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Abstract. In this contribution we summarize recent results on the longitudinal response function of 4He. It is
intended to give an important contribution to one of the most interesting and much discussed topics in nuclear
physics at present, i.e. the nuclear many-body forces. The longitudinal response is considered as a possible
observable, involving many body scattering states, sensitive to the three-nucleon force (3NF). Such a sensitivity is
predicted by ab initio calculations performed using the Lorentz Integral transform (LIT) method. The kinematics
that are more interesting to measure are discussed.

1 Introduction

The nuclear potential has clearly an effective nature, there-
fore it is in principle a many-body operator. After several
decades of theoretical and experimental studies of nucleon-
nucleon (NN) scattering observables the two-body part of
this operator is rather well known. For the determination
of a realistic three-body potential or to discriminate among
different models one needs to find A≥ 3 observables that
are sensitive to it. One direction that has been followed [1,
2] is to calculate accurately bound properties of nuclei of
increasing A. In fact it has been realized that stronger and
stronger discrepancies exist between the binding energies
calculated with high precision two-body potentials and the
experimental values. Another very promising direction is
to study electromagnetic reactions to states in the contin-
uum. In fact many years of electron scattering experiments
have demonstrated the power of this kind of reactions, and
in particular of the inelastic ones, because of the possibil-
ity to vary energy ω and momentum |q| transferred by the
electron to the nucleus. This allows one to focus on dif-
ferent dynamical aspects at different ranges and one might
find regions where the searched three-body effects are siz-
able.

The 4He nucleus is particularly appropriate for these
studies because of the following considerations: i) the ra-
tio between the number of triplets and of pairs goes like
(A−2)/3, therefore it is double for 4He than for 3He; ii) the-
oretical results on hadron scattering observables involving
four nucleons [3] as well as 4He-N phase shifts [4] seem to
imply that three-body effects are rather large.
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2 Formalism

For electron scattering reactions the inclusive differential
cross section is given by
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| 〈n | ĴT | 0 〉|
2
δ (En − E0 − ω)


≡ VL(q, ω) RL + VT (q, ω, θ) RT , (1)

where σM denotes the Mott cross section, Q2 = −q2
µ =

q2 − ω2 the squared four momentum transfer with ω and
q as energy and three-momentum transfers, respectively,
and θ the electron scattering angle. The states |0〉 and |n〉
represent the initial (generally the ground state) and fi-
nal states of the system, respectively. In the energy con-
serving δ-function the final energy, represented by En, in-
cludes both the internal energy of the system En and the
recoil energy acquired by the nucleus (non relativistically
Erec = |q|2/2M2

A with MA representing the mass of the nu-
cleus).

The nuclear dynamics is in the so called response func-
tions RL and RT . They differ by the electromagnetic oper-
ators ρ̂ and ĴT representing the nuclear charge and trans-
verse current density operators, respectively. Their knowl-
edge requires models about explicit and implicit degrees
of freedom in the nuclear Hamiltonian. While the explicit
ones (protons and neutrons) are obvious at the nuclear scale,
the implicit ones are not. The latter are in fact the degrees
of freedom underlying the potential model. For example
for one boson exchange potentials they are represented by
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the exchanged bosons whose charges and currents can cou-
ple to the electromagnetic field generated by the electrons.
For phenomenological potentials they are unknown. It is
clear that this uncertainty represents a problem if one wants
to extract information on the potential, by comparing the-
ory and experiment. Fortunately one can show [5] that the
contributions to ρ̂ and ĴT of subnuclear degrees of free-
dom appear at different relativistic orders. At lowest order
the charge density operator contains only proton (and neu-
tron if nucleons are thought as extended objects) degrees of
freedom. Therefore the use of the simple one-body density
operator

ρ̂(q) =
e
2

∑
k

(1 + τ3
k) exp [iq · rk] , (2)

where e is the proton charge and τ3
k the isospin third com-

ponent of nucleon k. allows to concentrate on the nuclear
dynamics generated by the potential.

For the reasons exposed above we concentrate on the
longitudinal response function RL at low energy and mo-
mentum transfer, where a consistent non relativistic quan-
tum mechanical calculation can be performed. In particu-
lar, as the momentum transfer decreases we have the op-
portunity to see the evolution of the searched effects from
the short range regime to the long range one.

