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Abstract

Underplatform dampers (UPDs) are still in use to reduce the
vibration amplitude of turbine blades and to shift the position of
resonant frequencies. The dynamics of blades with UPDs is
nonlinear and the analysis is challenging from both the exper-
imental and the numerical point of view. A key point in obtaining
a predictive numerical tool is the choice of the correct contact
parameters (contact stiffness and friction coefficient) that are
required as input to the contact model. The paper presents
different approaches to choose these parameters: the contact
stiffness in normal and tangential direction are both calculated
and measured. The calculation is based on the analytical models
in literature, the measurements are carried out on a dedicated
test rig. The friction coefficient is also measured. Test results of
the forced response of the same bladed disk with UPDs are
available for each blade, they come from an experimental
campaign under controlled excitation and centrifugal force. The
forced response of the bladed disk is not used as a mean to tune
the contact parameters, but rather as a validation tool: the effect
of the different choices of contact parameters in the code is
highlighted by the comparison of the calculated and exper-
imental forced response of the bladed disk.

Introduction

The study of the dynamic behavior of turbine bladed disks
vibration is still a topic of great importance. When the exci-
tation frequency is close to a natural frequency of the system,
within the engine speed working range, the vibration ampli-
tude can lead to high-cycle fatigue failure. Friction damping
devices such as UPDs are typically included into turbine
design to limit these resonant vibrations (Berruti et al., 2007;
Berruti and Maschio, 2012). Each damper is pressed against
the blade platforms by the centrifugal force. When relative
motion takes place between damper and blade platform, the
generated nonlinear friction forces lead to the dissipation of
vibrational energy. From an industrial point of view, it is
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fundamental to have effective tools for the design and performance prediction of UPDs. In the last
20 years different authors worked on this topic and proposed several numerical models, they can be
found, among the others, in the papers by Panning et al. (2004), Petrov and Ewins (2007), Cigeroglu
et al. (2009), and Firrone et al. (2009).

The basic idea is that the calculation of the nonlinear forced response is performed by coupling the
UPD to the blades modelled through FE. This coupling is achieved by inserting a contact element
between blades and UPD. The contact element is characterized by four parameters, which must be
chosen by the user: the friction coefficient, the normal contact stiffness and the tangential contact
stiffness in two perpendicular directions.

The problem of solving the nonlinear equation of the forced response in presence of contact forces,
depending on the structure displacement, is nowadays completely overcome. The nonlinear forced
response can be calculated with high computational efficiency in the frequency domain using the
harmonic balance method (HBM) (Petrov, 2004; Charleux et al., 2006; Cigeroglu et al., 2007; Petrov,
2007; Firrone et al., 2009; Siewert et al., 2009; Petrov, 2012).

Being the calculation method well-established, the still open question is how to choose the contact
parameters (friction coefficient, normal and tangential contact stiffness) in order to obtain reliable
predictions of the forced response. In literature contact parameters are usually tuned by matching the
computed forced response function (FRF) with the measured one. This method, however is not a
viable procedure at the design stage, where experimental FRFs are not yet available.

This paper presents the numerical results obtained by a numerical code where the damper model, the
contact model and the method for solving the equations are aligned with the state of the art. The
attention is here focused on the procedure adopted for choosing contact parameters: only those
procedures which do not rely on curve fitting between experimental and numerical FRFs are con-
sidered. The present paper adopts two such alternative ways to estimate contact parameters: the first is
an established analytical model from the literature and the second is based on direct experimental
measurements (i.e. hysteresis cycles) on UPDs on a dedicated test rig. The chosen test case is a bladed
disk carrying cylindrical UPDs. The comparison between measured FRFs and simulated ones will
highlight strengths and limitations of each method used for contact parameter estimation.

