
MADES FP7 EU Project: Effective High Level
SysML/MARTE Methodology for Real-Time and

Embedded Avionics Systems
Imran R. Quadri∗, Etienne Brosse∗, Ian Gray†, Nicholas Matragkas†, Leandro Soares Indrusiak†, Matteo Rossi‡,

Alessandra Bagnato§ and Andrey Sadovykh∗
∗Softeam, France

{FirstName.LastName}@softeam.fr
†University of York, United Kingdom

{iang, nikos, lsi}@cs.york.ac.uk
†Politecnico di Milano, Italy

rossi@elet.polimi.it
†TXT e-solutions, Italy

alessandra.bagnato@txtgroup.com

Abstract—The paper presents the EU funded MADES FP7
project, that aims to develop an effective model driven method-
ology to evolve current practices for the development of real
time embedded systems for avionics and surveillance industries.
In MADES, we propose an effective SysML/MARTE language
subset and have developed new tools and technologies that
support high level design specifications, validation, simulation
and automatic code generation, while integrating aspects such
as component re-use. The paper first illustrates the MADES
methodology by means of a car collision avoidance system
case study, followed by the underlying MADES language design
phases and tool set which enable verification and automatic code
generation aspects, hence enabling implementation in execution
platforms such as state of the art FPGAs.

Index Terms—Model Driven Engineering, UML, MARTE,
SysML,Real-Time and Embedded Systems, FPGAs, Synthesis.

I. INTRODUCTION

In recent years, continuous technological advances in hard-
ware/software along with rapid increase in targeted application
domains have led to new challenges in the design specification
and implementation of real-time embedded systems (RTES).
These systems are now omnipresent, and it is difficult to find
a domain where RTES have not made their mark. Thus, large
complex RTES are becoming increasingly difficult to manage,
resulting in critical issues and what has finally led to the
famous productivity gap. The design space, representing all
technical decisions that need to be elaborated by the design
team is therefore becoming difficult to explore. Similarly,
manipulation of these systems at low implementation levels
such as Register Transfer Level (RTL) can be hindered by
human interventions and the subsequent errors.

Thus effective design methodologies and efficient design
tools are needed to decrease overall development costs and
time-to-market, while resolving issues such as those related to
system complexity, verification and validation, etc. High level

system design approaches have been developed in this context,
such as Model-Driven Engineering (MDE) [1] that specify the
system using the UML (Unified Modeling Language) graphi-
cal language, thus elevating the design abstraction levels.

MDE enables to elevate as well as partition the system
design: by enabling parallel independent specifications of both
system hardware and software; their eventual allocation, and
the possibility of integrating heterogeneous components into
the system. Usage of the UML graphical language increases
system comprehensibility as it enables designers to provide
high level descriptions of the system, easily illustrating the
internal concepts (hierarchy, connections, dependencies etc.).
The graphical nature of these specifications equally enables
reuse or refinements, depending upon underlying tools and
user requirements. Additionally, MDE encapsulates different
technologies and tools such as UML and related profiles for
high level system specifications. Finally, Model transforma-
tions [2] can then automatically generate executable models
or code from these abstract high level design models.

The contributions of this paper relate to presenting an
overview of the MADES project [3], [4] followed by our
contributions. MADES aims to develop novel model-driven
techniques to improve existing practices in development of
real-time and embedded systems for avionics and surveil-
lance embedded systems industries. It proposes an effective
subset of existing standardized UML profiles for embedded
systems modeling: SysML [5] and MARTE [6], while avoiding
incompatibilities resulting from simultaneous usage of both
profiles. The MADES methodology integrates new tools and
technologies that support high level SysML/MARTE system
design specification, their verification and validation (V&V),
component re-use, followed by automatic code generation to
enable execution platform implementation.

One of the major contributions is related to presenting
a complete methodology based on mixed SysML/MARTE

usage, for the design of RTES. While a large number of
works deal with embedded systems specifications using only
either SysML or MARTE, we present a combined approach
and illustrate the advantages of using the two profiles. This
contribution is significant in nature as while both these profiles
provide numerous concepts and supporting tools, they are in
turn difficult to be mastered by system designer. For this
purpose, we present the MADES language, which focuses
on an effective subset of SysML and MARTE profiles and
proposes a specific set of unique diagrams for expressing
different aspects related to a system. In the paper, an overview
of the MADES language and the associated diagrams is pre-
sented, that enables rapid design and incremental composition
of system specifications. The resulting models then can be
taken by the underlying MADES tool set for goals such as
component re-use, verification or automatic code generation,
which are also briefly detailed in the paper.

