
p ()
URL: http://www.elsevier.nl/locate/entcs/volume62.html 20 pages

Comparing cospan-spans and tiles
via a Hoare-style process calculus �

Fabio Gadducci a, Piergiulio Katis b, Ugo Montanari a,
Nicoletta Sabadini b, Robert F.C. Walters b

a Dipartimento di Informatica, Università di Pisa
Corso Italia 40, 56125 Pisa, Italy.

gadducci,ugo@di.unipi.it
b Facoltà di Science MM. FF. NN., Università dell’Insubria

via Valleggio 11, I-22100 Como, Italy.
Piergiulio.Katis,Nicoletta.Sabadini,Robert.Walters@uninsubria.it

Abstract

The large diffusion of concurrent and distributed systems has spawned in recent
years a variety of new formalisms, equipped with features for supporting an easy
specification of such systems. The aim of our note is to compare two recent for-
malisms for the design of concurrent and distributed systems, namely the tile logic
and the cospan-span model . We first present a simple, yet rather expressive Hoare-
style process algebra; then, after presenting the basics of both approaches, we com-
pare them via their modeling of the calculus.

Key words: cospan-span approach; tile logic; process algebras;
concurrent, distributed and interactive systems.

1 Introduction

The advances in the growing field of languages for the specification of con-
current and distributed systems, and the difficulties in relating different cal-
culi and special-purpose formalisms, clearly ask for the development of meta-
frameworks, where common aspects between different approaches can be fac-
tored out and exploited. But even at this level the task of reducing the com-
plexity of these approaches into a unique meta-model is daunting, so that we
should aim at providing suitable comparison results between meta-frameworks.

� Research partly supported by the Italian MIUR Project Teoria della Concorrenza, Lin-
guaggi di Ordine Superiore e Strutture di Tipi (tosca).

c©2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Gadducci, Katis, Montanari, Sabadini, Walters

The cospan-span model of distributed systems was introduced in [14] (un-
der the name of CP automata) as an algebra of transition systems/labelled
graphs. The choice of operations was influenced by category theory, and the
model is closely related to the automata of Arnold and Nivat [1]. The basic
idea of the model is to represent a system by a graph of states and transi-
tions, with extra structure required for capturing two fundamental operations
on systems: parallel composition with communication requires interfaces, and
sequential composition requires conditions.

The full expressiveness of the cospan-span model has yet to be understood.
However the model includes the span model described in [13] which concerns
finite automata constructed compositionally with communication-parallel op-
erations. It also includes the circuit and sequential algorithm models of [12],
which incorporate data types, and are Turing complete. The ability to express
systems with changing geometry, and hence mobility, was described in [14].
Recursive equations in cospan-span were discussed in [15], together with fur-
ther examples of mobility.

Tile logic [10] is a framework for the specification of rule-based systems,
whose behaviour relies on the notions of synchronization and side-effects . The
key idea is to enrich rewrite rules with an observation, carrying information
on the possible behaviour of its arguments, that is, imposing a behavioural
constraint to the terms to which it can be applied. The resulting formalism ex-
tends similar approaches such as rewriting logic [16], allowing for representing
generic open configurations of interactive systems with coordination.

Space limitations prevent us to discuss the range of applications of the
framework, so that we may just cite a few references. The characterisation
of tile logic as an extension of the classical sos specification methodology for
process algebras was already exploited in the original paper [10], while its
application to calculi with name mobility and localities appears in [9]. An
overview of its use with formalisms for concurrency, as well as a comparison
with other rule-based frameworks (much in the spirit of the present article) can
be found in [11]. The application to logic programming is reported in [7]. As
for the properties of tile logic as a meta-framework, investigations have been
carried out on ensuring that modularity properties are preserved by the speci-
fications (i.e., that suitable behavioural equivalences are congruences if certain
requirements on the format of the rules [3,8] are satisfied). The executability
of tile specifications is guaranteed by their embedding into rewriting logic [5].
Finally, an higher-order extension of the framework has been proposed in [6].

A direct mapping between the cospan-span model and the tile logic would
be rather cumbersome, since, on the one hand, the former focuses on the alge-
braic structure over states , with a denotational semantics flavour; whilst, on
the other hand, the latter is a rule-based formalism focusing on a powerful in-
ference mechanism for defining rewrites, hence transitions , with an operational
semantics flavour.

2

Gadducci, Katis, Montanari, Sabadini, Walters

We compare instead the two approaches by analysing their respective en-
codings of a Hoare-style process algebra, the spa (for span process algebra)
calculus, that we are going to introduce. In spa, each process has a fixed set of
channels; actions are allowed to occur simultaneously on all the channels of a
process; asynchrony is modeled by the use of silent actions; communication is
anonymous: the communication between two processes P and Q is described
by operations which connect some of the ports of P to some of the ports of
Q, possibly hiding them, and a process can only communicate with other pro-
cesses via its channels; broadcasting, or synchronization of many processes, is
presented as a derived operation, using special “diagonal” components.

The paper has the following structure. Section 2 introduces spa. Section 3
presents the basics of cospan-span model, and the denotational encoding of spa.
Section 4 presents the basics of tile logic, and the operational encoding of spa.
Finally, Section 5 compares the two approaches, illustrating a correspondence
result between the respective encodings of spa.

2 A Hoare-style process calculus

We present a simple process calculus, using a Hoare-style semantics, that we
denote as spa. As we will see, spa expressions will be built out of (among
others) a summation operation, a non-communicating parallel operation, a
(derived) family of communicating parallel operations, and recursion.

2.1 The construction of well-formed spa expressions

We will deal with well-formed expressions , considering also the channels oc-
curring in a process as part of the specification.

Definition 2.1 (well-formed expressions) Given a countable set U =
{A,B, . . .} of channels, a well-formed (process) expression is a pair P : σ,
for P a process (i.e, a term out of a signature, to be defined later on) and σ
a type, consisting of a finite set of channels (i.e., σ ⊂ U).