Bladed disk with underplatform dampers

The test case analyzed in this paper is the bladed disk (blisk) shown in Figure 1a. The bladed disk
carries between each couple of blades a cylindrical UPD, sketched in Figure 2a and shown in Figure
10a. This blisk and the UPDs were chosen as a test case since they are part of a test rig (Octopus test
rig) (Berruti et al., 2011; Firrone and Berruti, 2012) that provides experimental forced response of
blisks with UPDs under controlled conditions.

Figure 1. (a) Bladed disk. (b) FE model of a bladed disk sector.
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Nonlinear dynamic equilibrium equation

The reduced mass and stiffness matrices of the bladed disk are exported from the FE code in Matlab
and they are used for the calculation of the dynamic forced response of the blisk using a dedicated in-
house numerical code.

Dynamic equation of the bladed disk

The dynamic equations of the bladed disk in the time domain are nonlinear second order differential
equations:

(t) (t) (t) (t)* * *
E CMü Cu̇ Ku F F+ + = − (1)

where M, K are the reduced mass and stiffness matrices (Craig and Bampton, 1968), C is the damping
matrix, linear combination of M and K, u* is the vector of the dof (master and slave dofs), EF is an
engine-order (EO)-type harmonic excitation and CF is the vector of nonlinear forces applied by the
blade platforms to the cylindrical UPD. The equation can be converted in frequency domain and
solved by the HBM. To convert Equation 1 in the frequency domain the displacement and forces are
expanded as Fourier series as:
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where Nh is the retained number of harmonics, n = 0…Nh and ω is the frequency of the excitation
forces. By substituting Equations 2–3–4 into the general balance Equation 1, the initial nonlinear
second order differential equations are turned in the frequency domain into a set of nonlinear algebraic
complex equations:

*( )  (n) (n)
E
(n)

C
(n)D u F Fω = − (5)

where (n ) in(n) 2D M C K= − ω + ω + is the nth dynamic stiffness matrix of the bladed disk with n =
0…Nh.

Figure 2. (a) Contact model for a cylindrical UPD. (b) Elastic contact between damper and platform.
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Dynamic equations of the damper

The damper is considered as a rigid body with inertia properties. The damper equilibrium equation in
the time domain is:

(t) (t)D C E DM ḧ F F= + − (6)

where h is the vector of displacements of the damper center of mass, (t)CF is the vector of components
of the resultant of the contact forces at the mass center, {0, CF, 0, 0, 0, 0}E DF =− is the vector of
components of the external forces, the only external force on the damper is CF, the centrifugal force.

DM is the damper mass matrix. By following the same procedure carried out for the bladed disk case,
Equation 6 can be solved in the frequency domain as:

( )D
(n) (n)

E D
(n)

C
(n)D h F Fω = +− (7)

where Nh is the retained number of harmonics,  n 0 Nh= … and (n )D
(n) 2

DD M= − ω is the nth

dynamic stiffness matrix of the damper. In order to solve Equations 5 and 7, a contact model is
introduced to compute the contact forces CF that are unknown. The contact forces depend on the
relative displacement between damper and blade platforms, this dependence makes the Equations 5
and 7 nonlinear. As a consequence, an iterative solution method like the Newton-Raphson solver has
to be used.

Contact model

The contact model, a typical macroslip element, takes into account a two-dimensional tangential
relative displacement and a variable normal load. The contact model applied to a contact point on the
damper is sketched in Figure 2a.

The plane (x,y) is tangent to the UPD and represents the surface of the blade platform. Two springs
define the tangential contact stiffnesses ktx and k  ty along the two orthogonal directions x and y. The
normal contact stiffness is represented by the spring with stiffness  kn. The two parameters

{ }u(t) u (t); u (t)x y= and v(t)  are the periodic relative displacements of the contact nodes in the

tangential and normal directions respectively. T ,  Tx y andN are the contact friction forces generated as
a result of the relative motion between platform and damper.

Determination of contact parameters

A key point for a correct calculation of the forced response in presence of UPDs is the choice of the
correct contact parameters (contact stiffness and friction coefficient) to be given as input to the contact
model.