Finally, we illustrate the various concepts present in the
MADES language by means of an effective real-life embedded
systems case study: a car collision avoidance system that inte-
grates the MADES language and illustrates the different phases
of our design methodology and implementation approach.

The rest of this paper is organized as follows: section 2
gives a brief overview of the MADES project along with its
underlying methodology, and integrated tool set. Afterwards,
section 3 presents our case study and related design phases:
modeling, verification and code generation, finally followed
by a conclusion in section 4.

II. AN OVERVIEW OF THE MADES PROJECT

Hardware-independent

software

Veri cation

Veri!cation

scripts

User

input

Simulation

scripts

Zot veri!cation

MADES Language

Design Models

MHS description

VHDL

Hardware description

generation

Hardware

architecture

description

Hardware/

software

mappings

Compile-Time Virtualization

Platform-speci!c software

Embedded software generation

Figure.1: The global MADES methodology

In this section, we provide a brief overview of the MADES
design methodology, as illustrated in Figure.1. Initially, the
high level system design models are carried out using the
MADES language and associated diagrams, which are rep-
resented later on in section II-A. After specification of the
design models that include user requirements, related hard-
ware/software aspects and their eventual allocation; underly-
ing model transformations (model-to-model and model-to-text
transformations) are used to bridge the gap between these

abstract design models and subsequent design phases, such
as verification, hardware descriptions of modeled targeted
architecture and generation of platform-specific embedded
software from architecturally neutral software specifications.
For implementing model transformations, MADES uses the
Epsilon platform [7], that enables model transformations,
code generation, model comparison, merging, refactoring and
validation [8].

Verification activities in MADES include verification of key
properties of designed concepts (such as meeting deadlines,
etc.) and that of model transformations integrated in the
design flow [9], [10]. For verification and simulation purposes,
MADES uses the Zot tool [11], which permits the verification
of, among others, aspects such as meeting of critical dead-
lines. While closed-loop simulation on design models enables
functional testing and early validation.

Additionally, MADES employs the technique of Compile-
Time Virtualization (CTV) [12], for targeting of non-standard
hardware architectures, without requiring development of new
languages or compilers. Thus a programmer can write archi-
tecturally neutral code which is automatically distributed by
CTV over a complex target architecture. Finally, via model
transformations, code generation (for example; such as either
in VHDL for hardware, and Real-Time Java for software) can
be carried that can be eventually implemented on modern state-
of-the-art FPGAs. Currently MADES model transformations
target Xilinx FPGAs, however it is also possible for them to
adapt to FPGAs provided by other vendors such as Altera or
Atmel. A detailed description regarding the global MADES
methodology can be found in [13].

A. MADES language: design phases and related diagrams

Figure.2 gives an overview of the underlying MADES lan-
guage present in the overall methodology for the initial model
based design specifications. The MADES language focuses
on a subset of SysML and MARTE profiles and proposes
a specific set of diagrams for specifying different aspects
related to a system: such as requirements, hardware/software
concepts, etc. Along with these specific diagrams, MADES
also uses classic UML diagrams such as State and Activity
diagrams to model internal behavior of system components,
along with Sequence and Interaction Overview diagrams to
model interactions and cooperation between different system
elements. Softeam’s Modelio UML Editor and MDE Work-
bench [14] enables full support of MADES diagrams and
associated language. We now provide a brief description of
the MADES language and its related diagrams.

In the initial specification phase, a designer needs to carry
out system design at high abstraction levels. This design phase
consists of the following steps:

• System Requirements: The user initially specifies the
requirements related to the system. For this purpose, a
MADES Requirements Diagram is utilized that integrates
SysML requirements concepts.

• Initial Behavioral Specification: Afterwards, initial be-
havioral specification is carried out by means of UML use

cases, interactions, state machines or activities during the
preliminary analysis phase.