It is well known that beyond the three-body break-up
energies the calculation of scattering states for a four-body
system is out of reach. We overcome the problem using
the Lorentz Integral Transform (LIT) approach [6,7] which
reduces the scattering problem to a bound state problem.

The LIT method consists in considering instead of RL
an integral transformLL(σ, q) with a Lorentzian kernel de-
fined for a complex parameter σ = σR + iσI by

LL(σ, q) =
∫

dω
RL(ω, q)

(ω − σR)2 + σ2
I

= 〈Ψ̃ρσ,q|Ψ̃ρσ,q〉 . (3)

The parameter σI determines the resolution of the trans-
form and is kept at a constant finite value (σI , 0). The
key point of the method is the theorem assuring that LL

can be evaluated from the norm of a function Ψ̃ρσ,q, that is
the unique solution of the inhomogeneous equation

(Ĥ − E0 − σ)|Ψ̃ρσ,q〉 = ρ̂(q)|Ψ0〉 . (4)

Here Ĥ denotes the nuclear Hamiltonian. The existence
of the integral in Eq. (3) implies that Ψ̃ρσ,q has asymptotic
boundary conditions similar to a bound state. Thus, one
can apply bound-state techniques for its solution. The re-
sults presented here use the effective interaction hyperspher-
ical harmonics (EIHH) method [8,9].

3 Results and Discussion

In the following results for the longitudinal response func-
tions of 4He are presented [10]. They are obtained using
the the phenomenological Argonne V18 (AV18) NN po-
tential [11] and two different 3NF, namely the Urbana IX
(UIX) [12] and the Tucson-Melbourne (TM’) [13].

In order to compare with experimental data both proton
and neutron form factors have been included in the calcu-
lation, in particular the proton electric form factor has been
described by the usual dipole parameterization

Gp
E(Q2) = GD(Q2) =

1(
1 + Q2

Λ

)2 (5)

(Λ = 18.43 fm−2) and the neutron electric form factor by
the parameterization from [14].

Figure 1 shows the evolution of the 3NF effects on RL
as the momentum transfer decreases. The effect at q = 50
Mev/c is especially large. Unfortunately no data are avail-

50 75 100
0

5

10

15

20

R
L
 [

10
-3

M
eV

-1
]

30 40 50 60
0
2
4
6
8

10

R
L
 [

10
-3

M
eV

-1
]

30 40 50
ω [MeV]

0

1

2

3

R
L
 [

10
-3

M
eV

-1
]

q=100 MeV/c

q=200 MeV/c

q=50 MeV/c

(a)

(b)

(c)

Fig. 1. RL(ω, q) for q = 200, 100 and 50 MeV/c using AV18 only
(dashed) and AV18+UIX (solid). Data from [15] .

able at the moment for the lowest q-values and the data at
q = 200 [15] MeV/c are too inaccurate to allow any con-
clusion.

The fact that 3NF effects are smaller for larger mo-
mentum transfer is confirmed in Fig. 2, (see also S. Bacca
in these proceedings) where it is again clear that avail-
able data [16–18] do not have sufficient accuracy. How-
ever, Fig. 2 is interesting in that it shows that neglecting
the final state interaction may have dramatic effects. In fact
what is also shown in that figure with a dotted line is the
so called quasi-elastic approximation to the response func-
tion. The approximation consists in assuming that the vir-
tual photon interacts only with a single proton, which then
leaves the nucleus undisturbed (plane wave).
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Fig. 2. RL(ω, q) for q = 300, 400 and 500 MeV/c using AV18
only (dashed) and AV18+UIX (solid). The dotted line represents
the quasi-elastic approximation. Data from [16] (squares), [17]
(circles), [18] (open triangles).

Having found observables that show sizable effects of
the UIX three-body potential one may wonder whether they
can be used to discriminate between different 3NF. To this
aim we can compare the results in Fig. 1 with those ob-
tained with the TM’ potential [13]. The comparison is shown
in Fig. 3.
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Fig. 3. RL(ω, q) for q = 100 and 50 MeV/c using AV18 only
(dotted), AV18+UIX (solid) and AV18+TM (dashed).

