
ScienceDirect

Available online at www.sciencedirect.com

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2016) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of PCF 2016.  

XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal 

Thermo-mechanical modeling of a high pressure turbine blade of an 
airplane gas turbine engine 

P. Brandãoa, V. Infanteb, A.M. Deusc* 
aDepartment of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, 

Portugal 
bIDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, 

Portugal 
cCeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, 

Portugal  

Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

The paper presents an analytic stiffness matrix for curved thin metal wires, derived by the application of the second 
Castigliano’s Theorem. The matrix accounts both bending and axial stiffness contributions in plane. The beam 
geometry is described by a cubic polynomial function of the curvature radius with a monotonical attitude angle as the 
independent variable. The solution proposed if fully analytical although a consistent number of adding factors appear. 
Some test cases are discussed and compared with Finite Element solutions, formed by a plentiful assembly of straight 
beams. 
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1. Introduction 

Deployable Space Antennas present some peculiar needs that require clever solutions for the engineers to overcome. 
First of all weight minimization and packing inside the space rocket before the deployment in the space. Reflectors 
are as large as 12 m (Thomson, 2000), but much more higher diameters are at present time in the design stage. The 
mechanism involved in the deployment phase includes the use of very light nets, usually made of molybdenum or 
tungsten wires, knitted to form the mesh. The knitting procedure is very critical (Marotta et al., 2016) since wires as 
small as 15 microns are used. It is straightforward to get a mechanical characterization of the net to verify that the 
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antenna presents a stable behaviour against solar irradiation changes, which strongly influence the satellite 
performances. The mechanical characterization has been carried out by measuring the behaviour of a portion of the 
net on a two-dimensional testing machine (Valentini et al., 2016), properly developed to accurately measure very low 
loads when large displacements are imposed. Difficulties arise because the wires slide each other during deformation, 
so that traditional systems for measuring strains are not easily applicable. In De Salvador et al. (2017) an optical device 
to measure strains is discussed. 
As a result of the knitting procedure, and having in mind the strength of tungsten wires, the net results as a regular 
repetition of loops with a high ratio between voids and wires. In the present paper we introduce the idea to model the 
wires of the net considering their repetitive pattern and their non-linear behaviour. The base element is thus a very 
thin wire in comparison with the loop diameter. In other words, we need to develop a solution for general curved 
beams in plane, subjected to axial and bending loads. The final goal here is to develop a finite element with two 
extremal nodes, able to match the stiffness of a beam with variable curvature. 
Many structures of engineering interest are suitably modelled with curved beams. One of the most practical methods 
to analyse and design such structures is the finite element method. The calculation is often undertaken by modelling 
the curved structure with a series of short straight beams and the solution, of course, is approximate (Kikuchi, 1975). 
Increasing the number of elements arises the accuracy, but the dimension of the problem also rises. The mechanical 
behaviour of a curved beam can be expressed through the equations of equilibrium, constitutive relationships and 
compatibility equations or by mean the equations of energy (Tabarrok et. al., 1988); in any case, the solution requires 
numerical integration. As a matter of fact, the analytical solutions proposed are limited to trivial shapes of the axis-
line of the curved beam, such as circular or parabolic shapes (Marquis e Wang, 1989). In most cases a numerical 
integration technique is unavoidable, so that a real closed form solution is missing. 
The Castigliano’s Theorem is particularly suitable to obtain the flexibility matrix, and consequently the stiffness 
matrix of the generic beam. This method requires the computation of the strain energy, which is then differentiated by 
respect to a selected force. Repeating the differentiation for each displacement in turn, a complete set of force-
displacement equations is achieved, the whole results can then be formulated in a matrix notation (Przemieniecki, 
1968). Stiffness matrix formulation for constant curved beam are presented by Lee, (1969) and Palaninathan and 
Chandrasekharan (1985), flexural, axial and shear effects are taken into account. One numerical application of this 
method is proposed by Dayyania, et. al. (2014), to obtain a general super element for a curved beam applicable to 
corrugated panels. The effect of the thick curved beam element with constant curvature was considered by Litewka 
and Rakowski (1998). Marquis e Wang (1989) have developed an exact solution of a parabolic curved beam with 
constant cross section considering bending, axial extension and shear deformation effects. Using a modified Hu-
Washizu variational principle, Saje (1991) derived a finite element formulation of deformation analysis of arbitrarily 
curved, extensible, shear flexible beam. Koziey and Mirza (1994) have formulated a consistent subparametric beam 
element. They applied cubic and quadratic polynomial approximations for displacements and rotation, respectively, 
using elements described in the natural coordinate system. 
The greatest difficulty to extract the stiffness matrix is the solution of the energy integral of the beam. Many authors 
have proposed several approaches to overcome this issue. Some authors, such as Leung and Au (1990), attempted to 
exploit the spatial description through spline curves. While Lin et al. (2009) proposed a closed form solution of the 
circular, spiral ellipse, parabola, cycloid, catenary and logarithmic spiral beam under pure bending moment. Farouki 
(1996) presents an advanced spline interpolation such as Pythagorean-hodograph curves, described in the field of 
complex numbers, which solved the rational integrals in energy calculation. Wu and Yang (2016) proposed a method 
to obtain an interpolation of curvature radius for given G1 or G2 boundary data, with or without prescribed arc lengths, 
by solving a linear system. The radius function has a low order polynomial with a monotone angle as the independent 
variable. 
Gimena et al. (2014) present a general differential formulation for the case of the arch. In the paper, they did not make 
use of energetic theorems involving derivatives. They developed two examples of arcs with parabolic axis-line and 
variable cross-section, subjected to concentrated or distributed load.  
Tufekci and Arpaci (2006) discussed an exact analytical solution for in-plane static problems of planar curved beams 
with variable curvatures and variable cross-sections. The solutions, non-general for any arch shape, are derived by 
using the initial value method. The fundamental matrix required by the initial value method is obtained analytically. 
Then, displacements, slopes and stress resultants are found analytically along the beam axis by using the fundamental 
matrix. The method was then extended to the case of distributed load structures from Tufekci et al. (2016).  
The nonlinear extension introduced by Rafik and El Damatty (2002) is based on a total Lagrangian approach. The 
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derivation of the nonlinear stiffness matrix and the unbalanced load vector is presented. Newton-Raphson method is 
employed for iterating purpose and the energy method is used as convergence criterion. 
In the work here proposed, a two-dimensional formulation in the closed form of the stiffness matrix is presented, for 
a curved beam subjected to pure bending. The axial contribution must be considered to gain the solution stability. 
The curvature radius of the wire is modelled by a polynomial law; whose independent variable is the local angle of 
alignment. The solution assumes that the angle must necessarily vary monotonically. 
Polynomial law coefficients are calculated by interpolation. The adoption of a cubic polynomial allows expressing 
several families of curves, thus providing the model for many applications. 
The stiffness matrix derives by inversion of the flexibility matrix whose analytical terms are directly calculated using 
the Castigliano’s method. The resulting integrals to solve are composed of many simple recursive functions. 
The stiffness matrix obtained is very well suited for modelling structures both in the field of small displacements and 
for large displacements, since incremental calculations are easily possible. Numerical comparisons are performed to 
validate the stiffness matrix obtained, from a multi-element modelling that uses multiple straight-beams. 
Due to wire applications, there is no need to account of shear effects or to foresee any change in the sections of the 
beams. Furthermore, distributed loads are not taken into account. 
Fig. 1 shows a portion of a typical astromesh reflector; as it can be seen, the wire diameter is small compared to the 
loop extensions. 
 

