OF SCIENCE

String Field Theory: a short introduction

Loriano Bonora™

International School for Advanced Studies (SISSA)
Via Bonomea 265, 34136 Trieste, Italy,

and INFN, Sezione di Trieste, Italy

E-mail: bonor a@i ssa. i t

This is a short introduction to open string field theory. lisrgose is to allow the reader to
understand and appreciate the recently found analytid¢isakiof the equation of motion of the
theory.

3d International Satellite Conference on Mathematical iMets in Physics - ICMP 2013
21 - 26 October, 2013
Londrina - PR (Brazil)

*Speaker.
I would like to thank the organizers for their financial supmnd kind hospitality.

(© Copyright owned by the author(s) under the terms of the Gre&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Introduction to SFT Loriano Bonora

1. Introduction

The most authoritative candidate to represent the UV catiopl@f our low energy field the-
ory models, in particular the standard model and Einstdlbdtt gravity, is (super)string theory.
Superstring theory seems to have all the ingredients netedéédscribe the fundamental physical
interactions. In particular it provides a consistent qization of gravity. However how the various
physical phenomena are accommodated in the string theamyefvork, starting from the elemen-
tary particle physics and ending with the physics of extréange distances and times, is still an
open problem, to say the least, notwithstanding the striehenadeavor of string theorists and un-
deniable, but partial, progress made in many separatecaipis of string theory. Although the
picture is still not precise, it is plausible that the lattein accommodate the physics of the stan-
dard model of elementary particles as well as a descriptiotihe evolution of the universe; it
does also shed light on the black hole physics. However maagtipns remain unanswered, the
identification of the vacuum to start with.

The panorama of superstring theory, on one side, is the sanaba@ut twenty years ago.
There are five consistent superstring theories in 10D, omm-gposed (type 1) and four closed
(lIA, 11B and two heterotic ones). In addition we have anotbensistent theory in 11D (M theory),
whose low energy limit is 11D supergravity. There exist a@#uer consistent non-supersymmetric
theories, but the attention has been mostly focused on thersgmmetric ones. The latter are
connected by dualities and appear as limiting cases of auartieory, characterized by a large
moduli space, when the relevant moduli take on specificiligitalues. Itis this unique theory that
people understand when generically referring to supegstifieory. The ordinary way to extract
low energy information is to compactify the extra dimensiar else to consider configurations
of branes. In a way or another it is possible, for instancegpoduce the spectrum and various
gualitative features of the standard model and to produeetefe models for the evolution of the
universe, describing for instance inflation.

On the other hand in this panorama a different point of vievg wdéroduced by Maldacena
with his idea of the AdS/CFT correspondence. A stack of Dabs in type |IB superstring theory
generate an AdS geometry that splits physics into two seghsystems, a supersymmetric gauge
theory and a supergravity theory. However, since the theognique, the two systems must be
related in a one-to-one way. This argument is the basis ottineespondence. The latter is a
duality of the strong-weak coupling type, so that it can breally verified only in the presence of
supersymmetry: the original case refers to N=4 conformaggaheory in 4D and a supergravity
theory in 10D; such an amount of supersymmetry guaranteepdtsistence of many properties
while going from weak to strong coupling. AdS/CFT has beevertbeless hypothesized also
in the case of reduced or no supersymmetry, or for non-camdbitheories. The basic idea is
the holographic correspondence between a gauge theoryedmtimdary of an AdS space and a
(super)gravity theory that lives on the bulk of the lattehislbrings into the game a new concept:
gauge theories and gravity theories seem tedmaplementaryather thandistinct they complete
each other rather than being two separate entities. Thay sedescribe in different ways the same
basic underlying physics.

The AdS/CFT correspondence, as it is commonly used, relatefield theories, but it should
not be forgotten that, in the original case, it is formulabedhe framework of superstring theory
and it requires at least type |IB theory ¢S x S for the full duality to work. In other words
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the natural framework for this kind of correspondence iggttheory. And since the low energy

effective theory of the open strings on a stack of D-branes gauge theory, while gravity is

generated by closed strings, one is naturally led to thiak the basic duality is the one between
open and closed strings. Even more, since closed stringses@ibranes, it seems to be unlikely
that open and closed strings can be treated as separaiese(gxcept for closed strings at the
perturbative level).

A logical conclusion of the previous reasoning is that a tmtlerstanding of holographic du-
alities can be acquired only in the framework of string tlyeand that the underlying duality to be
considered is the open-closed string duality. Now the doress: what is the best context in which
these problems can be analyzed? The abovementioned @&upgrtheories are first quantized
theories, and although one can go a long way even withoutandeguantized string theory, there
seems to be insurmountable difficulties if one tries to drawmapletely satisfactory picture of the
theory. For instance, while there are no obstructions irstranting on-shell perturbative ampli-
tudes of a given string theory, there is no unambiguous guidenstructing off-shell amplitudes.

Thus it is extremely desirable, if not compulsory, to haveul-ffedged second quantized
string theory. In this regard, the present situation is #ievies. We have a covariant formulation
(a la Witten), [1], of second quantized bosonic open strivapty (OSFT) with a cubic interaction
term, which is well defined and consistent (see below). Wifmulated also a boundary SFT,
a theory of 2D theories so to speak, defined on a unit disk wattugbations on the boundary,
which, however, has serious renormalization problems.oh®dsonic closed string theories, their
second quantized version can be formulated in analogy tO8IET, but the cubic interaction term
is not enough to cover the moduli space (see below), so ondiged to introduce infinite many
interaction terms, ending up with a nonpolynomial theory;aaconsequence perhaps this theory
cannot be properly called a field theory. Coming to the secqumahtized superstring theories
(OSSFT), there is the analog of the bosonic OSFT, also pexplog Witten; this theory however has
contact singularities. A successful alternative is Beilgdwopen superstring field theory, modelled
on the WZW model, which passes many significant tests. Rigcsinbng arguments have been
put forward to show that the original Witten’s OSSFT is a sdisingular gauge limit of Berkovits’
OSSFT. The basic drawback of both approaches is that theytieen formulated only for the NS
sector while the R sector (the fermionic one) is at presessimg.

Summarizing, second quantized superstring theory isvetilting for a complet formulation.
On the other hand a bosonic closed SFT does not seem to baggttlechnically viable. If this is
so one is obliged to conclude that at present the only ceamtiSiFT at our disposal is Witten’s open
SFT. Does it make sense to focus on this theory and take ausdyi? 1t should be pointed out that,
as a matter of principle, we have no a priori reason to beliesea unique and complete SFT theory
exists at all. On the other hand the old objections againtews OSFT (the tachyon, the tadpoles
contributions) seem by now to be obsolete: the recent sseses this theory indicate that these
problems are not intrinsic to the theory but rather to the waysolve it. The traditional motivation:
OSFT is an extremely useful playground while waiting for itseconsistent full supersymmetric
version may be diminishing and perhaps misleading. We wtlinn to this point at the end of
the paper. These lecture notes focus on those aspects of @&FWitten that are instrumental
in guiding the reader to understand and appreciate the timalylutions of the SFT equation of
motion derived in recent years.
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The reader should be made aware that other reviews anddecties in SFT exist in the
literature, [2, 3,4, 5, 6, 7, 8]. They cover other aspectscovered here while, sometimes, partially
overlapping with the present notes, The reader is invitezbttsult them.