Now we present the inference system defining the set P of well-formed,
closed spa expressions. We begin by assuming the following data is given:

• for each channel A an infinite set LA of local actions which includes a spec-
ified element τ , called the silent action;

• for each pair A, B of channels an isomorphism φA,B : LA → LB preserving
the silent action (and such that φB,A = φ−1

A,B and φB,C ◦ φA,B = φA,C).

For each type σ we denote by Actσ its set of (global) actions : each action is
a subset of �A∈σLA containing exactly one element (called component action)
for each channel A ∈ σ. The set Act of all possible actions, ranged over by µ,
is defined as �σ⊂UActσ. Now, the definition below jointly presents the set of
processes P and of well-formed expressions P : σ.

3

Gadducci, Katis, Montanari, Sabadini, Walters

Definition 2.2 (well-formed expressions of spa) Let X = �σ⊂UXσ be a
set of variables. The set of processes ProcX and the set of well-formed spa

expressions PX are jointly generated by the following set of axioms and rules

σ ⊂ U

0 : σ

x ∈ Xσ

x : σ

Pi : σ, µi ∈ Actσ for i ∈ I∑
i∈I µi.Pi : σ

P : σ

P [Φ] : Φ(σ)
for Φ relabeling

P : σ ∪ {A}
(νA)P : σ\{A}

P : σ, Q : γ

P ||Q : σ ∪ γ for σ ∩ γ = ∅

P : σ ∪ {A,B}
[B ⇒ A]P : (σ\{B}) ∪ {A}

P : σ, x ∈ Xσ

rec x.P : σ

For each type σ, the set Pσ,X denotes those well-formed expressions of the
kind P : σ. Then, Pσ and P denote the sub-sets of respectively Pσ,X and PX ,
containing just closed expressions, i.e. those expressions P : σ such that the
process P contains no free variables.

A few comments on the intended meaning of the operators are in order.

• Activity occurs simultaneously on each channel of a process: a well-formed
expression P : σ defines a transition system whose edges are labeled by
actions µ ∈ Actσ. Processes communicate via common channels.

• Asynchrony is modeled by silent actions; for instance, the expression
{aA, bB, τC}.P : {A,B,C} represents a system that can perform an ac-
tion {aA, bB, τC}: (the component action) a occurs on channel A, b occurs
on channel B and nothing occurs on channel C.

• Given a bijection Φ from U to itself, P [Φ] is obtained by substituting each
component action aA with φA,Φ(A)(aA).

• Summation will have the usual interpretation. Notice that the expression∑
i∈I µi.Pi is well-formed if all the Pi’s have the same type σ, and all the

actions µi’s belong to Actσ.

• We interpret hiding as masking component actions on a given channel
(equivalently, as deleting that channel), but otherwise, differently from e.g.
restriction operators, not preventing any transition.

• We interpret merging as requesting the fusion of one channel into another.

• The interpretation of P ||Q is that processes P andQ are operating in parallel
and independently; in particular, they may execute actions simultaneously.
They cannot synchronize, though, since we are not connecting any channel.

• Recursion is handled by an unfolding rule, replacing x in P with an instance
of P itself.

4

Gadducci, Katis, Montanari, Sabadini, Walters

2.2 Inference Rules for SPA

It is clear that for each non-deadlocked process P there is at most one-well
well-formed expression P : σ. Thus, we will sometimes drop the type from an
expression, whenever this is not going to cause any confusion.

Definition 2.3 (operational semantics of spa) The spa transition system
is the relation Tspa ⊆ P × Act × P inductively generated by the following set
of axioms and inference rules

(
∑

i∈I µi.Pi)
µi−→ Pi

P
µ−→ Q

P [Φ]
Φ(µ)−→ Q[Φ]

for Φ relabeling

P
µ∪{a}−→ P ′

(νA)P
µ\{a}−→ (νA)P ′

for a ∈ LA
Q

µ1−→ Q′, R
µ2−→ R′

(Q||R) µ1∪µ2−→ (Q′||R′)

P
µ∪{φB,A(b),b}−→ P ′

[B ⇒ A]P
(µ\{b})∪{φB,A(b)}−→ [B ⇒ A]P ′

for b ∈ LB

P [x/rec x.P]
µ−→ P ′

P
µ−→ P ′

for [x/rec x.P] capture avoiding substitution

where P
µ−→ Q means that 〈P, µ,Q〉 ∈ Tspa.

We say that a process P may execute the action µ and become Q if the
transition 〈P, µ,Q〉 ∈ Tspa. No confusion may arise, since Tspa is obtained as
the disjoint union of transition systems Tσ’s: for each of them, the set of states
is Pσ, and transitions are labeled by actions µ ∈ Actσ.

2.3 Examples and derived operators

2.3.1 Communicating parallel

The intuitive interpretation of P � Q is that the two processes P and Q are
operating in parallel, but the common channels among P and Q have been
connected. That is, P can execute an action µ1 at the same time as Q can
execute an action µ2 – but, for each channel A ∈ (σ ∩ τ), the component
actions of µ1 and µ2 must agree. Moreover, the operation has the effect of
hiding the common channels.

Let P : σ and Q : γ be closed, well-formed expressions. If Φ is a rela-
beling mapping each channel A ∈ σ ∩ γ into a channel Φ(A) �∈ σ ∪ γ, the
communicating parallel composition P � Q : (σ ∪ γ)\(σ ∩ γ) is defined as

P � Q = (νσ ∩ γ)[Φ(σ ∩ γ)⇒ σ ∩ γ](P ||(Q[Φ]))

where [Φ(σ∩γ)⇒ σ∩γ] is just the application of [Φ(A)⇒ A][Φ(B)⇒ B] . . .,
and (νσ ∩ γ) of (νA)(νB) . . . for all A,B ∈ σ ∩ γ.

5

Gadducci, Katis, Montanari, Sabadini, Walters

2.3.2 Joining three processes

We define a few processes that are used later on.