• Functional Specification: Once the behavioral specifi-
cations are completed, they are then linked to SysML
blocks (or internal blocks) by means of MADES Func-
tional Block (or Internal Functional Block) Specification
Diagram, that contains SysML block (or internal block)
concepts. This functionality is independent of any un-
derlying execution platform and software details. It thus
determines ’what’ is to be implemented, instead of ’how’
it is to be carried out.

• Refined Functional Specification: This level refines
SysML aspects into MARTE concepts: The Refined
Functional Specification Diagram models MARTE com-
ponents, each corresponding to a SysML block. Here,
MARTE’s High level Application Modeling package is
used to differentiate between active and passive compo-
nents of the system.

Figure.2: Overview of MADES language design phases

The refined functional specification phase links SysML and
MARTE concepts but avoids conflicts arising due to parallel
usage of both profiles [15]. The conflicts are avoided as we
do not mix SysML and MARTE concepts in the same design
phase, except the allocation aspects, present in both profiles.
While the allocation concept is present both in SysML and
MARTE, MARTE enriches the basic SysML allocation aspects
and is thus the one adopted for our methodology. SysML is
used for initial requirements and functional description, while
MARTE is utilized for the enriched modeling of the global
functionality and execution platform/software modeling along
with their allocations, creating a clear separation between
the two profiles. Afterwards, the designer can move onto
the hardware/software partitioning of the refined functional
specifications. These following steps are elaborated by means
of MARTE concepts.

Related to the MARTE modeling, an allocation between
high level and refined high level specifications is carried
out using a MADES Allocation Diagram. Afterwards, a Co-
Design approach [16] is used to model the hardware and
software aspects of the system. The modeling is combined
with MARTE Non-Functional Properties and Timed Modeling
package to express aspects such as throughput, temporal
constraints, etc. We now describe the hardware and software
modeling, which are as follows:

• Hardware Specification: The MADES Hardware Speci-
fication Diagram in combination with MARTE’s Generic
Resource Modeling package enables modeling of abstract
hardware concepts such as computing, communication
and storage resources. The design level enables a designer
to describe the physical system albeit at an abstraction
level higher than the detailed hardware specification level.
By making use of MARTE GRM concepts, a designer
can describe a physical system such as a car, a transport
system, flight management system, among others.

• Detailed Hardware Specification: Using the Detailed
Hardware Specification Diagram with MARTE’s Hard-
ware Resource Modeling package allows extension and
enrichment of concepts modeled at the hardware spec-
ification level. It also permits modelling of systems
such as FPGA based System-on-Chips (SoCs), ASICs
etc. A one-to-one correspondence usually follows here:
for example, a computing resource typed as MARTE
ComputingResource is converted into a hardware pro-
cessor, such as a PowerPC or MicroBlaze [17], effectively
stereotyped as MARTE HwProcessor. Afterwards, an
Allocation Diagram is then utilized to map the modeled
hardware concepts to detailed hardware ones.

• Software Specification: The MADES Software Specifi-
cation Diagram along with MARTE’s Generic Resource
Modeling package permits modeling of software aspects
of an execution platform such as schedulers and tasks;
as well as their attributes and policies (e.g. priorities,
possibility of preemption).

• Detailed Software Specification: The MADES Detailed
Software Specification Diagram and related MARTE’s
Software Resource Modeling are used to express aspects
of the underlying Operating System (OS). Once this
model is completed, an Allocation Diagram is used to
map the modeled software concepts to detailed software
ones: for example, allocation of tasks onto OS processes
and threads. This level can express standardized or de-
signer based RTOS APIs. Thus multi-tasking libraries and
multi-tasking framework APIs can be described here.

• Clock Specification: The MADES Clock Specification
Diagram (not shown in Figure.2) is used to express timing
and clock constraints/aspects. It can be used to specify
the physical clocks present in the hardware platform
and the related constraints, or logical clocks related to
the software functionalities. This diagram makes use of
MARTE’s Time Modeling concepts such as clock types,
clocks and related constraints.

Iteratively, several allocations can be carried out in our
design methodology: an initial software to hardware allocation
may allow associating schedulers and schedulable resources to
related computing resources in the execution platform, once
the initial abstract hardware/software models are completed,
in order to reduce Design Space Exploration (DSE).

