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The intent of this paper is to prove a coupled fixed point theorem for two pairs of compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous) mappings, satisfying 𝜙-contractive conditions in a fuzzy metric space. We
also furnish some illustrative examples to support our results.

1. Introduction

The evolution of fuzzy mathematics commenced with the
introduction of the notion of fuzzy sets by Zadeh [1],
where the concept of uncertainty was introduced in the
theory of sets, in a nonprobabilistic manner. Fuzzy set
theory has applications in applied sciences such as mathe-
matical programming, model theory, engineering sciences,
image processing, and control theory. In 1975, Kramosil and
Michalek [2] introduced the concept of fuzzy metric space as
a generalization of the statistical (probabilistic) metric space.
Afterwards, Grabiec [3] defined the completeness of the fuzzy
metric space and extended the Banach contraction principle
to fuzzy metric spaces. Since then, many authors contributed
to the development of this theory, also in relation to fixed
point theory (e.g., [4–9]).

Mishra et al. [10] extended the notion of compatible map-
pings (introduced by Jungck [11] in metric spaces) to fuzzy
metric spaces and proved common fixed point theorems
in presence of continuity of at least one of the mappings,
completeness of the underlying space, and containment of
the ranges amongst involved mappings. Further, Singh and
Jain [12] weakened the notion of compatibility by using the

notion ofweakly compatible,mappings in fuzzymetric spaces
and showed that every pair of compatible mappings is weakly
compatible but converse is not true. Inspired by Bouhadjera
and Godet-Thobie [13, 14], Gopal and Imdad [15] extended
the notions of subcompatibility and subsequential continuity
to fuzzy metric spaces and proved fixed point theorems using
these notions together due to Imdad et al. [16]. In recent past,
several authors proved various fixed point theorems employ-
ing more general contractive conditions (e.g., [17–26]).

On the other hand, Bhaskar and Lakshmikantham [27]
and Lakshmikantham and Ćirić [28] gave some coupled fixed
point theorems in partially ordered metric spaces (see also
[29–31]). In 2010, Sedghi et al. [32] proved common coupled
fixed point theorems in fuzzy metric spaces for commuting
mappings. Motivated by the results of [33], Hu [34] proved
a coupled fixed point theorem for compatible mappings
satisfying 𝜙-contractive conditions in fuzzy metric spaces
with continuous t-norm of H-type and generalized the result
of Sedghi et al. [32]. In an interesting note, Zhu and Xiao [35]
showed that the results contained in Sedghi et al. [32] are not
true in their present form.

Inspired by the work of Zhu and Xiao [35], we prove
coupled common fixed point theorems for two pairs of
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mappings satisfying a general contractive condition in fuzzy
metric spaces, by using the notions of compatibility and
subsequential continuity (alternately subcompatibility and
reciprocal continuity). Our results improve many known
common coupled fixed point theorems available in the
existing literature.We support our resultswith two illustrative
examples.

2. Preliminaries

In this section, we collect some basic notions and results. In
the sequel R+ will denote the set of all positive real numbers
while N will denote the set of natural numbers.

Definition 1 (see [1]). Let𝑋 be any set. A fuzzy set 𝐴 in𝑋 is a
function with domain𝑋 and values in [0, 1].

Definition 2 (see [36]). A binary operation ∗ : [0, 1] ×
[0, 1] → [0, 1] is a continuous 𝑡-norm if ∗ satisfies the
following conditions:

(a) ∗ is commutative and associative;
(b) ∗ is continuous;
(c) 𝑎 ∗ 1 = 𝑎 for all 𝑎 ∈ [0, 1];
(d) 𝑎∗𝑏 ≤ 𝑐∗𝑑whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈

[0, 1].

Definition 3 (see [37]). One says that a 𝑡-norm ∗ is of H-type
if the family {∗𝑛} of its iterates is equicontinuous at 𝑥 = 1;
that is, for any 𝜆 ∈ (0, 1), there exists 𝛿(𝜆) ∈ (0, 1) such that
𝑥 > 1 − 𝛿 implies ∗𝑛(𝑥) > 1 − 𝜆, for all 𝑛 ∈ N.

The 𝑡-norm ∗
𝑚
= min{𝑎, 𝑏} for all 𝑎, 𝑏 ∈ [0, 1] is an

example of 𝑡-norm of H-type, but there are some other 𝑡-
norms ∗ of H-type (see [37]).

Definition 4 (see [2]). A 3-tuple (𝑋,𝑀, ∗) is said to be a
fuzzy metric space if 𝑋 is an arbitrary nonempty set, ∗ is a
continuous 𝑡-norm, and 𝑀 is a fuzzy set in 𝑋2 × (0, +∞)
satisfying the following conditions, for each 𝑥, 𝑦, 𝑧 ∈ 𝑋 and
𝑡, 𝑠 > 0:

(a) 𝑀(𝑥, 𝑦, 𝑡) > 0;
(b) 𝑀(𝑥, 𝑦, 𝑡) = 1 for all 𝑡 > 0 if and only if 𝑥 = 𝑦;
(c) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡);
(d) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠);
(e) 𝑀(𝑥, 𝑦, ⋅) : (0,∞) → (0, 1] is continuous.

Example 5 (see [7]). Let (𝑋, 𝑑) be a metric space. Define the
𝑡-norm 𝑎 ∗ 𝑏 = 𝑎𝑏 for all 𝑎, 𝑏 ∈ [0, 1], and, for all 𝑥, 𝑦 ∈ 𝑋
and 𝑡 > 0,

𝑀(𝑥, 𝑦, 𝑡) =
𝑡

𝑡 + 𝑑 (𝑥, 𝑦)
. (1)

Then (𝑋,𝑀, ∗) is a fuzzy metric space, and the fuzzy metric
𝑀 induced by the metric 𝑑 is often referred, as the standard
fuzzy metric.