2. The bosonic open SFT

This is a short summary of first quantized open bosonic theory

First quantized open string theory in the critical dimensi®=26 is formulated in terms of
quantum oscillatorsrl, —oo < n < oo, u=0,1,...,25, which come from the mode expansion of
the string scalar field

u
XH(z) = xH —2ip“|nz+i\/§§ O{Tnz*n
n#0

having set the characteristic square length of the stiing 1. They satisfy the algebfah, o] =
mnHY &, mo, N*Y being the space—time Minkowski metric. The vacuum is defimed}'|0) = 0
for n> 0 andp”|0) = 0. The states of the theory are constructed by applying tovalcaum the
remaining quantum oscillatorsh T = at,, with n > 0. Any such statégp) is given momentunkH
by multiplying it by the eigenfunctiog . This state with momentum will be denoted gy k). In
order for such states to be physical they must satisfy thditons

Lpk =0, n>0, (LY —1)pk =0 (2.2)

WhereLﬁx) are the matter Virasoro generators
L(X) == E .a CXV'” (2 2)
n 2 K - Yn—k%k - TV )

Hereag = p and :: denotes normal ordering. The conditions (2.1) aregtl@tum translation of
the classical on-shell vanishing of the energy—momentumsaie TheLS,X) are the moments of
the energy-momentum tensor of the theory, and the constré2?) are the most stringent one
can impose compatible with the Virasoro algebra (2.4) beldWwese constraints, whdh = 26,
eliminate all the negative norm states of the Fock space afideda physical Hilbert space.

In particular, by means of (2.1), we can identify the phylsspeectrum of the theory (in D=26).
All the states are ordered according to the level, the lee@ida natural number specified by the
eigenvalue oL(()x) + ngh) — %2 The lowest lying state (level 0) is the tachyon represebtethe
vacuum with momenturk, |0,k), with p#|0,k) = kH|0,k). Its square maskl?> = —1. The next
(level 1) is the massless vector staﬁea‘fﬂo, k) with k? =0 and -k =0, and is identified with
a gauge field. The other states are all massive, with inecrgasiasses proportional to the Planck
mass.

String theory is a particular example of 2d conformal fielddly. The state-operator corre-
spondence, characteristic of conformal field theory, all@no associate a 2d field to any state of
the spectrum. They are the vertex operators. For instancihettachyon we associatg(k) =:
&“X :: to the vector stat®/a(k,) =: - X&kX :, where the dot on top ok denotes the tangent

derivative with respect to the world—sheet boundary (tts ais in thez UHP); and so on. In
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this way the rules of conformal field theory allow us to caétal any kind of amplitude of these
operators(Vi (ki) ...Wn(kn)), as far as these amplitudes ameshell At low energy,a’ — 0, such
amplitudes reproduce those of the corresponding field théfor instance, the amplitudes dh
reproduce the amplitudes of a Maxwell field theory). If we wemncomputeoff—shellamplitudes
the above rules are insufficient and in general we have tatrésa field theory of strings. This
was a major motivation for introducing string field theories

So far we have ignored ghosts. Indeedtf®, c(z) ghosts, which come from the gauge fixing
of reparametrization invariance via the Faddeev—Popoipeeplay a minor role in perturbative
string theory. They play a much more important role in SFT.&kpand them as well in modegs
andb,, and construct the corresponding Virasoro generators

Lo —. Z(Zn +K)b_kCin : (2.3)

Both (2.2) and (2.3) obey the same Virasoro algebra

[Ln, L] = (N=mM)Lnym+ 122(”3 —N)dho (2.4)

The central charge equals the number of fields in the matter case (i.e. 26), while it equals -26 in
the case of thé, ¢ ghosts. So the total central charge (i.e. the central chafrgé, = L,ﬁx) + Lﬁgh))
vanishes in D=26. This guarantees the absence of any traceady) and therefore consistency of
the bosonic string theory as a gauge theory. From now on weetdrate only on this case.

The previous results about ghosts and critical dimensian be usefully reformulated in terms
of BRST symmetry and its charg@ Q is defined by

1
Q=3 e (Lﬁx) 5L - 5n,o> : (2.5)
It is hermiteanQ" = Q and its basic property is nilpoteno@? = 0, (only) in critical dimension.
The study of the physical spectrum can be reformulated imgef the cohomology of. First of

all the vacuumO) is understood to be th8L(2,R) invariant vacuum, i.e. the vacuum annihilated
by 4, with n> —1. Itis normalized as follows

<07 k|C71COC1‘07 k/> = 5(26) (k7 k,)

We apply all possible bosonic and ghost creation operatarg®), and split the so obtained states
according to the level. Thenthe physical states of perturbative string theory at levaté the
states (with momentum) belonging to that level that are ldlated by Q defined up to states
obtained by acting witl®Q on any state of the same level. Itbe physical states are identified with
the non-trivial cohomology classes of Qhey can be represented by the old physical stgide
tensored with the ghost factor|0)g where|0)q is theSL(2, R) invariant ghost vacuum.

With this at hand we can now turn to string field theory.

3. OSFT

The open string field theory action proposed by Witten, [d[efined in D=26 by the action

y(w):_g_lz/Gw*Qw%w*w*w). (3.1)
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This action is clearly reminiscent of the Chern—Simonsogciin 3D. g, is the open string coupling.
The BRST charg® is the one introduced above for the first quantized stringrhelater on we
will explain whatW, [ and* mean. For the time being let us state the rules they musfysatis

a) Q*=0,

b [Qv-o

C) Q(WixW,) = (Q‘P1) « Wy 4+ (—1)EPDW, 4« (QW,), Q is a derivation

d) / Wy Wy = (—1)E(PEW2) / W, x Wy, cyclicity

e) (WixWa)xWa=Wyx(WaxW3), associativity (3.2)

whereg(W) is the Grassmannality of the string fielé] which, for bosonic strings, coincides with
the ghost number. The action (3.1) is invariant under the BR&sformation

SW=0QA+WsA—AxW. (3.3)

Finally, the ghost numbers of the various objeQt$P, A\, *, [ are 11,0,0,—3, respectively.
It is very often convenient to express the action in a morérabisway. The integral therein
can be thought of as a bilinear fortm -):

FW) = |2 (W.Q¥) +

& 3(W,W*W> . (3.4)

While the properties),e) in (3.2) remain the same, in terms 6f -) the other properties can be
written

d) (QY,®) = —(—1)*™¥ (W, Qo)
d) (W,0) = (~1)=WE@) (@, W)
f) (W, 0xZ) = (Wxd,3) (3.5)

The last property is a consequence of the star product assttgi and of identifying the bilinear
form with integration. The analog of properby is not explicitly stated. It is a consequence of the
existence of the identity string field which is defined by x| =1xW¥ = W. | has 0 ghost number
and Grassmannality. Using th@tis a derivation we get for any

QY =Q(I+¥)=QIx¥YW+I1xQ¥ =QIx¥Y+QV¥,
ThusQI = 0, which implies
Jaw=[Qwel = @u.) = (-1 (w.QN) -

From now on we understand the identificatidf, @) = [ g+ P. The bilinear form can be identified
with and extends the inner product in the Fock space

(A,B) = (bpz(A)[B) (3.6)
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where, according to the state operator correspondence h [BF = B(0)|0) and (bpz(A)| =
lim,_.. 22"(0JA(—1), whereh is the conformal weight of(z). By definition

bpz0) = (0], bpAA) = i0AZ) = 5 A(~) (3.7)

wherei(z) = —1. It follows in particular that
bpz(an) = (—1)"*a n, bpz(cy) = (-1)™ ey bpz(by) = (—1)"b_n

and bpz.4,) = (—1)".Z_,. Here we have adopted the notatien:= \‘}—f‘ﬁ).
Let us next explain in turn whap,~ and [ are.