The process ∆B,C
A , of type {A,B,C}, splits a channel, and it is defined as

∆B,C
A = rec x.(

∑

a∈A
{a, φA,B(a), φA,C(a)}.x)

Instead, the process ηB,C , of type {B,C}, just creates two component
actions out of a silent action, and it is defined as ηB,C = (νA)∆B,C

A .

Let P : σ1∪{A}, Q : σ2∪{B} and R : σ3∪{C} be well-formed expressions,
such that the σi’s and {A}, {B}, {C} are mutually disjoint. Then, the well-
formed expression

((P �∆B,C
A) � (Q||R)) : σ1 ∪ σ2 ∪ σ3

is to be thought of as a system formed by splitting the channel A into B and
C, and then connecting it with the channels of the non-communicating parallel
composition of Q and R. The result is that the channel A of the process P has
been joined to the channels B and C of the processes Q and R, respectively.
It is clear that to give a transition out of ((P �∆B,C

A) � (Q||R)) is to give three
transitions P

µ1∪{a}−→ P ′, Q
µ2∪{φA,B(a)}−→ Q′ and R

µ3∪{φA,C(a)}−→ R′.

2.3.3 The Dining Philosophers

We give a well-formed expression intended to model an asynchronous variant
of the dining philosophers system: other versions (where e.g. philosophers must
pick up the left fork first) may be easily captured in the formalism. For the
sake of simplicity, we assume that for each channel mentioned later on, its set
of local actions contains {τ, l, u}, and that those symbols are preserved by the
φ’s. The symbol l denotes the action lock and the symbol u the action unlock.

First, we describe the action of the left hand of a philosopher, as

PL = rec x.(τ.x+ l.(rec y.(τ.y + u.x)))

so that the associated well-formed expression is PL : {L}; and, assuming that
ΦR
L just swaps the channels L and R, then P = PL||PR, for PR = PL[Φ

R
L], with

P : {L,R}. The philosopher may act concurrently, capturing (or releasing)
two forks at once. Instead, each fork may be captured only by one philosopher
at most, either on the right or on the left. So, if we consider the sub-processes

FL = {lI , τJ}.(rec y.({τI , τJ}.y + {uI , τJ}.x))

and, for the relabeling ΦJ
I just swapping I and J , the process is

F = rec x.({τI , τJ}.x+ FL + FL[Φ
J
I])

so that the associated well-formed expression is F : {I, J}.
6

Gadducci, Katis, Montanari, Sabadini, Walters

So, the behaviour of a single philosopher is described by the process

DP1 = ηL,I � (P � F [ΦR
J])

and the associated well-formed expression isDP1 : ∅. Similarly, the description
of the behaviour of two philosophers is given by the process

DP2 = ηL,Φ(I) � ((P � F [ΦR
J]) � ((P � F [ΦR

J])[Φ]))

for the relabeling satisfying Φ(L) = I and Φ(I) a new channel (i.e., Φ(I) �= L),
and the associated well-formed expression is DP2 : ∅. The effect of the η is to
couple the left hand of the first philosopher to the rightmost fork of the other.

3 The cospan-span formalism

As mentioned in the Introduction, in the cospan-span model a system is rep-
resented by a graph of states and transitions, with extra structure required for
capturing two operations on systems: parallel composition with communication
requires interfaces, and sequential composition requires conditions.

We distinguish between left (often input) and right interfaces (often out-
put). An interface is represented by a labeling of the graph arcs (the transitions
of the transition system) on a suitable alphabet: when an arc appears in the
graph (i.e., a transition occurs in the transition system), the corresponding
label occurs on the interface. Interfaces allow to describe both communicat-
ing and non-communicating parallel composition (restricted product denoted
·, and free product denoted ×) of transition systems; in both cases, a state is a
pair of states, and a transition is a pair of transitions, one for each transition
system, which agree (synchronize) on the common interface.

Very often the state space of a transition system decomposes into a dis-
joint sum of cases, usually relevant to activating (creating) or disactivating
(destroying) sub-systems. Any such condition is a subset of the set of states
and it represents states in which the configuration may change in a particu-
lar way. However it is crucial not to think of conditions just as either initial
or terminal states. It may sound reasonable in sequential programming, but
when there are several active processes, one of those may die in a particular
terminal state while the others are in general active – that is, the global state
of the system in which a change of configuration occurs is a terminal state in
only one component. To permit a change of configuration in only one compo-
nent of a system it is crucial to allow for the whole state space among both in-
and out-conditions . With the structure of in- and out-conditions, the restricted
sum (denoted +) of transition systems can be defined, which expresses the de-
activation of the first transition system in one of its out-conditions, followed
by the activation of the second in one of its in-conditions.

7

Gadducci, Katis, Montanari, Sabadini, Walters

3.1 Graphs

A graph G is a set G0 of vertices and a set G1 of (directed) arcs, together
with two functions d0, d1 : G1 → G0 which specify the source and target,
respectively, of each arc. A morphism from G to H consists of a function from
vertices to vertices, and a function from arcs to arcs which respects source and
target; an isomorphism is a morphism for which both functions are bijections. 1

3.2 Cospans of spans of graphs

Definition 3.1 A cospan of spans of graphs G (called for simplicity a tran-
sition system) consists of a graph G, four sets X,Y,A,B and four functions

∂0 : G1 → X, ∂1 : G1 → Y,

γ0 : A→ G0, γ1 : B → G0.

Both ∂0, ∂1 may be thought of as labeling the arcs of G in the alphabets
X,Y , respectively, and in fact they may be considered to be graph morphisms
from G to one vertex graphs. These labelings are used in the restricted prod-
uct of two transition systems, the operation which expresses communicating
parallel processes. Alternatively, one may think of the vertices and arcs of G
as the states and transitions of the system, whereas the elements of X,Y are
the transitions of the interfaces. We call X the left interface, and Y the right
interface – transition systems communicate through these interfaces.

The set A represents a condition on the states in which the transition
system may come into existence, and the set B a condition in which it may
cease to exist. We call A the in-condition of the transition system, and B the
out-condition. The functions γ0, γ1 of a transition system will be used in the
restricted sum of transition systems - an operation which expresses change of
configuration of processes.