There are analytical methods in literature (Brändlein et al., 1999; Harris and Kotzalas, 2006; Allara
et al., 2008; Allara, 2009) to calculate the contact stiffness values in normal and tangential direction
starting from the geometry and the material of the UPD. The same contact stiffness values can also
be determined from measurement of forces and displacement but only on dedicated test rigs.

Some focus on single flat-on-flat contacts under constant normal loads and high temperatures (Lavella
et al., 2011; Botto et al., 2012; Lavella, 2016), and are therefore not useful in this specific case. On the
other hand, the Damper Test Rig (Gola and Liu, 2014) aims at estimating contact parameters of
UPDs (cylinder-on-flat interfaces as well) under more realistic working conditions in terms of variable
normal load and complex interface kinematics.

The friction coefficient cannot be calculated with the analytical technique presented here, it is
therefore measured. These different approaches for the choice of the contact parameter values are here
presented.
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Analytical calculation of the contact stiffness values

Normal contact stiffness

The normal load N at the contact line causes an elastic deformation Nδ due to the elastic contact
stiffness kn. The calculation of the normal contact stiffness can be performed applying formulas found
in literature. The well-known Harris (Harris and Kotzalas, 2006) empirical formula allows the cal-
culation of the normal elastic penetration Nδ occurring when a cylinder is pressed against a flat surface
(steel on steel):

3.84 10N Harris
5N
L

0.9

0.8δ = ⋅−
− (8)

where N is the value of the normal contact force and L is the length of the cylinder minus possible
recesses. The same contact condition was more recently studied by Brändlein et al. (1999) who
established that the normal elastic penetration for the single contact is obtained as:

4.05 10N B
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L
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− (9)

Allara et al. (2008) and Allara (2009) use the pressure distribution to compute the normal relative
displacements of the contact surfaces by means of the Cerruti potential theory (Hills et al., 1993):
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where b is the half-width of the contact area, E is the Young’s modulus and ν is the Poisson’s ratio.

The value of the normal contact stiffness is obtained by taking the derivative of the normal penetration

Nδ with respect to N:
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In the last equation, the dependence on the normal load N is hidden in b, half-width of the contact
area, function of N.

Equation 12–14, are here applied to the cylindrical UPD of Figure 2a where the length is L = 27.6 mm
and the radius of the cylinder is R = 5 mm. The length of contact corresponds to the nominal length of
the UPD, as shown by the wear marks (see Results section). The half-width of the contact area b can be
calculated by the standard Hertz formulas (Harris and Kotzalas, 2006; Allara et al., 2008). Figure 3
shows the plot of the normal contact stiffness calculated according to the Equation 12–14 versus the
normal load N.

Figure 3 shows that the three analytical models lead to three different plots. It will be observed later
however that this discrepancy does not significantly influence the calculated FRFs of blades with
damper: it leads to a difference lower than 1.5% in the frequency value of the blades with damper
when the different kn are used. For all the subsequent calculations it was then decided to use one of
them, Brändlein’s formulation of kn (Equation 13) was chosen.
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Tangential contact stiffness

The cylindrical UPD, in contact with the blade
platforms, undergoes contact forces and dis-
placements in the tangential direction.

Allara et al. (2008) and Allara (2009) found the
analytical expression for the monotonic loading
curves and hysteresis cycles (i.e. contact forces vs.
relative displacement) of a filleted flat punch
pressed against an infinite half-plane. The flat
punch can be customized with material properties
and contact area width, length and fillet radius.
As shown in Figure 4 this parameter setting can
be used to reproduce the case of a cylinder pressed
against a plane moving alternatively along the x
direction (Figure 4a) and the y direction (Figure
4b) to determine respectively ktx and kty.

Experimental estimation of the contact stiffness values

Contact stiffness values k , k  n tx are here derived from measurements using a test rig (Gola and Liu,
2014; Gastaldi and Gola, 2016a,b) purposely developed for the direct experimental investigation of
the contact stiffness in UPDs. The experimental evidence used here comes from an experimental
campaign on a three-point laboratory damper, shown in Figure 5. This three-point damper shares with
the cylindrical damper of the Octopus test rig the same material, curvature radius and contact pressure.
Contact stiffness values can therefore be safely deduced using the experimental evidence on the three-
point damper.