3.1 The string field

In (3.1) W is the string field. It can be understood either as a clasticaitional of the open
string configurations?[x*(o),c(o),b(o)], whereo = [In(z), or as a vector in the Fock space of
states of the open string theory. In the sequel we will carsigsentially this second point of view.
In the field theory limit it makes sense to repres#has a superposition of Fock space states with
ghost number 1, with coefficient represented by (infinite yydocal fields,

W) = [ &®p[(@(p)+ Au(pia+...| cif0) (3:8)

3.2 Star product and integral

One of the most fundamental ingredients is the star prodRiggsically it represents the string
interaction, that is the process of two strings coming togeto form a third string. More precisely
the product of two string field¥, ® represents the process of identifying the right half of thet fi
string with the left half of the second string and integrgtaver the overlapping degrees of freedom,
to produce a third string which correspondst¥ae ®. This can be implemented in different ways,
either by using the classical string functional, conforiireld theory or by means of the oscillator
formalism.

Consider two classical string fieldg[x(o)], ®[x(o)] (for simplicity we ignore the ghost de-
pendence). Then their star product is defined by

(W*q’)[Z(U)]:/ [1 avr)dx(m—1") [ o(x(1)—y(m—1))PX(D)|P[y(T)] (3.9)

<<% <t<m

Nl

wherez(g) = x(0) for 0< 0 < 7 andz(o) = y(o) for 7 < g < . The delta function clearly
reproduces the overlapping alluded to above.

The integration in (3.1) corresponds to bending the left bithe string over the right half
and integrating over the corresponding degrees of freedosngh a way as to produce a number:

./Lp:/ [T aXT) [T (1) =x(m=1)W[x(T)] (3.10)

0<t'<m o<t<%

The meaning of these two formulas is rather clear, but theynat very practical. A very
practical definition is instead provided by embedding thebfgm in CFT. Let us start from the
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integral. As we said above we can interpret it as the innedyebin the Fock space. Let us make
it clear with an example. Consider the string field (a cortstachyon)|W) = T =tc;|0), wheret
is a constant. Then we can compute (disregarding an infinitene factor)

/ T*QT = (T,QT) =t%(0|c_1,Qc1|0) = —t2(0Jc_16oc1|0) = —t2 (3.11)

since[Q, 1]+ = —CoC1.
The important point is that the inner prodyé{B) can be interpreted as a two-points correlator.
Consider the maps

_1+iz W(Z)_z—i
C1-iZ 29 =75

Wi (2) (3.12)
The first maps the unit semidisk to a unit semidisk rotateti®€he anticlockwise direction, so that
the string midpoinz =i is mapped to the origin (see fig.1), and the second maps theamidisk

to a unit semidisk rotated by 90n clockwise sense. If we fit the two final semidisks into a unit
disk they represent two strings overlapping the left halboé with the right half of the other and
forming a third string which bends on itself so that the twévha overlap (the integral), see fig.1.
Now we map the so obtained unit disk to thé&JHP by means of the map

{=hYw) = —ivwv—j (3.13)
and define the mags=htow;, that is
i1(2) =z i2(2) =i(2) = —% (3.14)
Then we can write
(A,B) = (bpz(A)[B) = (j20A(0)j10B(0)) (3.15)

As an example let us apply this to (3.11). Starting frQ(z) = cdc(z) and using the correlator

\é M

Figure 1: The conformal maps from the two unit semi-disks to the usk di

(c(zm)c(z)c()) = (a—2)(z—2)(2—2) (3.16)
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one gets

2 S02(0)0n(0) _
AN 340

which coincides withT,QT) calculated above, (3.11).

It is easy to apply the same idea to the cubic term in the actigt us consider three unit
semi-disks in the upper hatf (a= 1,2, 3) plane. Each one represents the string freely propagating
in semicircles from the origin (world-sheet tinfe= (J In z= —) to the unit circlelzy| = 1 (1 = 0),
where the interaction takes place. We map each unit serkitalia 120 wedge of the complew
plane via the following conformal maps:

(120T(0)j10QT(0)) =t

Ga(za) = 0*%9(z), 2= 1,23, (3.18)
where
1+iz\3
9(2) = <1— iz) . (3.19)
Herea = esz.

%& M
%(z,) / \

Figure 2: The conformal maps from the three unit semi-disks to theettwedges unit disk

In this way the three semi-disks are mapped to non-oventgpf@xcept along the edges) re-
gions in such a way as to fill up a unit disk centered at the wrijhe curvature is zero everywhere
except at the center of the disk, which represents the commidpoint of the three strings in in-
teraction. Itis clear that this geometry simulates prdgigee joining of two strings to form a third
string, as explained above. To complete the process we mneapihdisk to thel UHP via the map
h~! and definef; = hog;, i = 1,2,3. On this basis the second term in (3.1) can be interpretad as
UHP correlator defined by the above geometry with insertmfri¥ at the origin of each semidisk,
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which are mapped to the pointsy/3,0,/3 of the UHP, respectively (after alf is nothing but a -
possibly infinite - combination of vertex operators). In geal for any three string field&, B and
C, whose total ghost number is 3, the integral of the star prodigiven by the correlation function
on the disk in the following way

/A*B*C: (f10A(0) f20B(0) f30C(0)) (3.20)

So, calculating the star product amounts to evaluatingesetpoint function on the UHP.
Let us see an example. Suppd4$e =T =tc;|0) as above. We have

fLoc(0) = C(f‘ll((oc;)) :gc(@), f50(0) :%c(O), f200(0) = ( V3)

Using (3.16) one finally gets (again forgetting an infinitéuwoe factor)

/T T % T_81\/§ (3.21)

For later use let us record that the action for the string field tc;|0) (constant tachyon) per

unit volume, is
1/1 2 273 3
[(T)= 90( —t 64 t) (3.22)

(3.20) suggests how to define the star product of two striidsfi@ andB. It is defined by
(3.20) for any string fieldC.

3.3 The two-strings and three-strings vertex

There is a third way to represent both (3.15) and (3.20). Thiigl way leads to an explicit
representation of the star product. It is based on the twogstand three-strings vertex, which can
be explicitly represented in terms of oscillators. The dafjrrelations are

(A.B)= [ AxB=(%3l|A)1]B)2 (3.23)
(AB.C) = [ AxB+C = (7][A1B)2(C)s (3.24)

for any three string fieldé, B,C. (73| is defined in the tensor product of two Fock spaces and the
labels 12 in (3.23) refer to the latter. Likewisg/s| is defined in the triple tensor product of Fock
spaces. The ansatz for these vertices (at zero momentushjadavs

(el = A5((Ole-1)@ ((0lc2) @ (o + ) @ Bio Tnmea e M

"

-e_% Zrzﬁl Zm,n21 bgn sl

Yt (3.25)

1¢3 (1) \rs (9
(5] = A5((0lc100) (01 160) 2((0fc 16g)(V & F2EsTumse N

@ 2 2is1 Im=0nz1 bl Xt (3.26)