Subsequently this initial allocation can be concretized by
further mapping of the detailed software and hardware models

(an allocation of OS to a hardware memory, for example),
to fulfill designer requirements and underlying tools analysis
results. An allocation can also specify if the execution of a
software resource onto a hardware module is carried out in
a sequential or parallel manner. Interestingly, each MADES
diagram only contains commands related to that particular
design phase, thus avoiding ambiguities of utilization of the
various concepts present in both SysML and MARTE, while
helping designers to focus on their relative expertise. Addition-
ally, UML behavioral diagrams in combination with MADES
concepts (such as those related to verification) can be used
for describing detailed behavior of system components or the
system itself.

Finally, the MADES language also contains additional con-
cepts used for the underlying model transformations for code
generation and verification purposes, which are not present
in either SysML or MARTE. A detailed description of these
aspects can be found in [18].

Once the modeling aspects are completed, verification and
code generation can be carried out, as explained subsequently.

B. Verification and Validation using Zot

Verification is carried out by transforming MADES di-
agrams into temporal logic formulae, using the semantics
defined in [10]. These are, in turn, fed to the Zot verification
tool, which signals whether the stated property holds for
the modeled system or not, and in the latter case, returns a
counterexample, i.e., a system trace violating the property.

In fact, once the temporal logic model is created from the
diagrams describing the system, the Zot tool can be used
in two ways: to check whether user-defined properties hold
for the system; and to produce traces compatible with a
formal model, in what amounts to a simulation of the system.
The simulation capabilities of the Zot tool can be used, as
described in [19], in combination with a simulation tool such
as OpenModelica [20] to perform closed-loop simulations of
the designed embedded system with its physical environment.

C. Model transformations and Code generation features

The underlying MADES model transformations focus on
the following areas:

Architecture-neutral code

Easy to write, but wouldn’t work on the real hardware

wri en for

Architecture-speci c code

Hardware specific, would be hard to write manually

translated to

CPU CPU

Mem

Mem

CPU

CPU

Acc

Bridge

CPUMem

for execu"on on

C / Java / etc. Assume

this simple architecture

Many different actual

pla$orms may be

targeted

Virtual platform

Simple, supported by the language

Actual platform

Figure.3: Overview of Compile Time Virtualization

• Generation of platform-specific software from
architecturally-neutral software specifications: Using
Anvil J [21] that utilizes Compile-Time Virtualization,
as seen in Figure.3, architecturally neutral code can be
developed which is then ported to the real hardware. This
enables hardware independence without redevelopment
of the software functionality. Thus the software can be
automatically refactored in case of change in details
related to the underlying hardware. Additionally, software
can be restructured throughout the target architecture:
tasks can be moved from an overloaded processor
without recoding the application. CTV will generate
the split output code appropriately, and handle all
communications and shared memory use to ensure that
the code still operates correctly.

• Generation of hardware descriptions of the modeled tar-
get architecture: The MADES transformations allow for
the generation of implementable hardware descriptions
of the target architecture from the input system model.
The input model is created by means of Modelio and
the MADES language detailed previously. The generated
hardware could be a complex, heterogeneous system with
a non-uniform memory architecture, but is supported
and programmed by the software generated via the code
generation transformations described earlier.

• Verification of functional/non-functional properties:
Verification capabilities are provided in the MADES
framework by Zot, which requires a verification script and
a set of properties to carry out verification. The verifica-
tion script is automatically generated from a combination
of the behavioral diagrams of the MADES language,
particularly State, Sequence and Interaction Overview
diagrams. A specification of the structure of the system is
also needed which is derived from the MADES structural
diagrams. Moreover, timing/clock information is required,
which can be extracted from the Clock Specification
Diagram present in the MADES language. The properties
to verify must be solicited from the user. Results from
Zot are fed back into the modeling tool in order to give
the user feedback on them and locate errors, if any are
found. The code generation facilities are used to integrate
the back-end of the verification tool, which is Zot, with
the front-end, which are the models expressed using the
MADES language.