Example 6 (see [32]). Let (𝑋, 𝑑) be a metric space and 𝜓 be
an increasing and continuous function from R+ into (0, 1)
such that lim

𝑠→∞
𝜓(𝑠) = 1. Four typical examples of these

functions are 𝜓(𝑠) = 𝑠/(𝑠 + 1), 𝜓(𝑠) = sin(𝜋𝑠/(2𝑠 + 1)),
𝜓(𝑠) = 1 − 𝑒−𝑠, and 𝜓(𝑠) = 𝑒−1/𝑠. Let 𝑎 ∗ 𝑏 = 𝑎𝑏 for all
𝑎, 𝑏 ∈ [0, 1], and, for each 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0, define

𝑀(𝑥, 𝑦, 𝑡) = [𝜓 (𝑡)]
𝑑(𝑥,𝑦)

. (2)

It is easy to see that (𝑋,𝑀, ∗) is a fuzzy metric space.

Definition 7 (see [34]). DefineΦ = {𝜙 : R+ → R+} such that
𝜙 ∈ Φ satisfies the following conditions:

(𝜙-1) 𝜙 is nondecreasing;
(𝜙-2) 𝜙 is upper semicontinuous from the right;
(𝜙-3) ∑∞

𝑛=0
𝜙𝑛(𝑠) < +∞ for all 𝑠 > 0, where 𝜙𝑛+1(𝑠) =

𝜙(𝜙𝑛(𝑠)), 𝑛 ∈ N.

Clearly if 𝜙 ∈ Φ, then 𝜙(𝑠) < 𝑠 for all 𝑠 > 0.

Definition 8 (see [27]). An element (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is called

(a) a coupled fixed point of the mapping 𝑓 : 𝑋×𝑋 → 𝑋
if

𝑓 (𝑥, 𝑦) = 𝑥, 𝑓 (𝑦, 𝑥) = 𝑦; (3)

(b) a coupled coincidence point of the mappings 𝑓 : 𝑋 ×
𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋 if

𝑓 (𝑥, 𝑦) = 𝑔 (𝑥) , 𝑓 (𝑦, 𝑥) = 𝑔 (𝑦) ; (4)

(c) a common coupled fixed point of the mappings 𝑓 :
𝑋 × 𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋 if

𝑥 = 𝑓 (𝑥, 𝑦) = 𝑔 (𝑥) ,

𝑦 = 𝑓 (𝑦, 𝑥) = 𝑔 (𝑦) .
(5)

Definition 9 (see [27]). An element 𝑥 ∈ 𝑋 is called a common
fixed point of the mappings 𝑓 : 𝑋×𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋
if

𝑥 = 𝑔 (𝑥) = 𝑓 (𝑥, 𝑥) . (6)

Definition 10 (see [34]). The mappings 𝑓 : 𝑋 × 𝑋 → 𝑋 and
𝑔 : 𝑋 → 𝑋 are called compatible if

lim
𝑛→∞

𝑀(𝑔𝑓 (𝑥
𝑛
, 𝑦
𝑛
) , 𝑓 (𝑔𝑥

𝑛
, 𝑔𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝑔𝑓 (𝑦
𝑛
, 𝑥
𝑛
) , 𝑓 (𝑔𝑦

𝑛
, 𝑔𝑥
𝑛
) , 𝑡) = 1,

(7)

for all 𝑡 > 0, whenever {𝑥
𝑛
} and {𝑦

𝑛
} are sequences in𝑋 such

that

lim
𝑛→∞

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑔𝑦
𝑛
= 𝛽,

(8)

for some 𝛼, 𝛽 ∈ 𝑋.
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Now we introduce the following notions.

Definition 11. Themappings𝑓 : 𝑋×𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋
are said to be reciprocally continuous if, for sequences {𝑥

𝑛
},

{𝑦
𝑛
} in𝑋, one has

lim
𝑛→∞

𝑓 (𝑔𝑥
𝑛
, 𝑔𝑦
𝑛
) = 𝑓 (𝛼, 𝛽) ,

lim
𝑛→∞

𝑔𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = 𝑔𝛼,

lim
𝑛→∞

𝑓 (𝑔𝑦
𝑛
, 𝑔𝑥
𝑛
) = 𝑓 (𝛽, 𝛼) ,

lim
𝑛→∞

𝑔𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = 𝑔𝛽,

(9)

whenever

lim
𝑛→∞

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑔𝑦
𝑛
= 𝛽,

(10)

for some 𝛼, 𝛽 ∈ 𝑋.

If two self-mappings are continuous, then they are obvi-
ously reciprocally continuous, but the converse is not true.
Moreover, in the setting of common fixed point theorems
for compatible pairs of self mappings satisfying contractive
conditions, continuity of one of the mappings implies their
reciprocal continuity but not conversely (see [38]).

Definition 12. Themappings𝑓 : 𝑋×𝑋 → 𝑋 and𝑔 : 𝑋 → 𝑋
are said to be subsequentially continuous if and only if there
exist sequences {𝑥

𝑛
}, {𝑦
𝑛
} in𝑋 such that

lim
𝑛→∞

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑔𝑦
𝑛
= 𝛽,

(11)

for some 𝛼, 𝛽 ∈ 𝑋, and

lim
𝑛→∞

𝑓 (𝑔𝑥
𝑛
, 𝑔𝑦
𝑛
) = 𝑓 (𝛼, 𝛽) ,

lim
𝑛→∞

𝑔𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = 𝑔𝛼,

lim
𝑛→∞

𝑓 (𝑔𝑦
𝑛
, 𝑔𝑥
𝑛
) = 𝑓 (𝛽, 𝛼) ,

lim
𝑛→∞

𝑔𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = 𝑔𝛽.