10
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Here and in the sequel, for simplicity, we understand theehtr indices of thex oscillators.
The constants4, and.#3 can be fixed by normalizing the vertex in such a way tftatdc) =
(¥5]|c)1lcdc), = —1, as in eq.(3.17)|€) = c(0)|0), etc.), andc,c,c) = (¥3]|c)1|C)2|C)3 = %ﬁ as
required by(c_jcpc1) = 1 and by (3.21). This implies

_ 33

M=1 M=, B=

ClearlyMf5, = M5, NS = Ny,

A simple method to determine the entries of the matribe®N, X,Y is to impose that the
correlator of two free fields be reproduced by radial ordgnextiuct of the two free fields contracted
between the vertex and the vacua. In the sequel we will expiés procedure in detail for the two
strings vertex at zero momentum. For the matter part of ttierlave must have

(71 (10X)(2) 10X (2) ) 10)1/0)2 = (i 010X (2) js0 19X (w)) (3.27)

with r,s=1,2. We have dropped, for simplicity, the Lorentz indiceXinFor instance, fofz| > |wl,
the LHS is

(r)

al ol

Om

(Fa] 5 010 =~ § MBS IWT =M (zw) (3.28)
n7mz<ozn+lzm+l n,él m
M"S(z,w) is referred to as Neumann function. Using the correlaitdX (z) ioX (w)) = ﬁ the
RHS of (3.27) becomes
./ ./

] I PR S

(r(@ —js(w))®  (1+2w) (z=w)
It follows that

_1\n
M%%:M%lnz—i dz1 fdw 1l 1 (-1 S

nmJ 2mZ") 2mwh (1+zw2  n

1 dz1 fdw 1l 1
Mit_om22 - _ = f92 - JAW 2 -
mn - mn nm,) 2mi zZ"J 2 w" (z—w)?

As for the ghost part, we use tie— ¢ propagator(b(z)c(w)) = --. In order to determine
Yo, We equate

G=(zw) = (1371 (0¥ 2" (W) ) ¢l 0157 P 0): (3.29)
with
(is0b(2) jr o (W) j200(0) j1 0 €Ic(0)) (3.30)

From the first equation we get

o _pfdz 1 dw 1
mn 2mi 21 2m w2

G'(zw) (3.31)

11
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On the other hand, using the correlator

1

(B(2)eW) (9 €06(W)) = — 2= (X=y)P+ T W=y + W=

Gy ()

(3.30) can be rewritten as

j’s<z)2< 1 jr(w) 1 >
ot W 3.32
) \ @ n ) W22 (3:82)
Equating (3.29) and (3.30) yields
oot ow 1 22,0y W 1w
G (zw) = z—w 2 7 Gz w) = wz—w 2
12 1 1 w i ”n L 1 wo W2
GHzw) = Bltzw 2T F Gz w) = W31+zw+z2 z

Plugging these results in (3.31) we get

Xon =X = X =Xan=—(~1)"dm

On the basis of these results the two-strings vertex at zermentum can be written

(2) | (VKE) 2RO
(V5| = ((0|C_1) (<O|C_ ) (C(())—I—C(())) e —(=1)" 3> [ +ci b +-ci’ by } (3.33)

This is called alsaeflectorbecause it maps any string field into itpzconjugate.

The three-strings vertex can be determined in an analogays kor instance, for the matter
part we equate

(3™ 12 (10X (2) 10X 9 (W) ) ¢V 016702t 10), (3.34)
with
N5(fr 0idX (2) fsoidX (W) (3.35)

Using the correlatofioX(z) ioX(w)) = ﬁz and proceeding as above one gets

dz 1 fdw 1 f/(2)fi(w)
2m 20 ) 2mwh (f,(2) — fs(w))2 (3.36)

s __
Nnm -

For the ghost part one gets similarly

o fdz 1 rdw 1 K@? -1 [R(fsw) - f(0)

™) 2m 21 ) 20 w2 f(w) f(2) — fs(w) 3.4 (f(2) - £(0)) (3.37)

from which one can compute all the entries. It has to be ndtibat both in (3.36) and in (3.37) we
can replace we can replafgwith g, without changing the result. This is due to invariance of the
correlators used under the mapt, more generally under dilatations aBtl(2R) transformations.

12
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When considering states carrying nonzero momentum we tmaghange the matter part of
the above vertices. For the two strings vertex the changatier modest. In (3.25) we use the
vacuum with momentunfO;k| instead of the simple vacuug®| and integrate over the conserved
momentum. So

L 1,2, D@, DpD
<41/2‘ _ /d26p(<0;p|C,1)(2)(<0;—p|C,1)(1) (C(ol)+C(02)> e (-1) anl[an an +cn by’ 4y by ](338)
The changes in the three strings vertex are more sizableeiitheesult turns out to be

(73] = B3 / d%p® / d%6p@ / d®pY ((0; plc_160)®(0; plc_1C0) P ((0; plc_1c0) P (3.39)

(r)

3
e 3301 [Zn,mzl A Vi + 3 -1 20 Vi pS + P(Y)Végp(ﬂ o 3381 Tmeon1 b XY 5 ( p(r>>
1

where the coefficient are as follows.
Voo = v/nmNy, (3.40)

and N/, are the Neumann coefficients given above (3.36). \Ifjeare related to the zero mode
Neumann coefficientsl's) defined by

1 /dw 1 1

== = — _ 3.41
Yo =1 2w =g 0 ) G40

by the relation

rs n s 2 in
Vio = (—=1)"v2n | Noy — an (3.42)
Finally
27
ab
= — A4

This is motivated by one of the most surprising and mysteriaspects of SFT, namely its un-
derlying integrable structure: the matter Neumann coeifits obey the Hirota equations of the
dispersionless Toda lattice hierarchy.

From (3.383.39) one can compute the corresponding ket esipres for the vertices, by taking
thebpz conjugate. Using them one can do more than computing theaS#dn, one can compute
the star product of any two string fieldi;, W,. To this end compute

(Wa| = (73]|W1)1|W2)2
This is thebpzconjugate o1 x W,. Alternatively computeWs||752).

3.4 Gauge symmetry and gauge fixing

Above we have pointed out that the action (3.1) is invariartter the gauge transformation

W= QAo+ WxNg— Ngx ¥ (3.44)

13
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In this formula we have emphasized with a subscript 0 thetfadt\o has zero ghost number. We
remark that (3.44) is the infinitesimal version of

® & (Q 1 W) (3.45)

In order to limit the complexity of the formulas we had befii@rthis huge gauge freedom. This is
usually done by choosing the Siegel gauge, i.e. imposingdhditionbg|¥) = 0.

We will see that this works very well and, in fact, correspsmalthe Lorenz gauge in the field
theory limit. Here we would like to point out, however, thitannot be as easily implemented with
the Faddeev-Popov method as the Lorenz gauge in field theoiy,s reducible. If we change

No— No+WxA_1+ANA_1xW¥
oW in (3.44) does not change@W¥ + W W = 0. The same is true for any transformation
Afn — Afn + l'l',‘k/\fnf:l_ + (_1)[']/\7”71* LIJ

where —n is the ghost number. Therefore, due to reducibility, thelitranal FP method of in-
troducing 1= Agp(P) [ 2N\ (F (Wa)), whereF (W) = 0 is a linear gauge fixing, does not work
properly because it fixes the gauge freedom only partiallg.néed the BV approach.