• Simulation of embedded systems: In the case of simu-
lation, the simulation tool requires an appropriate simu-
lation script and a Modelica [22] model. The simulation
script will be automatically generated from a combination
of the behavioral diagrams of the MADES Language,
particularly State, Sequence and Interaction Overview
diagrams. A specification of the structure of the system,
and of its links to the environment is also needed which is
derived from the MADES diagrams. Finally, information
about the environment will be required, and this informa-
tion can be modeled using the MADES language.

• Traceability aspects: The capture/maintenance of trace-
ability information is of paramount importance in order to
ensure consistency between the various artifacts or tools
present in the MADES tool chain. Traceability support is
provided for tracing the results of the verification activity
back to the models, for tracing the generated code back to
its source models and finally for tracing requirements to
model elements such as use cases or operations, as well
as to implementation files and test cases.

Together, these assist with mapping the programmer’s code
to complex hardware architectures, describing that architecture
for implementation (possibly as an ASIC or on an FPGA)
and verifying the correctness of the final system. Detailed
descriptions about these model transformations, along with
their installation and usage guidelines have been provided in
[18], [23].

D. MADES Component Repository

Figure.4: The MADES Component repository welcome page

The MADES Component Repository (CRP), as shown in
Figure.4, is used to store, search and download MADES
components created by the MADES developer with the Mod-
elio UML Editor and MDE Workbench. It accesses a central
MADES component database while offering various web
services via a flexible graphical user interface to manage
the components stored within the database, and the queries
that have been performed on its contents. Thus the CRP
enables Intellectual Property (IP) re-use, enabling designers to
create, store or re-use IP blocks to build different applications,
platforms or complete systems, while reducing design time.
Complete details about the MADES CRP can be found in
[18], [23].

III. CAR COLLISION AVOIDANCE EXAMPLE (CCAS)

We now provide the car collision avoidance system (CCAS)
case study that is modeled in Modelio using the MADES
language and then carry out verification and code generation
aspects using the MADES methodology. While MADES has
two real-life case studies provided by Cassidian and TXT
focusing on a ground based radar processing unit as well as an
onboard radar control unit; the CCAS has been developed as a
reference example to provide guidelines to the MADES part-
ners as well as to the general embedded systems community
for usage of the MADES language and the methodology.

The CCAS as shown in Figure.5 has been exhaustively
modeled using the MADES language in the open source

Modelio UML Editor/MDE Workbench, as shown in Figure.6.
The right side of Figure.5 lists the different design phases of
the CCAS. We refer the reader to [24] for a detailed description
related to the modeling of the CCAS. Due to space limitations
of the paper, we only focus on an extract of the CCAS and
illustrate the associated modeling, verification, code generation
and implementation aspects.

Figure.5: The CCAS installed on a car to avoid collisions with
incoming objects

Figure.6: Open Source Modelio UML Editor/MDE Workbench

A. Modeling of CCAS using the MADES language

Figure.7: The Global system requirements related to the CCAS

The CCAS design specifications start with SysML based
modeling, which involves the initial design decisions such

as system requirements, behavioral specifications and func-
tionality description. Using the SysML inspired MADES Re-
quirements Diagram, system requirements are described at the
initial system conception phase, as illustrated in Figure.7. It
should be mentioned that only the functional requirements of
a system are described at this level. Afterwards, an initial be-
havioral specification phase is carried out, and in the particular
case of CCAS, some use cases are specified to describe the
different system scenarios of the car containing the CCAS
module. Subsequently, the designer describes the functional
description of the CCAS system, using SysML inspired Func-
tional/Internal Functional Block diagrams. These behavioral
and functional specifications are in turn used to complete
the initial requirements, as shown in Figure.7. Here, the
Car Collision Avoidance Module block and the Avoid
Collisions use case help to complete the requirements.
Figure.8 illustrates several design phases, mainly the behav-
ioral, functional and refined functional specifications and the
mapping between them. The functional specification illustrates
the whole architecture of the car, of which we are mainly inter-
ested in the Car Collision Avoidance Module or CCAS.
A use case is mapped to this block to describe its behavior, and
the block is then refined into an equivalent MARTE concept
using the refined functional specification phase.