The test rig shown in Figure 6a, developed over the years by the AERMEC laboratory (see Gola and
Liu, 2014 for a detailed description), is designed aiming at:

1. imposing user-defined in-plane displacements simulating the so-called In-Phase (IP, vertical) and
Out-of-Phase (OOP, horizontal) relative motion between the blades platforms by means of two
piezo-actuators connected to the left dummy platform;

2. measuring the forces transmitted between the two platforms through the damper by means of two
load cells connected to the right dummy platform.

Please notice that all measured quantities are reported both in Figure 5 and in Figure 6a. Relative
platforms displacements, measured using a laser head, are plotted against the corresponding com-
ponent of the contact force (“hLP vs. HR” in case of OOP motion and “wLP vs. WR” in case of IP
motion) in the platform-to-platform damper hysteresis cycle. The evolution of a typical OOP hys-
teresis cycle is shown in Figure 6b. The slope kH highlighted in Figure 6b keeps constant throughout
the evolution and corresponds to a specific contact state: all contact points (R, L1 and L2) are

Figure 3. Normal contact stiffness as a function of

the normal load for different analytical models.

Figure 4. Allara flat punch model.
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repeatedly in stick condition, as confirmed by
additional experimental evidence and numerical
results in Gola and Liu, 2014. The fitted slope kH
is therefore a composite effect of normal and
tangential stiffness values at all contacts
k f(k , k )H n tx= . Similarly, the fitted slope kV links
wLP to VR in case of IP motion. The method to
extract the values of kn and ktx is described in
detail in Gastaldi and Gola, 2016a and here it is
summarized in Appendix A. The obtained results
are reported in the second row of Table 2.

The procedure described above does not provide
an estimate of the tangential contact stiffness kty
aligned with the axis of the cylinder. The authors
therefore decided to investigate the effect that

different values of kty had on the position and amplitude of the peak of the full-stick FRF. Table 1 lists
the results of this investigation (each value was obtained using ktx and kn estimated starting from
measurements as described above). Sensitivity is even lower when frequency peaks of blades/UPDs
systems undergoing slip are considered.

It can be observed that the sensitivity of frequency and amplitude of the stuck peak to variations of
kty is low (a variation of two orders of magnitude on kty produces an increment lower than 4.5% and
3.5 % respectively), especially if compared to variations of ktx (see Table 2 and Figure 12 vs. Figure
14). Since the effect of the dispersion of experimental data (considering both repeatability and blade-
to-blade difference) is comparable in terms of peak frequency and much larger in terms of amplitude,
the lack of knowledge on kty is considered not critical for the investigation of the first bending mode.
Its influence may be stronger if a torsional mode was considered. In that case an additional exper-
imental investigation to determine the true value of kty will be needed. In the present case it was

decided to set k kty tx= .

Determination of the friction coefficient

The value of the friction coefficient was measured through ad hoc experimental measurements as
described by Gastaldi and Gola (2016a). A value of 0.6 was measured at room temperature over a

Figure 6. (a) Damper test rig photo and measured quantities, displacements in white, forces in blue. (b)

Example of hysteresis cycle time evolution.

Figure 5. Damper test rig set up and relevant

quantities.
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range of 5·106 cycles. Furthermore, the measurements in (Lavella et al., 2013) match with the
stabilized values of friction coefficients for cylindrical contacts measured on the dedicated damper rig
(Gastaldi and Gola, 2016a).

Experimental Results

Experimental results of the forced response measurements are available from the Octopus test rig described
by Berruti et al. (2011) and Firrone et al. (2012). A selection of experimental FRFs are here compared with
the calculation results in order to check whether each choice of contact parameters is correct.