Since the charge density operator in Eq. (2) has an
isoscalar and an isovector part, the longitudinal response
has been obtained calculating the isoscalar and isovector
contributions separately. Moreover, each of them has been
obtained as a sum of multipole contributions. It is interest-
ing to investigate which multipole is most affected by the
3NF. At first, however, it is instructive to see how the differ-
ent multipoles contribute at different momentum transfer.
To this aim in Figs. 4 and 5 we show how the isoscalar
and isovector parts of RL are built up from their multi-
pole contributions at a higher (500 MeV/c) and a lower
(100 MeV/c) value of q. As expected, the higher the mo-
mentum transfer, the larger the number of multipoles that
one has to consider to reach convergence. For q = 500
MeV/c up to seven multipoles are needed, while for q =

100 MeV/c only three multipoles are required for a con-
verged result. From the same figure one can infer that at
higher q the strength is almost equally distributed among
the first isovector multipoles, while in the isoscalar chan-
nel the quadrupole gives the largest contribution. At low
q, as expected, the response is dominated by the isovector
dipole contribution, the isoscalar dipole is completely neg-
ligible and the isoscalar quadrupole contributes a few per-
cent. Negligible strength is found for the multipoles higher
than the quadrupole (similar to the isoscalar dipole case).

Coming to the 3NF effects, in Fig. 6 the dominating
dipole contribution to the longitudinal response function
is shown. On can notice that the effect of the 3NF is very
similar to that in Fig. 1(b). This is due both to the fact that
this is the dominant contribution and to some cancellations
of the 3NF contributions to the other multipoles.

Fig. 4. (a) and (b): isovector and isoscalar response functions,
respectively, built up from the lowest J multipole contributions
for q = 500 MeV/c. The results are obtained with the AV18+UIX
potential.

Finally we want to discuss one of the most interesting
integral properties of the longitudinal response function,
i.e. the so called Coulomb Sum Rule (CSR) (for a review
see [19,20] ). The main interest in this sum rule comes
from its connection to the Fourier transform ( fpp(q)) of the
proton-proton correlation function (ρpp(s)), i.e the proba-
bility to find two protons at a distance s. In fact one has
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Fig. 5. The same as Fig. 4, but for q = 100 MeV/c.
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Fig. 6. Response function of the isovector dipole for q =

100 MeV/c with the AV18 (dashed) and AV18+UIX (solid) po-
tentials.

CSR(q) ≡
∫
ω th

dω RL(ω, q)=Z + Z(Z − 1) fpp(q) − Z2|F(q)|2,
(6)

where F(q) is the nuclear elastic form factor. Therefore it
is interesting to see what is the effect of the 3NF on fpp(q).
This is shown in Fig. 7. One can see that the effect in-
creases up to 25% at q=400 MeV/c. However, in view of
the fact that Eq. (6) has been obtained with the operator
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Fig. 7. Percent difference between fpp(q) calculated with AV18
only and AV18+UIX.

in Eq. (2), which neglects contributions of higher relativis-
tic order, one has to keep in mind that only kinematics at
q .300 MeV/c, where the effect amounts up to 15%, can
be considered safe for a possible comparison with experi-
mental data, giving also an idea of the required experimen-
tal accuracy.

4 Conclusions

In this contribution we have shown that the longitudinal re-
sponse function of 4He is potentially a crucial observable
for the search of 3NF effects. In fact at the lowest momen-
tum transfers investigated (50-100 MeV/c) the comparison
of the results obtained with and without 3NF shows large
effects of the 3NF, up to 30-40%. Moreover, using two phe-
nomenological potentials one finds slightly shifted peaks.
The result is a difference between the two responses that
can be as large as 10-15%. The multipole analysis shows
that the largest 3NF effect is just on the dominating isovec-
tor dipole.

Three-body force effects are visible in the Coulomb
sum rule as well, i.e. on the Fourier transform of the proton-
proton correlation function. Three-body correlations due to
the potential reach the maximum around 300-400 MeV/c.
This could reflect the intermediate-long range nature of the
3NF.

At present experimental data are available for q ≥ 200
MeV/c, where the 3NF effects are smaller and are not suffi-
ciently precise to draw any conclusion. A Rosenbluth sep-
aration of the inclusive electron scattering cross section of
4He at momentum transfer q ≤ 200 MeV/c would be of
high value in view of a more accurate determination of the
three-body force and in general of the intermediate-long
range dynamics of this system.
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