(12)

One can easily check that if two self mappings 𝑓 and
𝑔 are both continuous, hence also reciprocally continuous
mappings but 𝑓 and 𝑔 are not sub-sequentially continuous
(see [38, Example 1]).

Definition 13. The mappings 𝑓 : 𝑋 × 𝑋 → 𝑋 and 𝑔 :
𝑋 → 𝑋 are said to be subcompatible if and only if there
exist sequences {𝑥

𝑛
}, {𝑦
𝑛
} in𝑋 such that

lim
𝑛→∞

𝑓 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑔𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝑓 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑔𝑦
𝑛
= 𝛽,

(13)

for some 𝛼, 𝛽 ∈ 𝑋, and

lim
𝑛→∞

𝑀(𝑓 (𝑔𝑥
𝑛
, 𝑔𝑦
𝑛
) , 𝑔𝑓 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝑓 (𝑔𝑦
𝑛
, 𝑔𝑥
𝑛
) , 𝑔𝑓 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1,

(14)

for all 𝑡 > 0.

3. Results

In this section, we state and prove our fixed point results.

Theorem 14. Let (𝑋,𝑀, ∗) be a fuzzy metric space, where ∗
is a continuous t-norm of H-type such that 𝑀(𝑥, 𝑦, 𝑡) → 1
as 𝑡 → ∞, for all 𝑥, 𝑦 ∈ 𝑋. Let 𝐴, 𝐵 : 𝑋 × 𝑋 → 𝑋 and
𝑆, 𝑇 : 𝑋 → 𝑋 be four mappings such that

(a) the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are compatible and subse-
quentially continuous;

(b) there exists 𝜙 ∈ Φ such that

𝑀(𝐴 (𝑥, 𝑦) , 𝐵 (𝑢, V) , 𝜙 (𝑡))

≥ 𝑀 (𝑆𝑥, 𝑇𝑢, 𝑡) ∗ 𝑀(𝑆𝑦, 𝑇V, 𝑡) ,
(15)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋 and 𝑡 > 0.

Then there exists a unique point 𝛼 in 𝑋 such that 𝛼 = 𝑆𝛼 =
𝑇𝛼 = 𝐴(𝛼, 𝛼) = 𝐵(𝛼, 𝛼).

Proof. Since the mappings 𝐴 and 𝑆 are subsequentially
continuous and compatible, there exist sequences {𝑥

𝑛
}, {𝑦
𝑛
}

in𝑋 such that

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = lim
𝑛→∞

𝑆𝑥
𝑛
= 𝛼,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = lim
𝑛→∞

𝑆𝑦
𝑛
= 𝛽,

(16)

for all 𝛼, 𝛽 ∈ 𝑋, and

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1,

(17)

that is 𝐴(𝛼, 𝛽) = 𝑆𝛼 and 𝐴(𝛽, 𝛼) = 𝑆𝛽. Similarly, with respect
to the pair (𝐵, 𝑇), there exist sequences {𝑥󸀠

𝑛
}, {𝑦󸀠
𝑛
} in 𝑋 such

that

lim
𝑛→∞

𝐵 (𝑥
󸀠

𝑛
, 𝑦
󸀠

𝑛
) = lim
𝑛→∞

𝑇𝑥
󸀠

𝑛
= 𝛼
󸀠

,

lim
𝑛→∞

𝐵 (𝑦
󸀠

𝑛
, 𝑥
󸀠

𝑛
) = lim
𝑛→∞

𝑇𝑦
󸀠

𝑛
= 𝛽
󸀠

,
(18)

for all 𝛼󸀠, 𝛽󸀠 ∈ 𝑋, and

lim
𝑛→∞

𝑀(𝐵 (𝑇𝑥
󸀠

𝑛
, 𝑇𝑦
󸀠

𝑛
) , 𝑇𝐵 (𝑥

󸀠

𝑛
, 𝑦
󸀠

𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐵 (𝑇𝑦
󸀠

𝑛
, 𝑇𝑥
󸀠

𝑛
) , 𝑇𝐵 (𝑦

󸀠

𝑛
, 𝑥
󸀠

𝑛
) , 𝑡) = 1,

(19)

that is 𝐵(𝛼󸀠, 𝛽󸀠) = 𝑇𝛼󸀠 and 𝐵(𝛽󸀠, 𝛼󸀠) = 𝑇𝛽󸀠. Hence (𝛼, 𝛽) ∈
𝑋 × 𝑋 is a coupled coincidence point of the pair (𝐴, 𝑆),
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whereas (𝛼󸀠, 𝛽󸀠) ∈ 𝑋 × 𝑋 is a coupled coincidence point of
the pair (𝐵, 𝑇).

Now we assert that (𝛼, 𝛽) = (𝛼󸀠, 𝛽󸀠), that is, 𝛼 = 𝛼󸀠 and
𝛽 = 𝛽󸀠. Since ∗ is a 𝑡-norm of H-type, for any 𝜆 > 0, there
exists an 𝜇 > 0 such that

(1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

≥ 1 − 𝜆, (20)

for all 𝑝 ∈ N.
Since𝑀(𝑥, 𝑦, ⋅) is continuous and lim

𝑡→∞
𝑀(𝑥, 𝑦, 𝑡) = 1

for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑡
0
> 0 such that𝑀(𝛼, 𝛼󸀠, 𝑡

0
) ≥

1 − 𝜇 and𝑀(𝛽, 𝛽󸀠, 𝑡
0
) ≥ 1 − 𝜇.