Description of the test rig

Figure 7a shows the Octopus test rig. The bladed disk (1), is fixed to a support (2). The arm structures
(3) hold one pulley each, they are mounted on the external ring (4) equally spaced around the
circumferential disk direction. The simulation of the centrifugal force on each UPD is obtained by
means of two wires (5), which pass over the arms and are connected through the pulley to a dead
weight. The excitation system is a non-contact travelling wave generated by electromagnets below each
blade as shown in Figure 7b.

The electromagnets can be activated with a given phase shift in time in order to generate the required
EO type excitation. The dynamic response of the disk is carried out by means of a laser scanning
vibrometer. An example of measurement is shown in Figure 8 which shows the FRFs of the 24 blades
excited by EO = 2, excitation force on each blade Fext = 0.3 N (where Fext = FE of Equation 5) and
centrifugal force on each UPDs CF = 147 N, for two sets of different measurements (Measure I and
Measure II). The second set of measurements (Measure II) is repeated after mounting and dis-
mounting of the damper.

Post-processing of measured mistuned responses

It can be seen in Figure 8 that, due to the presence of small mistuning, defined as small variations between
each disk sector as explained by Castanier and Pierre (2006), there is a difference between the FRFs of each
blade. The bold red and blue lines are the envelope of the maxima of the FRFs at every frequency for the
two sets of measurements. The envelope of the maxima represents the worst case working condition that is

Table 2. Total contact stiffness.

Method kn ktx kty

Analytical 5.50·108 5.71·108 6.07·108

From measurements 5.53·108 1.70·107 1.70·107

Table 1. Frequency values in stuck condition using contact stiffness values estimated experimentally.

kty Tentative value Stuck peak frequency (Hz) Stuck peak amplitude (m/s/N)

k 0.1 kty tx= ⋅ 143.8 0.548

k kty tx= 144.9 0.531

k 10 kty tx= ⋅ 150.3 0.528
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the maximum vibration amplitude for each frequency. The two curves representing the envelope of the
maxima are not overlapped but they show that the maximum amplitude value and the resonance frequency
value is in the same range for the two set of measurements. Similar FRFs are obtained for different
excitation amplitude values. The two curves of the envelope of the maxima (an example is Figure 8) will be
used as reference for comparison with numerical results.

Results and discussion

The numerical procedure described in the previous sections has been applied for the calculation of the
forced response of the first bending mode (excitation type EO = 2) of the bladed disk. A numerical model
becomes predictive thanks to a combination of factors. A representative FE model, the faithful repre-
sentation of the boundary conditions and a numerical solver adequate to the application are considered as
prerequisites. The soundness of the techniques mentioned above is demonstrated by the good matching
between the numerical and experimental response of the disk without UPDs (i.e. linear case in Figure 9).

Other factors such as a trustworthy representation of
contact conditions, achieved only through a deep
knowledge of the contact parameters, requires
instead a novel approach, which is the focus of this
paper.

The calculation with the UPDs requires the
selection of contact nodes to which macroslip
elements (contact forces) are applied. From the
observation of the wear marks on the damper (as
shown in Figure 10a) it was deduced that the
contact was along all the contact line cylinder-
platform. The contact nodes were then selected
along a line on the platform as shown in Figure
10b. A contact model like that shown in Figure 2a
was then applied to each contact node. The crucial
point is the choice of the correct contact parame-

Figure 7. (a) The test rig Octopus. (b) Detail of the excitation system.