The action (3.1) has indeed been quantized with the BV met@bdosing the Siegel gauge,
i.e. imposing the conditiohp|W) = 0 to fix the enormous gauge symmetry (3.3), the kinetic term
becomes particularly simple and can be easily inverted ddyre a free propagatdpl, 1 This
allows one to define the perturbative series and relevanirRan rules. 0-th and 1-st order am-
plitudes for tachyons have been computed. Putting the readtézgs on shell, they reproduce the
corresponding first quantized amplitudes, in particular¥eneziano amplitude. This is an impor-
tant check, but of course now one has an unambiguous way tputenoff-shell expressions for
the amplitudes, virtually to any perturbative order. Wisatriore important, one should remember
that the first quantized amplitudes are integrated over theéuthspace of the appropriate Riemann
surfaces corresponding to the given perturbative ordes. fir from obvious a priori that the per-
turbative OSFT reproduces the same procedure. However fotie anost remarkable results in
this context was the proof that it fully ‘covers’ the modytiexe of Riemann surfaces and it does it
only once. This is in contrast to the analogous problem isadiostring field theory, where a third
order interaction is not sufficient to cover the full modybage, and one is obliged to introduce
higher order vertices.

In conclusion the OSFT introduced in this section reprodutte results of first quantized
string theory. Its added value with respect to the lattewisamly that it allows us to compute off-
shell amplitudes, but especially that it puts us in the ciowlito tackle nonperturbative problems.
The first and up to now most remarkable result of SFT is thdrreat oftachyon condensation.

4. The tachyon condensation

Following the rules of the previous section it is possibléavorable cases to explicitly com-
pute the action (3.1). For instance, in the low energy limhere the string field may be assumed
to take the form (3.8), the action becomes an integratedtitmé& of an infinite series of local

14
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polynomials (kinetic and potential terms) of the fields iweal in (3.8). To limit the number of
terms one has to limit once again the gigantic BRST symmédt®@®FT, by choosing a gauge,
which is usually the Feynman—Siegel gauge: this means tadimit ourselves to the states that
satisfy the conditionbp|W) = 0. As an example, let us write down the first few terms of thetmos
general string field

Y- /d26k (B + Ay (o™, + §(b_1co+ By (Kak 0¥y + .. )calOik)  (4.2)

The Feynman-Siegel gauge eliminates herm. Still the action with all the infinite sets of fields
contained i remains unwieldy. As it turns out, it makes sense to limitribenber of fields irt¥,
provided we insert all the fields up to a certain level. Thisafledlevel truncationand turns out
to be an excellent approximation and regularization schiensé-T. Let us truncate the string field
and keep only the first two terms in the RHS. For instance Heikinetic term of the action we get

2 1. N 2
3011Q¥2 = [ e B0 T390 + Au(— G AW+,

Altogether, after Fourier anti-transforming, one obtains

3
go/d26 < ~0,p0* p+ = <p2——a“Ava“AV B

-5 (dudv(pA“A"Jr(pd AV, AH — 2au¢avA“AV)) (4.2)

where agair3 = 37\4@. One can see the kinetic term and the ‘wrong’ mass term fotatieyon, as
well as the gauge-fixed kinetic term for the gauge field. THddiappearing in the interaction term
carry a hat. This means

f(x) = elNPI9ud" £ (x)

for any local fieldf. Incidentally, the fact that the interaction is formulatederms of hatted fields
is a manifestation of the strong (exponential) converggmogerties of string theory in the UV.

We would like now to single out the potential in the actior2j4and study its minimum. For
a static configuration the potential coincides withthe action. But this is not enough. We must
remember that this theory is supposed to represent the apegssattached to a space—filling D—
brane, the D25-brane. So the total energy is the sum of threeleaergy plus the energy of the
string modes. The brane has its intrinsic energy, whoseityeissthe tensiont, which in our
conventional unitsq’ = 1), is given byt = Flgg The string modes are represented by the action
and, as we have just said, in a static situation their totaiggnis given by— the action itself. We
wish to study this system in the vacuum. Lorentz invariareoplires that only scalars can acquire
a VEV. Therefore in (4.2) one must set all the derivatives.t8€kting(@) = t, what remains of the
action (divided by the total volume) can be written in termhghe functionu(t) as follows

—\lj’zru() 2m1, (——t2+ B3t3> (4.3)

This is the total tachyon potential energy density extdtem the action. It is proportional to
(3.22).
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The total energy of the system will be given by the sum of (4r8) the D25—brane tension
U(t)=r1(1+u(t)) (4.4)

This potential is cubic, it goes teoo for positive large and to—oo for negative large and it has a
local maximum and and a local minimum, which are easily deieed. The former is d@t= 0, the
latter is given by

1
ﬁ?

Of course this is a first approximation result. Consideriighhr level scalar fields (there are
infinite many of them) the minimum will be modified. The nuneatievaluations performed within
the level truncation scheme indicate that the true minimféith@potential corresponds to= —1,
i.e. U = 0. This coincides with the first conjecture by Sen.

t=ty= u(t) ~ —0.684 (4.5)

Figure 3: The tachyon potential

In order to describe the physics of tachyon condensatioq®déarmulated three conjectures.
The first claims that at the minimum of the potential the tgemiust be stable, so the energy of
the space-filling brane must compensate exactly the endrthestrings. The second conjecture
concerns the features of the tachyon condensation vacuuthisi vacuum there cannot be open
string modes, i.e. it is the vacuum of an entirely differeygtem, that of closed strings. The third
conjecture is a consequence of this statement: one showtdlbeo find in the new vacuum the
physics of closed string thedry

The numerical results mentioned above were the first evieléinat Sen'’s first conjecture is
correct. Also the other conjectures got support from nucatrimethods or via cousin theories,
such as BCFT. After this evidence the real challenge was tbfisolution of the SFT equation of
motion. The turning point in this field came in 2005 with thefmnalytic tachyon vacuum solution
found by Schnabl [11].

10ften in the literature the second and third conjecture atied third and second, respectively. To me this seems
to be logically reversed.
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5. The analytic solution

The equation of motion derived from (3.1) is
QY+WxWwW=0 (5.1)

In this section | will explain how the first analytic solutiaf this equation was found, [11]. This
solution is a string state that specifies the (locally) staldcuum, to be identified as the closed
string vacuum. In the oversimplified language of the figurei(3vould correspond td¥y) =
toc1|0), but it actually identifies the vev of all the infinite many kodields that feature in the most
general string field.

5.1 The new coordinate and the wedge states

The breakthrough was facilitated by an improvement in th¢heraatical language of SFT.
One can now say, in hindsight, that for many years any pregness thwarted by the complexity
of the star product. A simple change of geometrical persgesuddenly made everything easier,
the star algebra took up a very simple form (see below). Tlengdrical improvement consists in
the arctan map. This map

¢ (z) = arctan(z)

maps the unit semidisk in theplane to the semi-infinite shaded area in thelane, see fig.4.
The complementary part of the semidisk in the upper kgifane is mapped to the unshaded
semi-infinite rectangles on the two side of the latter, the &xternal sides being identified as
they correspond to the point at in the UHP. The resulting figure is a semi-infinite cylinder of
circumferencer.

L&

K

AR

-1 1 7, 7, ", 7,

Figure 4: The arctan map

The first simple application of this frame is to wedge sta®sdge states are particular surface
states. The latter are states defined as follows: take anyfrfrapn the UHP to a Riemann surface
2, for instance the unit disk; we will denote ¥ the surfacex minus the image’” of the unit
halfdisk in it. Let us consider any fielg and the stategp) = ¢(0)|0) in the Fock space of the
theory; then the surface std® is defined by

(@9l =(lofog)s (5.2)
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The definition is implicit and may seem at first not very hartalyt one can reduce the calculation
to very simple test stateg), much in the same way as we have done in calculating the Neuman
coefficients for the two and three strings vertices.