On the other hand, since 𝜙 ∈ Φ, by condition (𝜙-3), we
have∑∞

𝑛=1
𝜙𝑛(𝑡
0
) < ∞. Then for any 𝑡 > 0, there exists 𝑛

0
∈ N

such that 𝑡 > ∑∞
𝑝=𝑛0

𝜙𝑝(𝑡
0
). On using inequality (15) with 𝑥 =

𝑥
𝑛
, 𝑦 = 𝑦

𝑛
, 𝑢 = 𝑥󸀠

𝑛
, and V = 𝑦󸀠

𝑛
, we have

𝑀(𝐴 (𝑥
𝑛
, 𝑦
𝑛
) , 𝐵 (𝑥

󸀠

𝑛
, 𝑦
󸀠

𝑛
) , 𝜙 (𝑡

0
))

≥ 𝑀(𝑆𝑥
𝑛
, 𝑇𝑥
󸀠

𝑛
, 𝑡
0
) ∗𝑀(𝑆𝑦

𝑛
, 𝑇𝑦
󸀠

𝑛
, 𝑡
0
) .

(21)

Letting 𝑛 → ∞, we get

𝑀(𝛼, 𝛼
󸀠

, 𝜙 (𝑡
0
)) ≥ 𝑀(𝛼, 𝛼

󸀠

, 𝑡
0
) ∗𝑀(𝛽, 𝛽

󸀠

, 𝑡
0
) . (22)

Again using inequality (15) with 𝑥 = 𝑦
𝑛
, 𝑦 = 𝑥

𝑛
, 𝑢 = 𝑦󸀠

𝑛
, and

V = 𝑥󸀠
𝑛
, we have

𝑀(𝐴 (𝑦
𝑛
, 𝑥
𝑛
) , 𝐵 (𝑦

󸀠

𝑛
, 𝑥
󸀠

𝑛
) , 𝜙 (𝑡

0
))

≥ 𝑀(𝑆𝑦
𝑛
, 𝑇𝑦
󸀠

𝑛
, 𝑡
0
) ∗𝑀(𝑆𝑥

𝑛
, 𝑇𝑥
󸀠

𝑛
, 𝑡
0
) .

(23)

Letting 𝑛 → ∞, we get

𝑀(𝛽, 𝛽
󸀠

, 𝜙 (𝑡
0
)) ≥ 𝑀(𝛽, 𝛽

󸀠

, 𝑡
0
) ∗𝑀(𝛼, 𝛼

󸀠

, 𝑡
0
) . (24)

From (22) and (24), we obtain

𝑀(𝛼, 𝛼
󸀠

, 𝜙 (𝑡
0
)) ∗ 𝑀(𝛽, 𝛽

󸀠

, 𝜙 (𝑡
0
))

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝑡
0
)]
2

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝑡
0
)]
2

.

(25)

In general, for all 𝑛 ∈ N, we have

𝑀(𝛼, 𝛼
󸀠

, 𝜙
𝑛

(𝑡
0
)) ∗𝑀(𝛽, 𝛽

󸀠

, 𝜙
𝑛

(𝑡
0
))

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝜙
𝑛−1

(𝑡
0
))]
2

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝜙
𝑛−1

(𝑡
0
))]
2

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝑡
0
)]
2
𝑛

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝑡
0
)]
2
𝑛

.

(26)

Then, we have

𝑀(𝛼, 𝛼
󸀠

, 𝑡) ∗ 𝑀(𝛽, 𝛽
󸀠

, 𝑡)

≥ [𝑀(𝛼, 𝛼
󸀠

,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

∗ [𝑀(𝛽, 𝛽
󸀠

,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝜙
𝑛0 (𝑡
0
))]

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝜙
𝑛0 (𝑡
0
))]

≥ [𝑀(𝛼, 𝛼
󸀠

, 𝑡
0
)]
2
𝑛0

∗ [𝑀(𝛽, 𝛽
󸀠

, 𝑡
0
)]
2
𝑛0

≥ (1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
2𝑛0

≥ 1 − 𝜆.

(27)

So for any 𝜆 > 0, we have

𝑀(𝛼, 𝛼
󸀠

, 𝑡) ∗ 𝑀(𝛽, 𝛽
󸀠

, 𝑡) ≥ 1 − 𝜆, (28)

for all 𝑡 > 0, and so 𝛼 = 𝛼󸀠 and 𝛽 = 𝛽󸀠. Therefore we have

𝐴 (𝛼, 𝛽) = 𝑆𝛼, 𝐴 (𝛽, 𝛼) = 𝑆𝛽,

𝐵 (𝛼, 𝛽) = 𝑇𝛼, 𝐵 (𝛽, 𝛼) = 𝑇𝛽.
(29)

Next, we show that 𝑆𝛼 = 𝑇𝛼 and 𝑆𝛽 = 𝑇𝛽. Since ∗ is a 𝑡-norm
of H-type, for any 𝜆 > 0, there exists an 𝜇 > 0 such that

(1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

≥ 1 − 𝜆, (30)

for all 𝑝 ∈ N.
Since𝑀(𝑥, 𝑦, ⋅) is continuous and lim

𝑡→+∞
𝑀(𝑥, 𝑦, 𝑡) =

1 for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑡
0
> 0 such that𝑀(𝑆𝛼, 𝑇𝛼, 𝑡

0
) ≥

1 − 𝜇 and𝑀(𝑆𝛽, 𝑇𝛽, 𝑡
0
) ≥ 1 − 𝜇.