There is a useful diagrammatic representation of transition systems (see
also [13]). For example, we represent a transition system with left interface
U × V, right interface Z ×W, in-condition D + E, and out-condition B, by

G

.......
.......

.......

U
V

Z
W

DE

B

1 We shall use the following terminology: given two sets X and Y , their cartesian product is
denoted X×Y , and the projections pr

X
: X×Y → X, pr

Y
: X×Y → Y ; similarly, their sum

(disjoint union) is denoted X + Y , and the injections in
X

: X → X + Y , in
Y

: Y → X + Y .

8

Gadducci, Katis, Montanari, Sabadini, Walters

For the sake of simplicity we often use the same names ∂0, ∂1, γ0, γ1 for the
four functions of any transition system when there is no risk of confusion, or we
drop them altogether, introducing instead further suffixes when clarification
is needed. We use symbols X, Y, Z, U, V,W... for the (left and right) interfaces,
and symbols A,B,C,D,E, F, I, ... for the (in- and out-) conditions.

3.2.1 Parallel composition

Given two transition systems G = (G, X, Y,A,B) and H = (H, Y, Z, C,D),
the restricted product (communicating parallel composition) of G and H, de-
noted G ·H, is the transition system whose set of vertices is G0×H0 and whose
set of arcs is that subset of G1×H1 consisting of pairs of arcs (g, h) such that
∂1(g) = ∂0(h). The interfaces and conditions of G · H are X,Z,A×C,B ×D;
the four functions are

∂0,G·H(g, h) = ∂0,G(g), ∂1,G·H(g, h) = ∂1,H(h),
γ0,G·H = γ0,G × γ0,H , γ1,G·H = γ1,G × γ1,H .

Diagrammatically we represent the restricted product as follows

G H

.........

.........

X Y Z

A× C

B ×D

Closely related is the free product of transition systems. Given two tran-
sition systems G = (G, X, Y,A,B) and H = (H, Z,W,C,D), the free product
(parallel composition with no communication) of G and H, denoted G ×H, is
the transition system diagrammatically represented as follows

G

H

...

...

.

.......

A× C

B ×D

X Y

Z W

Ignoring functions γ0, γ1, the restricted product of transition systems is
the span composition of [13] and the free product is the tensor product of
the corresponding spans of graphs. See there for some examples of how these
operations may be used to model concurrent systems.

9

Gadducci, Katis, Montanari, Sabadini, Walters

3.2.2 Sums

Given two transition systems G = (G, X, Y,A,B) and H = (H, X, Y,B,C),
the restricted sum (change of configuration) of G and H, denoted
G +H, is the transition system diagrammatically represented as follows

G

H

.......

.......

.......

X

X

Y

Y

A

B

C

The intended interpretation is that initially only the process G exists; when a
state in B is reached the process G may die and the process H be created.

Similarly, given two transition systems G = (G, X, Y,A,B) and H =
(H, X, Y, C,D), their unrestricted sum G ⊕H = (G⊕H, X, Y,A+C,B+D)
is obviously defined.

3.2.3 Feedbacks

Given a transition system G = (G, X × Y, Z × Y,A,B), the product feedback
of G with respect to Y , denoted PfbY (G), is the transition system whose set
of vertices is G0 and whose set of arcs is that subset of G1 consisting of arcs
g such that (prY ◦ ∂1)(g) = (prY ◦ ∂0)(g). The interfaces and conditions of
PfbY (G) are X,Z,A,B, with the four functions defined as follows:

∂0,PfbY (G) = prX ◦ ∂0,G , ∂1,PfbY (G) = prZ ◦ ∂1,G,
γ0,PfbY (G) = γ0,G, γ1,PfbY (G) = γ1,G .

Given a transition system G = (G, X, Y,A+ B,C + B), the sum feedback
of G with respect to B, denoted SfbB(G), is the transition system whose set of
arcs is G1 and whose set of vertices is G0/ ∼, i.e, G0 quotiented by the relation
(γ1 ◦ inB)(b) ∼ (γ0 ◦ inB)(b) (for all b ∈ B). The interfaces and conditions of
SfbB(G) are X,Y,A and C, and the four functions are defined as follows:

∂0,SfbB(G) = ∂0,G, ∂1,SfbB(G) = ∂1,G ,
γ0,SfbB(G) = γ0,G ◦ inA, γ1,SfbB(G) = γ1,G ◦ inC .

The diagrammatic representation of PfbY (G) involves joining the right in-
terface Y to the left interface Y ; and, similarly, the diagrammatic representa-
tion of SfbB(G) involves joining the out-condition B to the in-condition B.

Remark 3.2 We described here only the principal operations, though there
are a variety of useful special constants described in [13,14], including a diag-
onal component which allows synchronization between multiple components.

10

Gadducci, Katis, Montanari, Sabadini, Walters

Notice also that clearly any finite graph labeled in X×Y may be obtained
as an expression using only the sum operations of the cospan-span model in
constant graphs which have at most three states and at most one transition.
Further any expression in the cospan-span model involving finite constants is
again a finite transition system. To describe infinite transition systems recur-
sive equations over cospan-span expressions must be added, see e.g. [15].

3.3 Denotational encoding of spa

We present a denotational semantics of well-formed expressions, by means of
(labeled, directed) graphs. We actually encode processes into a sub-class of
graphs, often denoted in the literature as graphs with no ‘horizontal sharing’
(i.e., such that between two nodes there is at most one cycle-free path).

We first need an assumption: since spa does not make an a priori choice of
left and right channels (which results in the main operation being, in engineer-
ing terms, ‘soldering’ rather than ‘series composition’) we arbitrarily choose
of taking all channels to be on the left.

We denote the semantics of a well-formed expression P : σ by Sem(P):
it represents a (possibly cyclic) graph, whose arcs are labeled on the left by
tuples of actions as indicated by the inference rules and on the right by τ .
We view Sem(P) as a transition system labeled by (

∏
A∈σ LA) × {τ}, with

in-condition the root vertex, and out-condition the set of free variables in P .