Figure 8. FRFs of the 24 blades, EO = 2, Fext = 0.3

N CF = 147N, for two sets of measurements.
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ters since a wrong choice could lead to completely
wrong results. As stated before the value of friction
coefficient was assumed as 0.6 from previous
measurements on a dedicated test rig (Lavella et al.,
2013). The analytical set of contact stiffness
assumed in the calculation is shown in the first row
of Table 2. These contact stiffness values have still
to be divided by the number of contact points. The
value of kn in the first row of Table 2 is calculated
by applying Equation 13 (Brändlein et al., 1999).
The value of ktx and kty were calculated according
to Allara’s flat punch model of Figure 4. The cal-
culation of the contact stiffness values requires the
value of the contact normal load. During operation
the normal load N at the damper contact will
oscillate around its static component N. It is here
chosen to select the value of kn corresponding to a
normal load equal to N. This choice is later justi-

fied by the results of the simulation: the first harmonic component of N is one order of magnitude
smaller than the static component N. N can be estimated under the assumption that the static com-
ponents of the tangential contact force Tx and Ty are close to zero (a reasonable assumption given the
inversion of motion the damper undergoes during harmonic oscillation). As shown in Figure 2b, N is
expressed as a function of the centrifugal force CF applied to the damper center of mass and of the
platform angle α:

N CF
2cos( )

=
α

(15)

On the same Table 2 in the second row, the contact stiffness values, coming from the data treatment of
the measurements on the rig of Figure 6, are listed. The value of kty was assumed equal to ktx since it
was not measured on the test rig. It can be observed that the calculated normal stiffness (kn) value
matches with the measured value. On the contrary, the calculated tangential stiffness (ktx) is an order of
magnitude lower the measured one. The FRF calculation results using as input the calculated stiffness
values (first row of Table 2) are shown in Figure 11. The other input parameters are: centrifugal force
on the damper is CF = 147 N, EO = 2, first bending mode, excitation force on each blade Fext = 0.2 N.

Figure 12 shows the results for the same case but with Fext =0.4 N. It can be observed how the
calculated value of contact stiffness leads to FRFs where the resonance frequency is largely over-
estimated. The calculated FRF does not match with the experimental FRFs neither in terms of
frequency nor in terms of amplitude. On the other hand, if the contact stiffness values coming from
the measurement (second row of Table 2) are used as input in the calculation, the FRFs of Figure 13
and Figure 14 for the same two cases are obtained.

Figure 10. (a) Wear marks on the damper. (b) Selection of contact nodes.

Figure 9. Comparison between experimental and

numerical FRFs. EO = 2. Bladed disk without UPDs.

Gastaldi et al. | Contact parameters for blades-dampers forced response https://journal.gpps.global/a/5D19RH/

J. Glob. Power Propuls. Soc. | 2017, 1: 1–15 | https://doi.org/10.22261/5D19RH 10

https://journal.gpps.global/a/5D19RH/
https://doi.org/10.22261/5D19RH


It can be observed how in this case the calculated FRFs match quite satisfactorily their experimental
counterparts in terms of amplitude, shape of the peak and peak frequency. The main difference is in
the value of ktx. The measured value of ktx is one order of magnitude lower than that calculated
analytically and it proves to be the correct value. The analytical method, which simulates a flat punch
with a fillet radius pressed against a plane, is not fit to simulate a cylindrical contact since it gives a too
high tangential contact stiffness value. This may be due to the fact that the method does not allow for
micro-rotation or to the fact that it does not allow for variation of normal load. Both phenomena are
instead encountered by the UPD during working condition.

Conclusions

The paper investigates two different ways to choose the contact stiffness values for the contact model of
UPDs. Contact stiffness values can be derived from analytical modles available in literature (method 1)
or they can be derived from measurements on a dedicated test rig with a laboratory damper, but with
similar working conditions of the damper under study (method 2).

Figure 11. Comparison between experimental and

numerical FRFs. Fext = 0.2 N. Contact stiffness

values estimated analytically.

Figure 12. Comparison between experimental and

numerical FRFs. Fext = 0.4 N. Contact stiffness

values estimated analytically.

Figure 14. Comparison between experimental and

numerical FRFs. Fext = 0.4 N. Contact stiffness

values estimated through direct experiments on

dampers.