Since 𝜙 ∈ Φ, by condition (𝜙-3), we have ∑∞
𝑛=1
𝜙𝑛(𝑡
0
) <

∞. Then for any 𝑡 > 0, there exists 𝑛
0
∈ N such that 𝑡 >

∑
∞

𝑝=𝑛0

𝜙𝑝(𝑡
0
). On using inequality (15) with 𝑥 = 𝑢 = 𝛼, 𝑦 =

V = 𝛽, we have

𝑀(𝐴 (𝛼, 𝛽) , 𝐵 (𝛼, 𝛽) , 𝜙 (𝑡
0
))

≥ 𝑀(𝑆𝛼, 𝑇𝛼, 𝑡
0
) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝑡

0
) ,

(31)

and so

𝑀(𝑆𝛼, 𝑇𝛼, 𝜙 (𝑡
0
)) ≥ 𝑀(𝑆𝛼, 𝑇𝛼, 𝑡

0
) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝑡

0
) . (32)

Similarly, we can obtain

𝑀(𝑆𝛽, 𝑇𝛽, 𝜙 (𝑡
0
)) ≥ 𝑀(𝑆𝛽, 𝑇𝛽, 𝑡

0
) ∗ 𝑀(𝑆𝛼, 𝑇𝛼, 𝑡

0
) . (33)

From (32) and (33), we have

𝑀(𝑆𝛼, 𝑇𝛼, 𝜙 (𝑡
0
)) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝜙 (𝑡

0
))

≥ [𝑀 (𝑆𝛼, 𝑇𝛼, 𝑡
0
)]
2

∗ [𝑀(𝑆𝛽, 𝑇𝛽, 𝑡
0
)]
2

.
(34)
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In general, for all 𝑛 ∈ N, we get

𝑀(𝑆𝛼, 𝑇𝛼, 𝜙
𝑛

(𝑡
0
)) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝜙

𝑛

(𝑡
0
))

≥ [𝑀(𝑆𝛼, 𝑇𝛼, 𝜙
𝑛−1

(𝑡
0
))]
2

∗ [𝑀(𝑆𝛽, 𝑇𝛽, 𝜙
𝑛−1

(𝑡
0
))]
2

≥ [𝑀 (𝑆𝛼, 𝑇𝛼, 𝑡
0
)]
2
𝑛

∗ [𝑀 (𝑆𝛽, 𝑇𝛽, 𝑡
0
)]
2
𝑛

.

(35)

Then, we have

𝑀(𝑆𝛼, 𝑇𝛼, 𝑡) ∗ 𝑀(𝑆𝛽, 𝑇𝛽, 𝑡)

≥ [𝑀(𝑆𝛼, 𝑇𝛼,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

∗ [𝑀(𝑆𝛽, 𝑇𝛽,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

≥ [𝑀(𝑆𝛼, 𝑇𝛼, 𝜙
𝑛0 (𝑡
0
))]

∗ [𝑀 (𝑆𝛽, 𝑇𝛽, 𝜙
𝑛0 (𝑡
0
))]

≥ [𝑀 (𝑆𝛼, 𝑇𝛼, 𝑡
0
)]
2
𝑛0

∗ [𝑀(𝑆𝛽, 𝑇𝛽, 𝑡
0
)]
2
𝑛0

≥ (1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
2𝑛0

≥ 1 − 𝜆.

(36)

So for any 𝜆 > 0, we obtain

𝑀(𝑆𝛼, 𝑇𝛼, 𝑡) ∗ 𝑀 (𝑆𝛽, 𝑇𝛽, 𝑡) ≥ 1 − 𝜆, (37)

for all 𝑡 > 0, and hence 𝑆𝛼 = 𝑇𝛼 and 𝑆𝛽 = 𝑇𝛽. Therefore

𝑆𝛼 = 𝑇𝛼 = 𝐴 (𝛼, 𝛽) = 𝐵 (𝛼, 𝛽) ,

𝑆𝛽 = 𝑇𝛽 = 𝐴 (𝛽, 𝛼) = 𝐵 (𝛽, 𝛼) .
(38)

Now we show that 𝑆𝛼 = 𝛼 and 𝑆𝛽 = 𝛽. Since ∗ is a 𝑡-norm of
H-type, for any 𝜆 > 0, there exists an 𝜇 > 0 such that

(1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

≥ 1 − 𝜆, (39)

for all 𝑝 ∈ N.
Since𝑀(𝑥, 𝑦, ⋅) is continuous and lim

𝑡→+∞
𝑀(𝑥, 𝑦, 𝑡) =

1 for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑡
0
> 0 such that𝑀(𝑆𝛼, 𝛼, 𝑡

0
) ≥

1 − 𝜇 and𝑀(𝑆𝛽, 𝛽, 𝑡
0
) ≥ 1 − 𝜇.

On the other hand, since 𝜙 ∈ Φ, by condition (𝜙-3) we
have∑∞

𝑛=1
𝜙𝑛(𝑡
0
) < ∞. Then for any 𝑡 > 0, there exists 𝑛

0
∈ N

such that 𝑡 > ∑∞
𝑝=𝑛0

𝜙𝑝(𝑡
0
). On using inequality (15) with 𝑥 =

𝛼, 𝑦 = 𝛽, 𝑢 = 𝑥󸀠
𝑛
, V = 𝑦󸀠

𝑛
, we have

𝑀(𝐴 (𝛼, 𝛽) , 𝐵 (𝑥
󸀠

𝑛
, 𝑦
󸀠

𝑛
) , 𝜙 (𝑡

0
))

≥ 𝑀(𝑆𝛼, 𝑇𝑥
󸀠

𝑛
, 𝑡
0
) ∗𝑀(𝑆𝛽, 𝑇𝑦

󸀠

𝑛
, 𝑡
0
) .