Figure.8: Extract of CCAS Functional/Refined Functional
specifications

Figure.9: Timing constraints in a Sequence diagram

Afterwards, This refined MARTE component or the
RH Car Collision Avoidance Module is partitioned into

hardware and software specifications using a Co-Design ap-
proach, as shown in Figure.10 and Figure.11, each consisting
of a large number of concepts. As viewed in Figure.7, the
CCAS also has some strict timing constraints, an example of
which is shown in Figure.9

From hereon, we only focus on the image tracking aspect
of the CCAS, which determines the distance of the car
from an object by means of image computation. The Image
Processing Module in Figure.10 and the Img Processing
Task in Figure.11 represent the generic hardware and soft-
ware aspects of the image tracking part of the CCAS, and
are subsequently refined to detailed levels, corresponding to
MADES detailed hardware and software specifications, shown
in Figure.12 and Figure.13 respectively.

Figure.10: Extract of CCAS: Hardware Specification

Figure.11: Extract of CCAS: Software specification

Figure.12 depicts the refined structure of the Image
Processing Module, consisting of three processors with a
distributed memory architecture, connected to a UART and
a camera via PLB bus. The module also contains a system
clock called clock of the type mainClk specified in the

MADES Clock Specification Diagram, but also shown here
to represent a complete picture. The different classes/instaces
are annotated with MARTE concepts, but also with certain
MADES concepts defined in [18] relative to verification and
code generation. Similarly, Figure.13 represents the refined
internal structure of the Image Processing Task. It consists
of several threads containing a number of operations, along
with a shared object or mutex. Finally, Figure.14 describes the
allocation of the detailed software/hardware aspects related to
the CCAS image tracking part. Here, the readThread and
dctThread instances are allocated to instances of cpu1 and
cpu2 respectively, while the instances of quantizeThread
and OutputStage are allocated to an instance of cpu3.

Figure.12: Detailed Hardware Specification of the Image Pro-
cessing Module

Figure.13: Detailed Software Specification of the Image Pro-
cessing Task

B. Verification & Validation

After creating the MADES diagrams describing the behavior
of the components of the system and of their interactions, the
user can use suitable forms to define what properties of interest
are to be checked on the model. For example, Figure.15 shows

the dialog box of the MADES tool that allows the user to
define properties to be verified and then to launch the actual
verification. In this case, the property of interest states that,
if the distance received by the controller remains less than 2
meters for 50 time units, within those 50 time units the system
must have started to brake. Using the MADES tool chain, the
user can then launch the verification on the modeled system,
and in this case the tool reports a counterexample, meaning
the system does not satisfy the stated property.

Figure.14: Allocation of detailed software/hardware aspects

Figure.15: Temporal Logic: Example of temporal properties

C. Hardware and Software code generation

Once the modeling and verification phases have been car-
ried out, it is possible to carry out hardware/software code
generation by means of the model transformations previously
described in section II-C. The hardware related model transfor-
mations take the MADES allocation model of Figure.14, and
generate hardware description for input to standard commer-
cial FPGA synthesis tools, such as Xilinx ISE and EDK tools.
Presently, the model transformation are capable of generation
Microprocessor Hardware Specification (MHS) which can be
taken by Xilinx tools to generate the underlying hardware
equivalent to that modeled using the MADES language, as
seen in Figure.16.

Regarding the software code generation, the model transfor-
mations are capable of transforming user-provided, hardware-
independent code and rewriting it to target the modeled
hardware architecture. The transformation builds a minimal-
overhead runtime layer to implement the modeled system, as
seen in Figure.17; and translates the user-provided software
to make use of this layer. If the hardware or allocations are
changed in the model then the generated runtime layer is
automatically reduced or expanded accordingly. This greatly

aids in Design Space Exploration (DSE) aspects. The details
regarding these aspects have been detailed in [18].

Figure.16: MADES based hardware generation

Figure.17: Generating software code using Anvil J and CTV

D. Synthesis and implementation in a Virtex V FPGA

Finally, the generated hardware/software are used to carry
out synthesis, and then subsequent implementation is carried
out on a Xilinx ML505 board containing a Virtex V series
FPGA, as seen in Figure.18.