Figure 13. Comparison between experimental and

numerical FRFs. Fext = 0.2 N. Contact stiffness

values estimated through direct experiments on

dampers.
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The investigation is completed by the experimental/numerical comparison of FRFs of a blisk with
cylindrical UPDs. As mentioned above, numerical FRFs have been obtained using different contact
stiffness values obtained with two different methodologies. It should be noted that in this paper
experimental/numerical comparison of FRFs is not used as a mean to tune the model, but as a separate
and independent tool to evaluate different methods for contact parameter estimation.

Regarding the normal contact stiffness kn the analytical calculation values (Brändlein, Harris, Allara)
and the value derived from measurements on the laboratory damper agree. The small discrepancies
between the obtained values have negligible effects over the forced response (i.e. well below the
experimental FRF dispersion).

Regarding the tangential contact stiffness ktx (in the plane perpendicular to the damper axis), Allara’s
analytical method (method 1) gives a value of the tangential contact stiffness ktx one order of mag-
nitude higher than the value obtained by the derivation from measurements on the laboratory damper.
In the calculation of the FRF this ktx value leads to a discrepancy >50% between the measured and
simulated peak frequency. Allara’s analytical method, which simulates a flat punch with a fillet radius
pressed against a plane, is clearly not fit to simulate a cylindrical contact. On the contrary, the method,
based on direct measurements of ktx on a dedicated test rig with a laboratory damper (method 2)
produces a value of ktx one order of magnitude lower than that calculated analytically. This value of
measured ktx, given to the calculation code, was successful in producing matching numerical FRFs.

In these authors opinion, the method was successful because the working conditions of the two
dampers, the one tested on the dedicated test rig and the one under study, are comparable (same
contact geometry, pressure, material and kinematics) and the data processing technique takes into
account the difference of position and number of contact points.

These authors are therefore confident on the determination of the contact stiffness, rather than
through analytical model, though careful and direct measurements on dedicated test rigs.

The results obtained here proved that measurements of contact stiffness on laboratory dampers under
controlled conditions can be exported and used on other dampers.

Appendix A

It is here summarized how the values of the contact stiffness kn and ktx are derived from the
experimental measurements on the test rig of Figure 6.

Consider the damper equilibrium in stick condition:

CM ḧ F TFD E D= +− (16)

where MD is the damper mass matrix, {h,w, }h = β is the vector of damper displacements in global
coordinates, {0, CF, 0}FE D =− is the vector of external forces, {T , N , T , N , T , N }R R L1 L1 L2 L2FC = is
the vector of contact forces and T is a 6x3 transformation matrix. It should be noted that the notation
in Equation 16 is compatible with that in Equations 6 and 7. In Equation 16 however only 3 out of 6
rigid body motion parameters are considered to reproduce the in-plane damper test rig set up (see
Figure 7a).

The vector Fc in case of full stick can be expressed as:
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Using transformation matrices T’ and TP’ to switch between local and global coordinate system of
damper and platforms respectively:

( )F K T h T hC P P= ′ − ′ (18)

The equilibrium Equation 16 can be transformed in its incremental form:

M ḧ T FCΔ Δ= (19)

By neglecting the damper variation of inertial forces ( 0)CFΔ = it is possible to express the damper
displacements as a function of the platform displacements. With reference to Equation 18, it holds:

h TT hP PΔ Δ= ′ (20)

Let us now express the variation of contact forces as a function of the variation of platform dis-
placements by substituting Equation 20 in Equation 18:

( )Fc K TTT T hP P PΔ Δ= ′ − ′′ (21)

The last step involves isolating the horizontal and vertical components of the right contact force (HR

and VR) using a transformation matrix termed here THV.
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(22)

The analytical expression of entries (1,1) and (1,3) of matrix K are set equal to the fitted slope kH in
Figure 6b, while entries (2,2) and (2,4) are set equal to k .V The solution of the system
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⎪
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=

=
(23)

is unique and allows determining kn and ktx. The values thus obtained are then normalized by the
length of contact of the three point damper and multiplied by L, the length of contact of the
cylindrical damper. The stiffness for each contact point can then be determined by dividing the
obtained values by the number of the chosen contact points.
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