(40)

Letting 𝑛 → ∞, we obtain

𝑀(𝑆𝛼, 𝛼, 𝜙 (𝑡
0
)) ≥ 𝑀(𝑆𝛼, 𝛼, 𝑡

0
) ∗ 𝑀(𝑆𝛽, 𝛽, 𝑡

0
) . (41)

Similarly, we can get

𝑀(𝑆𝛽, 𝛽, 𝜙 (𝑡
0
)) ≥ 𝑀(𝑆𝛽, 𝛽, 𝑡

0
) ∗ 𝑀(𝑆𝛼, 𝛼, 𝑡

0
) . (42)

Consequently, from (41) and (42), we have

𝑀(𝑆𝛼, 𝛼, 𝜙 (𝑡
0
)) ∗ 𝑀(𝑆𝛽, 𝛽, 𝜙 (𝑡

0
))

≥ [𝑀 (𝑆𝛼, 𝛼, 𝑡
0
)]
2

∗ [𝑀(𝑆𝛽, 𝛽, 𝑡
0
)]
2

.
(43)

In general, for all 𝑛 ∈ N, we get

𝑀(𝑆𝛼, 𝛼, 𝜙
𝑛

(𝑡
0
)) ∗ 𝑀(𝑆𝛽, 𝛽, 𝜙

𝑛

(𝑡
0
))

≥ [𝑀(𝑆𝛼, 𝛼, 𝜙
𝑛−1

(𝑡
0
))]
2

∗ [𝑀(𝑆𝛽, 𝛽, 𝜙
𝑛−1

(𝑡
0
))]
2

≥ [𝑀(𝑆𝛼, 𝛼, 𝑡
0
)]
2
𝑛

∗ [𝑀(𝑆𝛽, 𝛽, 𝑡
0
)]
2
𝑛

.

(44)

Then, we have

𝑀(𝑆𝛼, 𝛼, 𝑡) ∗ 𝑀 (𝑆𝛽, 𝛽, 𝑡)

≥ [𝑀(𝑆𝛼, 𝛼,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

∗ [𝑀(𝑆𝛽, 𝛽,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))]

≥ [𝑀(𝑆𝛼, 𝛼, 𝜙
𝑛0 (𝑡
0
))]

∗ [𝑀 (𝑆𝛽, 𝛽, 𝜙
𝑛0 (𝑡
0
))]

≥ [𝑀 (𝑆𝛼, 𝛼, 𝑡
0
)]
2
𝑛0

∗ [𝑀(𝑆𝛽, 𝛽, 𝑡
0
)]
2
𝑛0

≥ (1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
2𝑛0

≥ 1 − 𝜆.

(45)

Therefore for any 𝜆 > 0, we obtain

𝑀(𝑆𝛼, 𝛼, 𝑡) ∗ 𝑀 (𝑆𝛽, 𝛽, 𝑡) ≥ 1 − 𝜆, (46)

for all 𝑡 > 0 and so 𝑆𝛼 = 𝛼 and 𝑆𝛽 = 𝛽. Thus

𝛼 = 𝑆𝛼 = 𝑇𝛼 = 𝐴 (𝛼, 𝛽) = 𝐵 (𝛼, 𝛽) ,

𝛽 = 𝑆𝛽 = 𝑇𝛽 = 𝐴 (𝛽, 𝛼) = 𝐵 (𝛽, 𝛼) .
(47)

Finally, we assert that 𝛼 = 𝛽. Since ∗ is a 𝑡-norm of H-type,
for any 𝜆 > 0, there exists an 𝜇 > 0 such that

(1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝

≥ 1 − 𝜆, (48)

for all 𝑝 ∈ N.
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Since𝑀(𝑥, 𝑦, ⋅) is continuous and lim
𝑡→+∞

𝑀(𝑥, 𝑦, 𝑡) =
1 for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑡

0
> 0 such that𝑀(𝛼, 𝛽, 𝑡

0
) ≥

1 − 𝜇.
Also, since 𝜙 ∈ Φ, by condition (𝜙-3), we have

∑
∞

𝑛=1
𝜙𝑛(𝑡
0
) < ∞. Then for any 𝑡 > 0, there exists 𝑛

0
∈ N

such that 𝑡 > ∑
∞

𝑝=𝑛0

𝜙𝑝(𝑡
0
). On using inequality (15) with

𝑥 = V = 𝛼, 𝑦 = 𝑢 = 𝛽, we have

𝑀(𝐴 (𝛼, 𝛽) , 𝐵 (𝛽, 𝛼) , 𝜙 (𝑡
0
))

≥ 𝑀(𝑆𝛼, 𝑇𝛽, 𝑡
0
) ∗ 𝑀(𝑆𝛽, 𝑇𝛼, 𝑡

0
) ,

(49)

and so

𝑀(𝛼, 𝛽, 𝜙 (𝑡
0
)) ≥ 𝑀(𝛼, 𝛽, 𝑡

0
) ∗ 𝑀(𝛽, 𝛼, 𝑡

0
) . (50)

Thus we have

𝑀(𝛼, 𝛽, 𝑡) ≥ 𝑀(𝛼, 𝛽,
∞

∑
𝑝=𝑛0

𝜙
𝑝

(𝑡
0
))

≥ 𝑀(𝛼, 𝛽, 𝜙
𝑛0 (𝑡
0
))

≥ [𝑀 (𝛼, 𝛽, 𝑡
0
)]
2
𝑛0

∗ [𝑀(𝛽, 𝛼, 𝑡
0
)]
2
𝑛0

≥ (1 − 𝜇) ∗ (1 − 𝜇) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝜇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2
2𝑛0

≥ 1 − 𝜆,

(51)

which implies that 𝛼 = 𝛽. Therefore, we proved that there
exists 𝛼 in𝑋 such that

𝛼 = 𝑆𝛼 = 𝑇𝛼 = 𝐴 (𝛼, 𝛼) = 𝐵 (𝛼, 𝛼) . (52)

The uniqueness of such a point follows immediately from
inequality (15) and so we omit the details.

Remark 15. The conclusion ofTheorem 14 remains true if we
substitute condition (a) with the following condition:

(a󸀠) the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are subcompatible and
reciprocally continuous.

From Theorem 14, taking 𝐴 = 𝐵 and 𝑆 = 𝑇, we deduce
the following natural result.