In order to define the mapping, we need to choose some constants. First,
for sets: Sσ is the set

∏
A∈σ LA, for each σ type. Then, for transition systems:

Tµ is the transition system with two states and a transition labelled (µ, τ)
among them (and {0} as the obvious in- and out-condition); projA is the
transition system with one state and | LA × (

∏
B∈σ LB) | transitions, with

transition (a, b1, . . . , bn) labeled on the left by (b1, . . . , bn) and on the right by
(a, b1, . . . , bn);

2 the transition system ηA has one state and | LA | transitions,
with a labeled on the left by τ , and on the right by (a, a).

We may now describe the operators of spa in terms of the operations of
the cospan-span model. It is clear that only a restricted version of recursion
is codeable in the basic operations of the cospan-span formalism: The deno-
tational encoding Sem : SPX → G maps each well-formed expression with
sequential recursion (i.e., an expression where a free variable may occur only
in the scope of either a summation or a recursion operator) into a transition
system with {0} as in-condition, {τ} as right interface and Sσ as left-interface.

2 That is, projA has fewer channels on the left than on the right, and will be used to cut
channels: we have just represented the projection function A × (

∏
B∈σ B) → (

∏
B∈σ B) as

a transition system. In a similar way any finite relation, including the relabeling isomor-
phisms, and the opposite relation ∆o

A of the diagonal function, may be represented as a
transition system with only one state – we will use the same name for the relation and the
corresponding transition system.

11

Gadducci, Katis, Montanari, Sabadini, Walters

Definition 3.3 (model mapping) The encoding Sem : SPX → G is induc-
tively defined by the following set of of inference rules.

(i) Let σ be a set of channels. Then

Sem(0 : σ) = ({0}, Sσ, {τ}, {0}, ∅) Sem(x : σ) = ({x}, Sσ, {τ}, {0}, {x}).

(ii) Let Pi : σ for i ∈ I be well-formed expressions, and µi for i ∈ I be
actions for the channels in σ. Then

Sem(
∑

i∈I
µiPi) = DI +⊕i∈I(Tµi

+ Sem(Pi)),

where DI is the transition system with one state, {0} as in-condition and∑
i∈I{0} as out-conditions, and ⊕i∈I(Tµi

+ Sem(Pi)) is the transition system
obtained by the unrestricted sum of the Tµi

+Sem(Pi)’s, with the free variables
of the processes as out-conditions. 3

(iii) Let P : σ ∪ {A} be a well-formed, closed expression. Then

Sem((νA)P) = projA · Sem(P).

(iv) Let P : σ ∪ {A,B} be a well-formed, closed expression. Then

Sem([B ⇒ A]P) = PfbA((∆
o
A × ηB) · (Sem(P)× φB,A)).

(v) Let P : σ and Q : ρ be well-formed, closed expressions. Then

Sem(P ||Q) = Sem(P)× Sem(Q).

(vi) Let P : σ be a well-formed expression. Then

Sem(rec x.P) = Sfb{x}(({0}, Sσ, {τ}, {0}+ {x}, {0}) + Sem(P)).

It is clear that the graph associated to a well-formed expression P : σ is
not isomorphic to the fragment of the transition system Tσ reachable from P .
Nevertheless, a tight correspondence holds among the two models.

Proposition 3.4 (model correspondence) Let P be a closed process with
sequential recursion, and P : σ a well-formed expression. Then Sem(P) and
the fragment of Tσ reachable from P are trace equivalent.

The proof is given by induction, defining a mapping from Sem(P) to Tσ
that coalesces nodes corresponding to different instances of the same process.

3 Of course, note that the collapsing of some nodes is required: we leave to the reader the
task of providing the additional constants needed for performing such a collapsing.

12

Gadducci, Katis, Montanari, Sabadini, Walters

4 The tile logic

4.1 Building States

We introduce an inductive presentation for Conway theories (see e.g. in [2] for
their definition). With respect to the better-known algebraic theories, they
are equipped with a parametric operator, †, allowing to capture also recursive
definitions. We spell out only the definition for one-sorted signatures, with
(underlined) natural numbers as sorts, the general instance of many-sorted
being a straightforward extension.

Our presentation of Conway theories is original, even if it relies on similar
descriptions for algebraic and weaker theories [4]. Some of them are mentioned
later on, and used for our encoding of spa at the end of the section.

Definition 4.1 (Conway theories) Let Σ be a one-sorted signature. The
set of arrows of the Conway theory C(Σ) is generated by the inference rules

(generators)
f ∈ Σn,m

f : n→ m
(pairing)

s : n→ m, t : n′ → m′

s⊗ t : n+ n′ → m+m′

(identities)
n ∈ N

idn : n→ n
(composition)

s : n→ m, t : m→ k

s; t : n→ k

(duplicators)
n ∈ N

∇n : n→ n+ n
(dischargers)

n ∈ N

!n : n→ 0

(permutations)
n,m ∈ N

ρn,m : n+m→ m+ n
(dagger)

s : n+m→ m

s† : n→ m

Moreover, the composition operator is associative, the pairing operator is as-
sociative with id0 the neutral element of the resulting monoid of arrows, and
the monoidality axiom idn+m = idn ⊗ idm holds for all n,m ∈ N. In ad-
dition, the monoid of arrows satisfies the functoriality axiom (s ⊗ t); (s′ ⊗
t′) = (s; s′) ⊗ (t; t′) (whenever both sides are defined) and the identity axiom
idn; s = s = s; idm for all s : n→ m; the monoidality axioms

!0 = ∇0 = ρ0,0 = id0 ρn+m,l = (idn ⊗ ρm,l); (ρn,l ⊗ idm)

!n+m =!n⊗!m ∇n⊗m = (∇n ⊗∇m); (idn ⊗ ρn,m ⊗ idm)

for all n,m, l ∈ N; the coherence axioms

∇n; (idn ⊗∇n) = ∇n; (∇n ⊗ idn) ∇n; ρn,n = ∇n

∇n; (idn⊗!n) = idn ρn,m; ρm,n = idn ⊗ idm

for all n,m ∈ N; the naturality axioms

(s⊗ t); ρm,k = ρn,l; (t⊗ s) s;∇m = ∇n; (s⊗ s) s; !m =!n

13

Gadducci, Katis, Montanari, Sabadini, Walters

for all s : n→ m, t : l→ k; and finally, the Conway axioms

((s⊗ idm); t)
† = s; t† (u†)† = ((idn ⊗∇m);u)

†

(∇l+n; (idl⊗!n ⊗ v);w)† = (∇l; (idl ⊗ (∇l+m; (idl⊗!m ⊗ w); v)†);w)

for all s : n → l, t : l +m → m, u : n+m+m → m, v : l + n → m,
w : l +m→ n.