Figure.18: Synthesis and implementation on a Virtex V FPGA

IV. CONCLUSIONS

The paper describes the EU MADES FP7 project and
describes its global methodology and the integrated tool set.
The MADES language based on SysML/MARTE has also

been detailed, followed by a Car Collision Avoidance System
(CCAS) case study, where we describe the different phases
of the methodology, namely: high level modeling, component
based IP-reuse, verification and validation, hardware/software
code generation, synthesis and final implementation on execu-
tion platforms, such as FPGAs.

REFERENCES

[1] OMG, “Portal of the Model Driven Engineering Community,” 2007,
http://www.planetmde.org.

[2] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and
Soul of Model-Driven Software Development,” IEEE Software, vol. 20,
no. 5, pp. 42–45, 2003.

[3] A. Bagnato et al, “MADES: Embedded systems engineering approach
in the avionics domain,” in First Workshop on Hands-on Platforms and
tools for model-based engineering of Embedded Systems (HoPES), 2010.

[4] MADES, “EU FP7 Project,” 2011, http://www.mades-project.org/.
[5] Object Management Group Inc, “Final Adopted OMG SysML Specifi-

cation,” 2010, http://www.omg.org/spec/SysML/1.2/.
[6] OMG, “Modeling and Analysis of Real-time and Embedded systems

(MARTE),” 2011, http://www.omg.org/spec/MARTE/1.1/PDF.
[7] D.S. Kolovos et al, “Eclipse development tools for Epsilon,” in Eclipse

Summit Europe, Eclipse Modeling Symposium, 2006.
[8] N. Matragkas et al., “D4.1: Model Transformation and Code Generation

Tools Specification,” Tech. Rep., 2010, http://www.mades-project.org/.
[9] L. Baresi et al., “D3.1: Domain-specific and User-centred Verification,”

Tech. Rep., 2010, http://www.mades-project.org/.
[10] ——, “D3.3: Formal Dynamic Semantics of the Modelling Notation,”

Tech. Rep., 2010, http://www.mades-project.org/.
[11] Zot, “The Zot bounded model/satisfiability checker,” 2012,

http://zot.googlecode.com.
[12] I. Gray and N. Audsley, “Exposing non-standard architectures to em-

bedded software using compile-time virtualisation,” in International
conference on Compilers, architecture, and synthesis for embedded
systems (CASES’09), 2009.

[13] Ian Gray et al., “Model-based hardware generation and programming
- the MADES approach,” in 14th International Symposium on Object
and Component-Oriented Real-Time Distributed Computing Workshops,
2011.

[14] Modelio, “Open source UML Editor and MDE Workbench,” 2012,
www.modelio.org.

[15] H. Espinoza et al, “Challenges in Combining SysML and MARTE
for Model-Based Design of Embedded Systems,” in ECMDA-FA’09.
Springer-Verlag, 2009, pp. 98–113.

[16] D.D. Gajski and R. Khun, “New VLSI Tools,” IEEE Computer, vol. 16,
pp. 11–14, 1983.

[17] Xilinx, “MicroBlaze Soft Processor Core,” 2011,
http://www.xilinx.com/tools/microblaze.htm.

[18] A. Bagnato et al, “D1.7: MADES Final Approach Guide,” Tech. Rep.,
2012, http://www.mades-project.org/.

[19] L. Baresi et al, “D3.2: Models and Methods for Systems Environment,”
Tech. Rep., 2012, http://www.mades-project.org/.

[20] OpenModelica, “Open-source Modelica-based modeling and simulation
environment,” 2012, http://www.openmodelica.org/.

[21] Ian Gray and Neil C. Audsley, “Developing Predictable Real-Time
Embedded Systems Using AnvilJ,” in IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE Computer Society,
2012, pp. 219–228.

[22] Modelica, “Modelica: An object-oriented equation based language ,”
2012, https://modelica.org/.

[23] I. R. Quadri et al, “D1.6: MADES Tool Set - Final Version,” Tech. Rep.,
2012, http://www.mades-project.org/.

[24] I. R. Quadri, L. S. Indrusiak and A. Sadovykh, “MADES: A SysML/-
MARTE high level methodology for real-time and embedded systems,”
in International Conference on Embedded Real Time Software and
Systems (ERTS2 2012), 2012.

