machine gets through the positions 1, 5, 6 (fig. 4). Later, the positioning phase has to 
be repeated (the machine gets through the positions 6, 7, 8, with a 4 angle symmetrical to 1) and also the 
startup phase (the machine is in position 9 and starts its production). It is important to highlight that, during 
the machine overturn, the central deflector rotates around its axis of an angle equal two times the attach angle, 
getting the right position in a new working condition (see fig. 4). The fixture follows the machine in its 
behaviour, except the positioning phases in both sides of the mooring, which moves in two exact positions, 
due to the design parameters and the chosen site characteristics (positions 4 and 9, fig. 4). 
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4. Differential equations implementation  

The differential equations, related to the different phases, can be obtained by considering the action of four 
different forces: the resultant R*, which depends on the current velocity, and it is the sum of the rate of 
change of the axial momentum T and the lift 
force Lr , the Archimedes' thrust TA of the 
stabilizer, the machine net weight W (the 
Archimedes' thrust of the full and the empty 
volumes not considered) and the 
counterweight action on the rope Cw. In fig. 5 
a pattern, highlighting these forces in the 
vertical plane z, containing the rope, is 
shown. During the first transient, the turbine 
start to sink. The initial condition are obtained 
considering the machine floating thanks to the 
stabilizer. The machine net weight is: 
 

mTgVW  (1) 
 
while the Archimedes' thrust is given by the action of the spherical cap: 

3
 )( 2 TT

STTA
lrzrlrzgT  (2) 

The initial value of the center of gravity zo is given by the condition W = TA, while the initial angle o is 
given by: 

rod

o
o L

zsin  (3) 

During the first transient, related to the positioning in the sea, when the rope is still unrolling and its length 
is less than the maximum value Lrope , the dynamic equilibrium is given by the following equations:  
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When the rope is completely unrolled the motion along the  axis stops: the machine is now in the right 
position and begins to work. The path is an arc of a very small circle compared to the rope length: the motion 
is nearly vertical along the z axis. The differential equations, related to this second transient (power 
production), are: 
 

ropeAroperoperope LTWLRbLmL  cos)( sin*22  (7) 

cosropeL  (8) 

sinropeLz  (9) 

The differential equations related to the rewinding rope transient are the same as the first transient 
(positioning in the sea – eqq. 4, 5, 6) taking into account the different initial conditions, i. e. the initial turbine 
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Fig. 5 Acting forces pattern 
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velocity considered equal to zero (the values are really small, near to zero) and the initial position  equal to 
the Lrope cos , where the value of  is given by matching the drag force T and the horizontal component of the 
counterweight Cw responsible of the rope rewinding.  

When the tidal current inversion occurs the turbine turns itself and the two transient, positioning in the sea 
and power production, start over in the same way but in opposite side. 

5. Results 

The previous differential equations have been implemented in Simulink environment. The simulation 
is referred to a machine diameter of 12 m working in a tide stream flow with a current velocity of 3 m/s. 
The machine mass have been estimated on 22500 kg, while its net weight, by considering the empty/full 
ratio  equal to 0.5, is 4500 kg (see eq. 1). In this condition a spherical stabilizer with a radius of 1.3 m is 
able to manage the transient phases and guarantees an expected and regular motion in the sea. In the 
initial position the stabilizer is half immersed. 
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Fig. 6 Variation of the vertical position z of the center of gravity  Fig. 7 Variation of the sinking angle  as function of the time 

The main simulation results can be synthesized in: variation of the vertical position z of the center of 
gravity, variation of the sinking angle , as function of the time (see figgs. 6 and 7). 

At the beginning the center of gravity, supposed in the middle of the turbine, is 9 m below the sea 
surface, and the  angle (see fig. 2 and 4) of the rod is – 27°. After about 8 minutes the tidal velocity 
grows so much that the resultant R* exceeds the counterweight and the machine starts to approach the sea. 
The approach comes gradually and the center of gravity doesn’t change its vertical position (small 
variations of a few centimeters). After about a minute the rope is completely unrolled and the turbine is 
located at position 4 of fig. 4: the machine cannot move horizontally and  some oscillations occur with a 
maximum amplitude of 10 cm and frequency of 0.2 Hz, which dampen in about 20 minutes (see fig. 6). 
The fluctuation of the  angle, related to the first transient, is about 22°: the oscillations are displayed in 
fig. 7. 

At this point the second transient starts (power production) and the center of gravity follows a circular 
path raising on the top. The vertical machine fluctuation during this second transient is about 70 cm, 
while the  angle changes maintaining values around - 5°. The evolutions of the vertical position z and the 
 angle follow the tide variation: the stabilizer doesn’t completely surface but, at the peak of the z 

position, is still immersed for 60 cm. When the tide reduces, the resultant R* decreases and the motion 
reverts: the machine drops following the same circular arc until the maximum sinking. When the value of 
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the resultant R* becomes lower than the counterweight, the machine, thanks to the rope, begins to withdraw 
to the coast. The differential equations managing this transient are the same as the ones of the first transient 
(eqq. 4, 5, 6), but the initial conditions are different.  

Finally, the machine meets the rod and it is forced to stop producing some relevant oscillations with a 
maximum amplitude of about 0.5 m which dampen in a certain time (see figgs. 6 and 7). 

6. Conclusions 

The simulation of the transients, related to the different working phases of a tide self balancing turbine, 
has been done in Simulink environment: this is a first step, carried out in an ideal situation. Further 
simulations are in progress considering different startup conditions, in order to deeply define all the 
transient phases. Anyway the calculus has been able to fix the right ratio empty/full of the turbine 
volumes as well as the size of the floating stabilizer. The results show the turbine, during the positioning 
phase, sinks by a small vertical center of gravity change: when the rope is unrolled it gradually surfaces 
thanks to the action of the floating stabilizer. The simulation shows some critical features at the end of the 
last transient (rewind of the rope), when the turbine hooks the rod and some relevant oscillations occur in 
the vertical direction. The rough hooking action could be corrected implementing a damper in the rod 
system. The authors are studying the best way to realize the right rod-turbine connection. 
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