We refer to graph theories G(Σ) for the arrows obtained by using only
the generators, pairing and identities rules; to monoidal theories M(Σ) if the
composition rule is added; and to algebraic theories A(Σ) if all rules, except
for dagger, are considered.

A Conway theory C(Σ) is just an instance of a monoidal category. It can
be considered as categorical folklore the fact that the cartesian product canon-
ically induces a monoidal product, together with a family of natural transfor-
mations, often denoted as diagonals and projections. Then, our definitions of
Conway and algebraic theories are equivalent to the standard ones: a classical
result relates algebraic theories and the usual term algebra construction.

Proposition 4.2 (algebraic theories and term algebras) Given a one-
sorted signature Σ, for all n,m ∈ N there exists a one-to-one correspondence
between the set of arrows with source n and target m of A(Σ) and the m-tuples
of elements of the term algebra –over a set of n variables– associated to Σ.

4.2 Describing Systems

We recall now the basic definitions for tile logic [10], a general framework for
the specification of rule-based systems, in the vein of both the rewriting logic
formalism [16] and the sos approach [17]. Intuitively, it extends the standard
definition for rewriting systems: a rule is seen as a module (kind of a basic
component of a system) carrying information (equivalently, expressing condi-
tions) on the possible behaviour of its sub-components (that is, of the terms
to which it can be applied).

Definition 4.3 (algebraic rewriting systems) An algebraic rewrit-
ing system (ars) R is a four-tuple 〈Σσ,Στ , N,R〉, where Σσ,Στ

are signatures, N is a set of (rule) names and R is a function
R : N → A(Σσ) × G(Στ) × G(Στ) × A(Σσ) such that for all d ∈ N ,
with R(d) = 〈l, a, b, r〉, we have l : n→ m, r : p→ q iff a : n→ p, b : m→ q.

With an abuse of notation, we denoted the set of arrows of a theory by the
theory itself. We usually write a rule as d : l b

a �� r or, graphically, as a tile

n l

d

��

a
��

m

b
��

p
r

�� q

making explicit the source and the target of the operators.

14

Gadducci, Katis, Montanari, Sabadini, Walters

We consider a rewriting system R as a logical theory, and any rewrite –
using rules in R– as a sequent entailed by that theory. A sequent is therefore
a five-tuple 〈α, s, a, b, t〉, where s→ t is a rewriting step, α is a proof term (an
encoding of the causes of the step), and a and b are respectively the input and
output conditions, the observations associated to the rewrite. In the following,
we say that s rewrites to t via α (using a trigger a and producing an effect b)
if the sequent α : s b

a �� t can be obtained by finitely many applications of
the set of inference rules described below.

Definition 4.4 (the tile logic) Let R = 〈Σσ,Στ , N,R〉 be an ars. We say
that R entails the set T (R) of Conway sequents obtained by a finite number
of applications of the following set of inference rules: The basic rules

(gen)
d : s b

a �� t ∈ R
d : s b

a �� t ∈ T (R)

(h-refl)
s : n→ m ∈ C(Σσ)

ids : s
id
id �� s ∈ T (R)

(v-refl)
a : n→ m ∈M(Στ)

ida : id a
a �� id ∈ T (R)

(where id is shorthand for both idn and idm); the composition rules

(par)
α : s b

a �� t, β : u d
c �� v ∈ T (R)

α⊗ β : s⊗ u
b⊗d

a⊗c �� t⊗ v ∈ T (R)
(hor)

α : s c
a �� t, β : u b

c �� v ∈ T (R)
α ∗ β : s;u b

a �� t; v ∈ T (R)

(vert)
α : s b

a �� u, β : u d
c �� t ∈ T (R)

α · β : s b;d

a;c �� t ∈ T (R)
;

and finally, the auxiliary rules

(perm)
a : n→ m, b : n′ → m′ ∈M(Στ)

ρa,b : ρn,n′
b⊗a

a⊗b �� ρm,m′ ∈ T (R)

(dupl)
a : n→ m ∈M(Στ)

∇a : ∇n a⊗a
a �� ∇m ∈ T (R)

(dis)
a : n→ m ∈M(Στ)

!a :!n id0

a �� !m ∈ T (R)
.

The basic rules provide the generators of the sequents, together with suit-
able identity arrows, whose intuitive meaning is that an element of C(Σσ) or
M(Στ) stays idle during a rewrite. The composition rules express the way in
which sequents can be combined, either sequentially (vert), or executing them
in parallel (par), or nesting one inside the other (hor). The auxiliary rules
are the counterpart of the auxiliary operators in Definition 4.1: they provide
a way of permutating (perm) two sequents, and either duplicating (dupl) or
discharging (dis) a sequent. No additional rule corresponds to the dagger op-
erators of Conway theories: we do not want to close sequents with respect to
such operators, but just to be able to unfold a recursive definition, and to this
end the (h-refl) rule is all that is needed.