Corollary 16. Let (𝑋,𝑀, ∗) be a fuzzy metric space, where ∗
is a continuous t-norm of H-type such that𝑀(𝑥, 𝑦, 𝑡) → 1 as
𝑡 → ∞, for all 𝑥, 𝑦 ∈ 𝑋. Let 𝐴 : 𝑋 × 𝑋 → 𝑋 and 𝑆 : 𝑋 →
𝑋 be compatible and subsequentially continuous (alternately
subcompatible and reciprocally continuous) mappings such
that

𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , 𝜙 (𝑡))

≥ 𝑀 (𝑆𝑥, 𝑆𝑢, 𝑡) ∗ 𝑀 (𝑆𝑦, 𝑆V, 𝑡) ,
(53)

for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋, 𝜙 ∈ Φ and 𝑡 > 0. Then there exists a
unique point 𝛼 in𝑋 such that 𝛼 = 𝑆𝛼 = 𝐴(𝛼, 𝛼).

Next, we illustrate our results providing the following
examples.

Example 17. Let 𝑋 = [0, +∞), 𝑎 ∗ 𝑏 = 𝑎𝑏 for all 𝑎, 𝑏 ∈ [0, 1]
and 𝜓(𝑠) = 𝑠/(𝑠 + 1) for all 𝑠 ∈ R+. Then (𝑋,𝑀, ∗) is a fuzzy
metric space, where

𝑀(𝑥, 𝑦, 𝑡) = [𝜓 (𝑡)]
|𝑥−𝑦|

, (54)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. Let 𝜙(𝑠) = 𝑠/2, and let themappings
𝐴 : 𝑋 × 𝑋 → 𝑋, 𝑆 : 𝑋 → 𝑋 be defined as

𝐴 (𝑥, 𝑦) =
{
{
{

3𝑥 + 3𝑦 − 5, if 𝑥, 𝑦 ∈ (1,∞) ,
𝑥 + 𝑦

6
, otherwise,

𝑆 (𝑥) =
{
{
{

3𝑥 − 2, if 𝑥 ∈ (1,∞) ,
𝑥

6
, if 𝑥 ∈ [0, 1] .

(55)

In view of Definition 10, to prove compatibility, we have only
to consider sequences {𝑥

𝑛
} and {𝑦

𝑛
} converging to zero from

the right. In such case we have

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 0 = lim

𝑛→∞

𝑆 (𝑥
𝑛
) ,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 0 = lim

𝑛→∞

𝑆 (𝑦
𝑛
) .

(56)

Next, we get

lim
𝑛→∞

𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) = 0 = 𝐴 (0, 0) ,

lim
𝑛→∞

𝑆𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 0 = 𝑆 (0) ,

lim
𝑛→∞

𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) = 0 = 𝐴 (0, 0) ,

lim
𝑛→∞

𝑆𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 0 = 𝑆 (0) .

(57)

Consequently

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1,

(58)

for all 𝑡 > 0.
On the other hand, to prove subsequential continuity, in

view ofDefinition 12, we have only to consider sequences {𝑥
𝑛
}

and {𝑦
𝑛
} converging to one from the right. In such case we

have

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 1 = lim

𝑛→∞

𝑆 (𝑥
𝑛
) ,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 1 = lim

𝑛→∞

𝑆 (𝑦
𝑛
) .

(59)

Also, note that, for the same sequences, we get

lim
𝑛→∞

𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) = 1 ̸=𝐴 (1, 1) ,

lim
𝑛→∞

𝑆𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 1 ̸= 𝑆 (1) ,

lim
𝑛→∞

𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) = 1 ̸=𝐴 (1, 1) ,

lim
𝑛→∞

𝑆𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 1 ̸= 𝑆 (1) ,

(60)
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but

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1.

(61)

Thus, the mappings 𝐴 and 𝑆 are compatible as well as
subsequentially continuous but not reciprocally continuous.
Next, by a routine calculation, one can verify that condition
(53) holds true. For instance, for all 𝑡 > 0 and 𝑥, 𝑦, 𝑢, V ∈
[0, 1], we have

𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , 𝜙 (𝑡))

= 𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , (
𝑡

2
))

= [𝜓(
𝑡

2
)]
|𝑥−𝑢+𝑦−V|/6

≥ [𝜓(
𝑡

2
)]
|𝑥−𝑢|/6

⋅ [𝜓 (
𝑡

2
)]
|𝑦−V|/6

= [
𝑡

𝑡 + 2
]
|𝑥−𝑢|/6

⋅ [
𝑡

𝑡 + 2
]
|𝑦−V|/6

≥ [
𝑡

𝑡 + 1
]
|𝑥−𝑢|/6

⋅ [
𝑡

𝑡 + 1
]
|𝑦−V|/6

= [𝜓 (𝑡)]
|𝑥−𝑢|/6

⋅ [𝜓 (𝑡)]
|𝑦−V|/6

= 𝑀(𝑆𝑥, 𝑆𝑢, 𝑡) ⋅ 𝑀 (𝑆𝑦, 𝑆V, 𝑡)

= 𝑀 (𝑆𝑥, 𝑆𝑢, 𝑡) ∗ 𝑀 (𝑆𝑦, 𝑆V, 𝑡) .

(62)

Therefore, all the conditions of Corollary 16 are satisfied
and (0,0) is the unique common fixed point of the pair (𝐴, 𝑆).
It is noted that this example cannot be covered by those fixed
point theorems which involve compatibility and reciprocal
continuity both.

Example 18. In the setting of Example 17 (besides retaining
the rest), let 𝑋 = (−∞,∞), and let the mappings 𝐴 : 𝑋 ×
𝑋 → 𝑋, 𝑆 : 𝑋 → 𝑋 be defined as

𝐴 (𝑥, 𝑦) =

{{{{
{{{{
{

𝑥 + 𝑦

4
, if 𝑥, 𝑦 ∈ (−∞, 1) ,

3𝑥 + 3𝑦 − 5, if 𝑥, 𝑦 ∈ [1,∞) ,
𝑥 − 𝑦

4
, if 𝑥 ∈ (−∞, 1) , 𝑦 ∈ [1,∞) ,

𝑆 (𝑥) = {
𝑥 + 1, if 𝑥 ∈ (−∞, 1) ,
3𝑥 − 2, if 𝑥 ∈ [1,∞) .