It follows that a surface state can be written as a squeezde @presented by a Neumann
matrix Shm, both for the matter and the ghost part. For instance

|S) = e 2 Imn-10dSmad o) (5.3)
where
dz 1
257 P o Wmazawm(f(z) —f(w)) (5.4)

The star product of two surface states has a simple geomldtrterpretation. As we have seen,
we associate to each state a unit disk with the image of thesaniidisk and the complementary
Z patch in it. Remove the patc#, from the unit disk>, associated to the second state, Eut
along the right half string in the boundary 6#; and glue it with the left half string af7. The
right half string of.7# is glued to%, in such a way to form a new unit disk. The resulting surface
(and map) defines the star product

Wedges states are particularly simple. Their defining fionstare

fi(z) =tan <§ arctar(z)> =ht (h(z)%> (5.5)

where, for simplicity, we take to be a positive integer. This map first rotates the unit seskid
anticlockwise by 90 (see the right hand side of fig.1), then shrinks it to a wedgmgfe , finally
rotates it back clockwise by 90Instead of usind,, which maps to the UHP, we can stop midway
atw = h(z)%, which maps to a wedge in the unit disk in thglane. Usingyv = h(z)% it is easy to
compute the Neumann matrix of any wedge state.

The star product of wedge states is characterized by an akmeecursion relation

Ir)x|s) =|r+s—1) (5.6)

In particular we see that calling) the result of taking — o in |r), we recove=? = =. This may
seem formal, but it can be shown to give rise precisely toliierswhich is a surface state defined
by a wedge of vanishing angle (see below for a more accurdit@ton). So, in particular, wedge
states approximate the sliver.

The star product of wedge states takes a particularly sifigpie in the arctan frame. In this
new representation a wedge stateis represented by a cylinder in tifeUHP of circumference
7, see fig.5. Itis in fact an infinite strip in the imaginary ditien of widthr 7. It is formed by
two external strips of width each (the ruled strips in the figure), and an internal strigviokth
(r—1)7. The rightmost and leftmost sides are identified so as to #oaylinder. The star product
of two such states is simply obtained by dropping the rigtgimoled strip of the first state and the
leftmost ruled strip of the second and gluing the two cutreyéirs along the dashed line in fig.5. In
this language the wedge state witk- 2 corresponds to the vacuu® and the state with= 1 to
the identity statel ).
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Figure 5: Star product of two wedge statE® « |2) = |4)

Pure wedge states, as we have just described them, are najletm describe the analytic
solution we are looking for. Later on we will need wedge statéth insertion of operators in the
real diameter of the halfdisk, that is wedge states withiseiition of an operator at some point of
the unruled patches. The) wedge state itself can be seen as such.

A
m=(2) "o 57)

where % will be introduced in a moment.

These states will play a major role in what follows. What wecdh@ow is exploit the new
coordinateé = arctarz to get a few basic definitions and relations. If we map a prynugoerator
0" of weighth to the arctan frame we have

oMNE =&,  z=1f(&) =tan§)

The corresponding modes in the expansidi{z) = 5, 60z"~" will transform according to

oh = ;f %f(z)””"l(f’(f(z))h’lz’m’h (5.8)
For instance, denoting witly;, the Virasoro generators in the arctan frame, we get
L= Zd—;(1+ 7) (arctar(2))""1 T (2) (5.9)
In particular
Lai=Li+L1=K (5.10)
% = Lo+ kilzfl%zk;ll_z'( (5.11)

They satisfy[-%h, %m| = (n—m)Zhm. The central charge is obviously zero because we are in
critical dimensions.
The hermitean conjugates 6f;, are

dz

gnT: ﬁ(

1+ 2) (arccotz))" T (2) (5.12)
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A remarkable commutator is

(%, 1] = % (1+7) (arctar(z) +arccot2)) T(2) = %o + .2, (5.13)
We have
-z 0(z) <0
arctar(z) + arcco{z) = { r 2 1) >0 (5.14)

This function has a branch cut along the imaginary axis freinto i due to arctafz) and a branch
cut fromi to +o and from—i to —c due to arccdiz). The step function (5.14) suggests that we
split the integration contour in left and right part, as in@igThat is we can write

CRl CL

Figure 6: Star product of two wedge statg® « |2) = |4)

T

Go= Lo+ LT = 5 (K —KE) (5.15)
where
dz
kR=T [ S22 1
A U (5.16)
These objects have remarkable properties
(%o, %0 = %o, [ %, L] =L (5.17)

and, due to the contours where they are defill’@'d? are left(right) derivations with respect to the
star product

KI(Wx®) = (KIW)«®D,  KR(WxP) =W (KFD)
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In other wordsK} does not ‘feel’ the right hand part of the string; the oppoéir KR (the left and
right part are defined by looking from the poinico in the arctan frame). Here are more explicit
expressions fok; "

KlL = %K1+%(go+goT>

KR = %Kl—%(.fﬁgg)

whereK; =Ly +L_;3.
Since in critical dimensions the ghost fidit) has the same conformal propertiesidg), we
can introduces quantitie®, B, B, Bf analogous tazp, Ky, KL, KR:

00 2(_1)k+1
PBo = bo+ —————by
kzl 4k2 —1
Bi =by+b_1
and
1 1
L_ — - T
B, = 251+n(@0+%0)
1 1
R_ = = T
BY — S8 n(‘%J“%)O)

B} (BF) are also left (right) derivation with respect to the stavdarct.
By denotingcthe ghost field in the arctan frame(§) = Flzzc(z)) one can demonstrate the
following commutators
[Q> Blﬂ = KlLv [Qv KlL] =0, [BlLKll_] =0

where6 represents the step function.
Using these new symbols the wedge states can be writtemeogsir), also as

In) = ez (DK ) (5.19)

From this equation and (5.7) we see that it makes sense tideonsa real variable, and therefore
also to differentiate with respect to it. We can also intetgb.19) by saying thai(lL acting on|l)
generate a cylinder of length.

5.2 The solution

To appreciate the subsequent solutions it is useful to dendirst pure gauge solutions. A
pure gauge solution can be written

Wy =T"A)QI(A) (5.20)

wherel is an invertible expression of the gauge paramAtdor instance

rA) = —= —ZJ)\”/\” (5.21)

1-AN
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with A a numerical parameter. Then one can write

1 00
Vo= (1-ANQg 57 = 3 AT U= (QUA™ (5.22)

Now if the series is convergent one has
1S~ (0 Wg(QWg +W5)) =0

for A =0, sinceWy(A =0) = 0. ThusS= 0 for anyA, becaus@QW¥q+ ng = 0. Therefore the energy
of this solution vanishes, because for a static solutiorettergy coincides with the negative of the
action.

However, as it turns out, the series (5.21) may not convergé £ 1 and the correspondirig
may not be interpretable as a gauge transformation. Schrsablition was constructed exploiting
this fact. First of all the gauge fixing i%o|W) = 0, rather than the Feynman-Siegel one. Then one
chooses\ = Blc;|0). After some calculations one finds

n = QA" = c0) s KB~ 1) xc1[0) = -, (5.23)
where
@ = 1/0) + Bre? "KL |) ¢ |0)

prime denotes derivative with respectioT he statap, is made out of wedges states with insertions
of the fieldc and ofB. In particular forn = 0 we have

Yo = (cBc)(0)|0),  ph= (cBiK;c)(0)[0)

Finally the solution is

N
Y= lim (n; W w) (5.24)

The second term-yy is added only for regularization purposes.