15

Gadducci, Katis, Montanari, Sabadini, Walters

4.3 An observational semantics

An abstract semantics could be recovered by providing a set of axioms for
proof terms, so that an equivalence class would correspond to a normalized
proof: see e.g. [11], where a comparison is traced with concurrent computa-
tions in rewriting logic. Nevertheless, the two spatial dimensions of a sequent
–horizontal for source and target, vertical for effect and trigger– hardly play
the same role. When introducing tiles, we referred to source and target as
states of our system, and to trigger and effect as conditions to be verified,
before applying a rule. It seems then perspicuous to discuss a semantics over
states, which is only observational, identifying states that show the same be-
haviour on the input (trigger) and output (effect) components. To this end, we
simplify the structure of sequents, dropping the proof term, thus recovering a
generalized notion of transition system.

Definition 4.5 (tile transition system) Let R = 〈Σσ,Στ , N,R〉 be an ars.
The associated (Conway) tile transition system is the relation Tr(R) ⊆
C(Σσ)×M(Στ)×M(Στ)×C(Σσ) obtained dropping the first component from
the relation T (R).

Abusing notation, we refer to a four-tuple 〈s, a, b, t〉 as a sequent entailed
by an ars. Restricting our attention to transition systems allows us to define
a suitable notion of behavioural equivalence by means of trace equivalence.

Definition 4.6 (tile trace equivalences) Let R = 〈Σσ,Στ , N,R〉 be an
ars. Two terms s, t ∈ C(Σσ) are tile trace equivalent in R (denoted s ≡ t)
if for any sequent s b

a �� s′ entailed by R a corresponding sequent t b
a �� t′ is

entailed, and vice versa.

4.4 Operational encoding of spa

For representing the semantics of spa by a tile system, we need a signature
Σspa such that each process may be embedded into a term in C(Σspa).

Definition 4.7 (many-sorted signature for spa) The many-sorted signa-
ture Σspa associated to spa has 2U as set of sorts, and it contains the con-
stants nilσ : ε → σ, denoting the inactive states; the unary operators pre-
fix {µσ : σ → σ}, restriction {(νA)σ : σ ∪ {A} → σ\{A}} and merging
{[B ⇒ A]σ : σ ∪ {A,B} → (σ\{B}) ∪ {A}}; and finally, the binary oper-
ators non-deterministic choice {+σ : σ ⊗ σ → σ} and parallel composition
{||σ,γ : σ ⊗ γ → σ ∪ γ} for σ ∩ γ = ∅.

We often omit the subscript, whenever clear from the context. The reader
may immediately recover for a well-formed, closed expression P : σ the em-
bedding {|P |} : ε → σ, obtaining an arrow of the Conway theory associated
to Σspa. Note that recursion is simulated by the † operator. For example, let
us consider the processes FL, FL[Φ

J
I] and F , as defined in Section 2.3.3: the

associated terms are respectively {|FL|} = (({uI , τJ} ⊗ {τI , τJ}); +)†; {lI , τJ},
16

Gadducci, Katis, Montanari, Sabadini, Walters

{|FL[Φ
J
I]|} = (({uJ , τI} ⊗ {τJ , τI}); +)†; {lJ , τI}, and

{|F |} = (∇{I,J}; (∇{I,J} ⊗ id{I,J}); ({τI , τJ} ⊗ tFL
⊗ tFL[ΦJ

I]); (+⊗ id{I,J}); +)†.

The operational semantics of spa is given by the transition system Tspa,
presented in Section 2 by a set of rules, in a sos style. A similar description
may also be obtained for tiles, by means of their inference mechanism.

Definition 4.8 (tile system for spa) The ars Rspa for spa is the 4-tuple
〈Σspa,Σspa, Lspa, Rspa〉, where Rspa is the set of labeled rules given below

act : µ
idσ
µ

�� idσ resA : (νA)
µ∪{a}

µ
�� (νA) for a ∈ LA

+l : +
µ⊗idσ

µ
�� idσ⊗!σ +r : +

idσ⊗µ
µ

�� !σ ⊗ idσ par : || µ⊗γ

µ∪γ �� ||

merB,A : [B ⇒ A]
µ∪{φB,A(b),b}

(µ\{b})∪{φB,A(b)}
�� [B ⇒ A] for b ∈ LB

Except for recursion, there is one tile for each inference rule of spa: they
are parametric with respect to types, since the corresponding rules are so. The
effect µ indicates that a process is ‘running’, outputting a label µ.

Proposition 4.9 (interleaving correspondence) Let P and Q be closed

spa processes, and P : σ a well-formed expression. (1) If a transition P
µ−→ Q

is entailed by the spa transition system Tspa, then a sequent {|P |} idε
µ

�� {|Q|}
is entailed by the tile system Rspa. Vice versa, (2) if a sequent {|P |} idε

µ
�� t

is entailed by the tile system Rspa, then there exists a process Q such that a

transition P
µ−→ Q is entailed by the spa transition system Tspa and t = {|Q|}.

5 Sketching the correspondence

How to compare the two encodings? On the one hand, the cospan-span model
associates to each well-formed expression P : σ (for P a closed process with
sequential recursion) a transition system Sem(P), with no out-conditions and
a single in-condition, whose abstract semantics is represented by the set of
paths of the underlying graph. On the other hand, in the tile logic approach a
set of tiles is associated to the set of inference rules of spa, and transitions are
mimicked by rewrites. Thus, a first attempt is to assume that these two sets
coincide: the result stated below is an immediate consequence of the properties
of the two encodings (namely, see Proposition 3.4 and Proposition 4.9).

Proposition 5.1 (on paths and rewrites) Let P be a closed process with
sequential recursion, and P : σ a well-formed expression. Then, (1) for each
path on Sem(P), mapped into a sequence of labels µ1 . . . µn, there exists a

closed process Q such that a tile {|P |} µ1;...;µn

idε �� {|Q|} is entailed by Rspa; and vice

versa (2), for each tile {|P |} µ1;...;µn

idε �� t entailed by Rspa, there exists a path on

Sem(P), mapped into a sequence of labels µ1 . . . µn.

17

Gadducci, Katis, Montanari, Sabadini, Walters

There are more paths than tiles: for example, given the process P = µ.0+

µ.0, Sem(P) has two paths labeled µ, corresponding to the tile {|P |} µ
idε �� 0.

Nevertheless, the previous result may be enriched with a denotational flavour.