(63)

In view of Definitions 11 and 13, to prove reciprocal continuity
and subcompatibility, we have only to consider sequences
{𝑥
𝑛
} and {𝑦

𝑛
} converging to one from the right. For such

sequences, we get

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 1 = lim

𝑛→∞

𝑆 (𝑥
𝑛
) ,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 1 = lim

𝑛→∞

𝑆 (𝑦
𝑛
) .

(64)

Also, we deduce that

lim
𝑛→∞

𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) = 1 = 𝐴 (1, 1) ,

lim
𝑛→∞

𝑆𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 1 = 𝑆 (1) ,

lim
𝑛→∞

𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) = 1 = 𝐴 (1, 1) ,

lim
𝑛→∞

𝑆𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 1 = 𝑆 (1) .

(65)

Therefore, we have

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) = 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) = 1,

(66)

for all 𝑡 > 0. Finally, to show that themappings𝐴 and 𝑆 are not
compatible, it suffices to consider the particular sequences
{𝑥
𝑛
} = {1/𝑛 − 2}

𝑛∈N and {𝑦
𝑛
} = {1/3𝑛 − 2}

𝑛∈N in 𝑋. In fact,
in such case, we have

lim
𝑛→∞

𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = −1 = lim

𝑛→∞

𝑆 (𝑥
𝑛
) ,

lim
𝑛→∞

𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = −1 = lim

𝑛→∞

𝑆 (𝑦
𝑛
) .

(67)

Next, we deduce that

lim
𝑛→∞

𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) = −

1

2
= 𝐴 (−1, −1) ,

lim
𝑛→∞

𝑆𝐴 (𝑥
𝑛
, 𝑦
𝑛
) = 0 = 𝑆 (−1) ,

lim
𝑛→∞

𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) = −

1

2
= 𝐴 (−1, −1) ,

lim
𝑛→∞

𝑆𝐴 (𝑦
𝑛
, 𝑥
𝑛
) = 0 = 𝑆 (−1) .

(68)

Consequently, we obtain

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑥
𝑛
, 𝑆𝑦
𝑛
) , 𝑆𝐴 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑡) ̸= 1,

lim
𝑛→∞

𝑀(𝐴 (𝑆𝑦
𝑛
, 𝑆𝑥
𝑛
) , 𝑆𝐴 (𝑦

𝑛
, 𝑥
𝑛
) , 𝑡) ̸= 1,

(69)

for all 𝑡 > 0. Thus, the mappings 𝐴 and 𝑆 are reciprocally
continuous as well as subcompatible but not compatible.
Next, by a routine calculation, one can verify that condition
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(53) holds true. For instance, for all 𝑡 > 0 and 𝑥, 𝑦, 𝑢, V ∈
[1,∞), we have

𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , 𝜙 (𝑡))

= 𝑀(𝐴 (𝑥, 𝑦) , 𝐴 (𝑢, V) , (
𝑡

2
))

= [𝜓(
𝑡

2
)]
|3𝑥−3𝑢+3𝑦−3V|

≥ [𝜓(
𝑡

2
)]
3|𝑥−𝑢|

⋅ [𝜓 (
𝑡

2
)]
3|𝑦−V|

= [
𝑡

𝑡 + 2
]
3|𝑥−𝑢|

⋅ [
𝑡

𝑡 + 2
]
3|𝑦−V|

≥ [
𝑡

𝑡 + 1
]
3|𝑥−𝑢|

.[
𝑡

𝑡 + 1
]
3|𝑦−V|

= [𝜓 (𝑡)]
3|𝑥−𝑢|

⋅ [𝜓 (𝑡)]
3|𝑦−V|

= 𝑀(𝑆𝑥, 𝑆𝑢, 𝑡) ⋅ 𝑀 (𝑆𝑦, 𝑆V, 𝑡)

= 𝑀 (𝑆𝑥, 𝑆𝑢, 𝑡) ∗ 𝑀 (𝑆𝑦, 𝑆V, 𝑡) .

(70)

Therefore, all the conditions of Corollary 16 are satisfied,
and (1, 1) is the unique common fixed point of the pair
(𝐴, 𝑆). It is also noted that this example cannot be covered by
those fixed point theorems which involve compatibility and
reciprocal continuity both.

Remark 19. The conclusions of Theorem 14 and Corollary 16
remain true if we assume 𝜙(𝑠) = 𝑘𝑠, where 𝑘 ∈ (0, 1).

4. Conclusion

Theorem 14 is proved for two pairs of compatible and
subsequentially continuous (alternately subcompatible and
reciprocally continuous) mappings in fuzzy metric spaces,
wherein conditions on completeness (or closedness) of the
underlying space (or subspaces) together with conditions on
continuity in respect to anyone of the involved mappings
are relaxed. Theorem 14 improves the results of Jain et al.
[39, Theorem 3.2, Corollary 3.2, Theorem 3.3, Theorem 3.4,
Theorem 4.1] and Hu [34, Theorem 1]. A natural result
is also obtained for a pair of mappings (see Corollary 16).
Finally, Examples 17 and 18 are furnished to demonstrate the
usefulness of Corollary 16. In view of Remark 19,Theorem 14
and Corollary 16 improve the results of Sedghi et al. [32,
Theorem 2.5, Corollary 2.6] and Jain et al. [39, Corollary 3.1].
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orems for nonlinear contractions in partially ordered metric
spaces,” Nonlinear Analysis, vol. 70, no. 12, pp. 4341–4349, 2009.
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