5.3 Sen’s first and second conjectures

From the equation of motion we get
(Y. QW) = —(Y,¥x¥) (5.25)

This equation has to be explicitly checked over the soluf®24) — a rather nontrivial task —,
because one of the subtleties of SFT is that, evgH)ifis a solution to the equation of motion, it is
not automatically guaranteed that (5.25) holds.

On the other hand, from the explicit form of the solution ore¢sg

3
(W.QW) = ——
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Therefore, finally, the total energy of the string moded/isqthe total 26—th dimensional volume):

S 1 /1

1
E- G- <§<LIJ,QHJ>+§(HJ,LIJ*HJ>> _

1

o (5.26)

which is precisely the negative of the D25—-brane tension

Let us now pass to briefly illustrate the proof of the secongjexture [12]. The purpose is to
show that the cohomology about Schnabl’s solution is triReelabeling Schnabl’s solution 8,
we are looking now for solutions to (5.1) of the tylg + (, linearized ony. It is easy to see that
the relevant (linearized) equation of motion is

2P =QY+Woxy—(—1)¥yxwy (5.27)

This defines a new BRST operatét (indeed.22 = 0) and defines the cohomology around Schn-
abl’'s solution. The purpose is to prove that this cohomolisgympty.
Let us introduce the symbol

W =1r+1)
and define the state
2 1
A:——B/ W dr (5.28)
m Jo

Here we make use of the fact that wedge states can be definadyfoeal label, not just for an
integralr. It is possible to prove that

A=l (5.29)

where the RHS represents the identity state.
Now suppose thap satisfies2 = 0. Then, using the previous results, we get

D(Ax ) = (QA) 5P — Ax (29) = 1) =

which means thatp is BRST trivial. This is a very general result. It implies rantly that the
cohomology of ghost number 1 is trivial (i.e., there is no gibgl perturbative string mode in the
new vacuum), but that the cohomology is trivial for any ghasiber state.

5.4 Another analytic tachyon vacuum solution

After the first solution presented above another analytiotem was subsequently found by
Erler and Schnabl. This second solution is simpler and apéme way to new developments. For
this reason | will describe it in detail. First of all | will troduce a new tool, th&,B, c algebra,
whose simplifying virtues will be evident in a moment.

Let us introduce the symbol§, B, c which are obtained by acting witk}, B} and the fieldc
on the identity statd ):

_ _ Mgt _¢oft
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They obey the remarkably simple algebra
[K,B] =0, [K,c] =dc, {B,c} =1, {B,dc} =0 (5.31)

where the product is understood to be the star product angregents|l). In this algebraQ
operates as follows

QB=K, Qc=cdc (5.32)

It is also useful to recall that) = e~ 2K |0), so that|0) = eX.
The Erler-Schnabl, [13], solution (ES) is constructed Hiyfaxploiting the simplicity of this
algebra with operators. The ansatz is

c(1+K)Bc= c—chdc (5.33)

Yo = 17K

1+K

Since, using th&, B, c algebra, it is easy to show that

1 1
QL'JO - CKCK——|—1 and wowo - _CKCK——|—1
it is obvious thatyy is a solution to (5.1).
The energy of this solution turns out to be the correct oneddsjecture)

S 1

1

1

3<w,w*w>> _ 1

—— 5.34
T (5.34)
It is also possible to define a homotopy operaioe K%l, which satisfies the propertg A =1,

where as above
29 = QY +Woxy—(—1) "y Wo

is the BRST operator at the tachyon vacuum. As we saw abogenblies that the cohomology
around the tachyon vacuum is trivial (2nd conjecture).

It is instructive to compute the energy of the ES solutioningthe equation of motion and
the Schwinger representation

/ dte t<+D) (5.35)

we have
E = ! KB L K L 5.36
[Wo] = <QUo>Q‘,Uo> <(C+C C)K+1C CK+1> (5.36)

ity 4K 6K K K
— 6/0 dt;dte ™ t2<(ce “feKee ) ., — (Q(Bce MeKee ™ )>C[1+t2)
The second term vanishes because it is BRST exact. The firfteceewritten

(ceKeKee ™), = (e TKe(ty +tp)cKd(ta))a, o, (5.37)

24



Introduction to SFT Loriano Bonora

To evaluate this we have to start from the correspondingetator in the UHP and lift it to the
arctan frame. In the UHP we have

(c(z1)c0c(22))unp = —(z1 — 22)°
Mapping it to the cylinde€;; with the mapz — & = arctar{z) this becomes

(€(&1) €IE(&2))c, (5.38)

Mapping this to a cylinder of length i.e. £ — %E andc'— €, one gets

(6(81) €98(E2))c, = <%>25in2 (r8 %)

from which

1 [ t1— )2 . it
E[Wo] = _6/0 dtldtze_tl‘tz( ! n22) sin? (tl +lt2>

follows. The integration is elementary and one finally ohga(5.34).
It should be noticed that also the ES solution can be formatigrded as a pure gauge solution
since

1
Bc, U l=1+-Bc

Wy = -1 —1—
o=UQU" U K+1 K

However the staté is singular due to the zero mode ¥ .

6. The third conjecture and the lump solutions

The third conjecture predicts in particular the existent&®wer dimensional solitonic solu-
tions or lumps, interpreted as Dp—branes, with 25. These solutions yield the breaking of trans-
lational symmetry and background independence. The evedfam the existence of such solutions
collected in the past years is overwhelming. It has beenilpesw find them with approximate
methods or with exact methods in related theories. In theeddgvill present a recently proposed
explicit example of analytic lump solution in OSFT.

6.1 Analytic lump solutions

In a recent paper[14], a general method has been proposddain mew exact analytic solu-
tions in open string field theory, and in particular solusdhat describe inhomogeneous tachyon
condensation. The method consists in translating an egaotmalization group (RG) flow gener-
ated in a two—dimensional world—sheet theory by a relevastaior, into the language of OSFT.
The so-constructed solution is a deformation of the ES mwlutescribed above. It has been shown
in [14] that, if the operator has suitable properties, theatsm will describe tachyon condensation
in specific space directions, thus representing the comdiensof a lower dimensional brane. In
the following, after describing the general method, we Waltus on a particular solution, gener-
ated by an exact RG flow first analyzed by Witten[15]. On thasbakthe analysis carried out in
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the framework of 2D CFT in [16], we expect it to describe a Offdne, with the correct ratio of
tension with respect to the starting D25 brane.

Let us see first the general recipe to construct such kindroplgolutions. To start with we
enlarge theK, B, c algebra by adding a (relevant) matter operator

1
<p=¢(§> ). (6.1)
with the properties

[c,9]=0, [B,g]=0  [K,¢g=0p, Qo=cdp+dcip. (6.2)

It can be easily proven that

1

=cp————(@p—0¢p)Bcd 6.3
Yo = CQ K+ qo(q) ¢)Bcdc (6.3)

does indeed satisfy (formally, see below) the OSFT equationotion

QUyp+ WeWy =0 (6.4)
It is clear that (6.3) is a deformation of the Erler—Schnadilison, which can be recovered for
p=1.
After some algebraic manipulations one can show that

B B B
g‘”‘”KJr(p:QKJr(er{w"”KJr(p}:l'

So, unless the string fielg%p is singular, it defines a homotopy operator and the solut@as h
trivial cohomology, which is the defining property of theltiggon vacuum [12]. On the other hand,
in order for the solution to be well defined, the quan%((p— d0¢) should be well defined.
Moreover, in order to be able to show that (6.3) satisfies theigon of motion, one needs+ @
to be invertible.