Theorem 5.2 (on trace semantics) Let P and Q be closed processes with
sequential recursion, and P : σ and Q : σ well-formed expressions. Then,
Sem(P) and Sem(Q) are trace equivalent if and only if {|P |} ≡ {|Q|}.

6 Conclusions and further work

In the paper we introduced a simple process algebra, and we encoded it into
both the cospan-span model and the tile logic formalism. Then, we proved a
correspondence among the two encodings, by means of trace equivalence.

The algebra we considered is quite powerful, since it offers an effective
calculus for describing finite state systems. It is yet rather simplistic, with
respect to the possibilities offered by the tools of both the cospan-span model
and the tile logic formalism. In fact, its name reveals that we consider the
operators of the calculus quite close to those of the span(Graph) model: the
operators available on cospan-span(Graph) are much richer, and we plan to
investigate a calculus which supports the same operations of that model.

Our choice of the spa algebra, and our restriction to a behavioural semantics
such as trace equivalence, instead of e.g. the more expressive bisimulation, is
on purpose. A direct translation of cospan-spans into tiles would be by no
means straightforward, since the composition operations of the first model
only bear a similarity with those of double-categories, which are the semantic
domain of tiles. Besides the technical points, intuitively the two dimensions
of cospan-span expressions are spatial (the horizontal dimension being the
underlying geometry of the system, the vertical dimension being the space
of states), while instead the vertical dimension in tiles represents the flow of
time. Thus, even if our case study does not allow for properly testing the
expressiveness of the two formalisms, restricting our attention to an algebra
which is easily encoded in both meta-frameworks focuses the paper on the
comparison among them, highlighting the different tools they offer for system
specification (in a similar fashion to what has been already done for tiles and
other rewrite-based formalisms in [11]).

We then feel confident that we were able to cast some light on the cor-
respondence between the two approaches. Roughly, each expression in the
cospan-span model is a system, and each operation is a system constructor;
on the contrary, a tile is a (open) state transformer, and each tile expression
represents (the encoding of) a possible evolution from one state into another.
The dichotomy denotational vs. operational that we mentioned in the Intro-
duction is thus justified, even if, of course, also denotational models for tiles
are at hand, as long as we analyze formalisms such as the calculus spa, where
processes univocally denote also states.

18

Gadducci, Katis, Montanari, Sabadini, Walters

Summing up, on the one hand, the cospan-span model offers a rich algebra
for the description of systems, and its operations thus allow for a powerful
denotational formalism, on which the orthogonal aspects of parallel and se-
quential composition of systems are of pivotal importance. On the other hand,
tile logic offers a flexible tool for the specification of rule-based formalisms: the
emphasis is less on the structure of a system, which can actually be considered
as parametric, and much more on the the inference mechanism for building
single transitions out of an initial set, and sequentially compose them.

Acknowledgement

We wish to thank Roberto Bruni for the interesting discussions and the careful
reading of the paper, as well as the referees for their valuable suggestions.

References

[1] A. Arnold. Finite transition systems. Prentice Hall, 1994.

[2] S. Bloom and Z. Ésik. Iteration Theories. EATCS Monographs on Theoretical
Computer Science. Springer, 1993.

[3] R. Bruni, D. de Frutos-Escrig, N. Mart́ı-Oliet, and U. Montanari. Bisimilarity
congruences for open terms and term graphs via tile logic. In C. Palamidessi,
editor, Concurrency Theory, volume 1877 of Lect. Notes in Comp. Science,
pages 259–274. Springer, 2000.

[4] R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of
connections. Theoret. Comput. Sci., 2002. To appear. Available at http:
//www.di.unipi.it/~ugo/tiles.html.

[5] R. Bruni, J. Meseguer, and U. Montanari. Executable tile specifications for
process calculi. In J.-P. Finance, editor, Fundamental Approaches to Software
Engineering, volume 1577 of Lect. Notes in Comp. Science, pages 60–76.
Springer, 1999.

[6] R. Bruni and U. Montanari. Cartesian closed double categories, their lambda-
notation, and the pi-calculus. In Logic in Computer Science, pages 246–265.
IEEE Computer Society Press, 1999.

[7] R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic
programming. Theory and Practice of Logic Programming, 2001.

[8] R. Bruni, U. Montanari, and V. Sassone. Open ended systems, dynamic
bisimulation and tile logic. In J. van Leeuwen, O. Watanabe, M. Hagiya, P. D.
Mosses, and T. Ito, editors, IFIP Theoretical Computer Science, volume 1872
of Lect. Notes in Comp. Science, pages 440–456. Springer, 2000.

[9] G. Ferrari and U. Montanari. Tile formats for located and mobile systems.
Information and Computation, 156:173–235, 2000.

19

Gadducci, Katis, Montanari, Sabadini, Walters

[10] F. Gadducci and U. Montanari. The tile model. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 2000.

[11] F. Gadducci and U. Montanari. Comparing logics for rewriting: Rewriting logic,
action calculi and tile logic. Theoret. Comput. Sci., 2002. To appear. Available
at http://www.di.unipi.it/~ugo/tiles.html.

[12] P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of processes. Journal
of Pure and Applied Algebra, 115:141–178, 1997.

[13] P. Katis, N. Sabadini, and R.F.C. Walters. SPAN(Graph): A categorical
algebra of transition systems. In M. Johnson, editor, Algebraic Methodology
and Software Technology, volume 1349 of Lect. Notes in Comp. Science, pages
307–321. Springer, 1997.

[14] P. Katis, N. Sabadini, and R.F.C. Walters. A formalization of the IWIM model.
In A. Porto and G.-C. Roman, editors, Coordination, volume 1906 of Lect. Notes
in Comp. Science, pages 267–283. Springer, 2000.

[15] P. Katis, N. Sabadini, and R.F.C. Walters. Recursion and concurrency. In
A. Labella, editor, Fixed Points in Computer Science, 2001.

[16] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoret. Comput. Sci., 96:73–155, 1992.

[17] G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

20