In full generality we thus have a new nontrivial solution if

1. g IS in some sense singular, but

2. ﬁp((p— d¢) is regular and

3 kg K+o) =1
These conditions seem to be hard to satisfy: for instakice,@ may not be invertible, one needs
a regularization. It is indeed so without adequate spetifica. This problem was discussed in
[17, 19], where it was shown that the right framework is dlsttion theory, which guarantees not
only regularity of the solution but also its 'non-triviafit in the sense that if these conditions are
satisfied, it cannot fall in the same class as the ES tachywumuwa solution.

For concreteness we parametrize the worldsheet RG flowreeféo above, with a parameter

u, whereu = 0 represents the UV and= « the IR, and labelp by @, with q.—o = 0. Then we
require forg, the following properties under the coordinate rescalif(g) = §

froqu(z) = %CRU (5): (6.5)
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We will consider in the sequel a specific relevant operagpand the corresponding SFT
solution. This operator generates an exact RG flow studied/ittgn in [15], see also [16], and is
based on the operator (defined in the cylin@erof width T in the arctan frame)

@(s) = U(X?(s) +2 Inu+ 2A) (6.6)

whereA is a constant. On the unit digkwe have

T
@.(6) = u(X (9)+2In2—u+2A) 6.7)
If we set
ga(U) = <e21nf5‘"deu(x2(e)+2|n2“n+2A) o
we get
ga(u) = Z(2u)e 2Nz +A) (6.8)

whereZ(u) is the partition function of the system on the unit disk cotepuby[15]. Requiring
finiteness folu — « one getsA = y— 1+ In4m, which implies

U—oo

ga(U) = g(u) = %@r@u)e”(l—'”@“)), lim g(u) = 1 (6.9

Moreover, as it turns outp, — 5@, = udy@u(s)

The @, just introduced satisfies all the requested properties. oAtiog to [16], the corre-
sponding RG flow in BCFT reproduces the correct ratio of mietween D25 and D24 branes.
Consequentlyy, = (g, is expected to represent a D24 brane solution.

In SFT the most important gauge invariant quantity is of seuthe energy. Therefore in order
to make sure thatl, = (g, is the expected solution we must prove that its energy equélg4
brane energy.

The energy expression for the lump solution was determindd4] by evaluating a three—
point function on the cylindeCr. It equals—%3 times the following expression

(Wutpul) = / dtydtzdtzSo(ty, ta, ta)u g(uT){ ( _ %(TU)T) >3
Oy 2 2 2
+5(- 200 (a3 + 3 () 1 6 (B
+Gaur (1) G (T )%(@)} (610

HereT =t; +1t,+t3 andg(u) is as above, whil&,(6) represents the boundary-to-boundary cor-
relator first determined by Witten[15]:

cogko)
+2 Z k+u
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Finally &5(t1,t2,t3) represents the ghost three—point functioi€in

Eo(t,1,t3) = (BAAC(ty +1)Ic(ty) I6(0)) g, = —% sin% sinw sin?
A remarkable property of (6.10) is that it does not dependuionin factu can be absorbed in a
redefinition of variable — ut, i = 1,2,3, and disappears from the expression.

The integral in (6.10) is well defined in the IR Yery large, setting = 2uT) but has an UV
(s~ 0) singularity, which must be subtracted away. Once thiseddine expression (6.10) can
be numerically computed, the result beid.069. This is not the expected result, but this is not
surprising, for the result depends on the UV subtraction axemade. Therefore we cannot assign
to it any physical significance. To get a meaningful resultrmest return to the very meaning of
Sen’s third conjecture, which says thiae lump solution is a solution of the theory on the tachyon
condensation vacuumTherefore we must measure the energy of our solution wispeaet to
the tachyon condensation vacuum. Simultaneously thetimegudnergy must be a subtraction-
independent quantity because only to a subtraction-intigr® quantity can a physical meaning
be assigned. Both requirements have been satisfied in [1fi¢ifollowing way.

First a new solution to the EOM, depending on a paramgtbas been introduced

Yt =cle+¢)— (@qu+¢€—9dq,)Bcdc. (6.11)

K+@+¢€
in the limit ¢ — 0. This limit will be mostly understood from now on. The eneaf (6.11) (after
the same UV subtraction as in the previous case) is (nuniigli€a Since (unlike the previous
case) the presence of the parametprevents the IR transition to a new critical point, it is dbles

to assume that ligy.,o ¢ represents the tachyon condensation vacuum solutionhér aiords it is
gauge equivalent to the ES, solution. Usingaisolution to the EOM at the tachyon condensation
vacuumhas been obtained. The equation of motion at the tachyoruvacs

20+ 0P =0, where2® =Qd+ Yid+ dY. (6.12)
One can easily show that
Po = (u— Y (6.13)
is a solution to (6.12). The action at the tachyon vacuum%i,@d), ®) — %(CD, ®d). Thus the
energy ofdg is
1

E[do] = 6<(DO’ DoPy)

1
= _6 [<'~l/w QUu‘,Uu> - <4’Sa LIISLIIS> - 3<L»U|j:7 WuWu> +3<'~l/w WSWS>] (6-14)

The UV subtractions necessary for each correlator at the BHiBis equation are always the
same, therefore they cancel out and the final result is sttlraindependent. A final bonus of
this procedure is that the final result can be derived puregjydically andE[®g] turns out to be
precisely the D24-brane energy. With the conventions of, [thrs is

1
212
In [18] the same result was extended to Dp-brane lump salsitior anyp.

Tp2a= (6.15)
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7. Comments

The three conjectures formulated by Ashoke Sen about fifyea@ns ago have been demon-
strated beyond doubt in the framework of Witten’s OSFT. T&isertainly a remarkable result, but
from the point of view of OSFT it is only a beginning. The catreess of the three conjectures
confirms that open string theory knows about closed striegith As anticipated in the introduc-
tion this was somehow expected. Even the first quantized spigry theory contains at one loop
information about the closed string spectrum. However waahave learnt from OSFT is much
richer information. Even at the classical level (tree levethe perturbative expansion) [10], pro-
vided we consider exact analytic solutions (which correspm specific boundary CFT's, i.e. full
expansions in the’ parameter), we can get information about closed stringrihelhe question
is now how rich and complete this information is. The exangdl&dS/CFT suggests that open
and closed strings are two different description of the sanderlying physics. On the other hand,
the study of string field theory seems to suggest that thesense asymmetry between the two
descriptions. If field theory is the right language for plegsihe open string description is favored.
OSFT seems to respond to the best expectations and thengxgitestions we are left with at the
end of this exposition are: how far can we go in the descriptibclosed string theory by means
of open strings? is there a way, for instance, to represeackbioles in the open string theory lan-
guage? Even more important, can we recognize in this laregbagonized solutions representing
fermions? It is clear however that this is possible only ifhie solutions we insert matter, as was
done in the last section. Without it the spectrum of solgitrat we obtain is too poor.
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