 
Fig. 1. A portion of typical astromesh reflector. 

2. Derivation of Stiffness Matrix  

In this approach, limited to plane domain, the stiffness matrix is derived by the (3x3) inversion of the analytical 
solution of the flexibility matrix in two different constrain conditions. Each term of the flexibility matrix is computed 
through the application of the Second Castigliano's Theorem. According to it, the displacement and rotational vectors 
can be obtained from partial derivation of the total strain energy. In the foregoing procedure the internal energy due 
to bending behaviour and tension-compression are computed separately. This need comes out from the lengthy of the 
expressions involved in the analytical developments. Considering the internal bending energy: 
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Where δi is the generalized displacement component, U is the bending energy, Pi the load applied and oriented as the 
displacement considered, M is the bending occurring at the curvilinear abscissa s, E is the Young’s modulus, I is the 
section inertia moment. In the case hereinafter considered, that the cross-section keeps constant, eq.1 becomes: 
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The expression of ds, in the Cartesian reference, results 
 

2 2ds dx dy   (3) 
 
This term introduces complexity in the analytical integration. An idea to circumvent these difficulties emerges by the 
change of variable, from the curvilinear abscissa to the angle given by the local tangent of the beam. This substitution 
yields 
 

 ds d    (4) 
 
where ρ(θ) is the radius of curvature and dθ is the elementary variation of attitude. This change of variable implicates 
that the new variable θ increases or decreases monotonically, for analytical integration needs. 
With the aim to include a generality of curved beams, but keeping the analytical integration possible, the choice fells 
on a polynomial expression, limited to the cubic interpolation of the curvature radius 
 

  3 2a b c d            (5) 
 
Thanks to this substitution, the Cartesian coordinates follow by simple integration of product of a polynomial and 
cosine (or sine) functions 
 

   
0

cosx d


       (6) 

 

   
0

siny d


       (7) 

 
The solution of the above integrals, at a generic angle θ, are 
 

  3 2 2sin sin 3 cos 6 sin sin 2 cos 2 sin

sin 6 cos cos 6

x a b a a c b b

d a c a c

             

  

             

    
 (8) 

 
  3 2 2cos 3 sin cos 2 sin 6 cos cos 6 sin

sin 2 cos cos 2

y a a b b a c a

c b d b d

             

  

              

    
 (9) 

 
The knowledge of the Cartesian coordinates of the curve is crucial to carry out the bending moment acting along the 
curvilinear beam. Fig. 2 is an example of a curve that is manageable with the polynomial approach in the local 
coordinate system. It is clear that no matter if closed loops are considered. 
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Fig. 2. A generic curve and its local coordinate system. 

The cubic interpolation of the radius curvature allows simplifying the solution of the integrals; but the inference from 
the curved geometry and its description, in terms of these said coefficients, needs to be explicated. The developed 
solution implies three circumstances: 
 The local x-axis must be set so that it is oriented as the initial beam tangent 
 Tangent angle is monotonically varying so that the curvature function never changes the sign within the 

considered domain of integration 
 Infinity radius, representing straight geometry, cannot be managed and should be considered as straight lines 
 
In a general curvilinear beam, the appropriate coefficients of the polynomial representation rise by interpolation of 
the actual curve. Ordinary Least Square methods fit well. In fact eq.s (8) and (9) allows to write a linear system of 
equations where the known terms are some curve coordinates at specific θ angles. It is very useful to add to those 
equations a further information, written in eq. (10), concerning the total length of the wire; adding a considerable 
weight to this equation addresses the solution towards the effective shape. 
 

  4 3 21 1 1
4 3 2

L a b c d         (10) 

 
Fig. 3 shows the isostatic scheme used to carry out the flexibility terms of the curved wire at the first end. Node 1 has 
three degree of freedom and node 2 is fully constrained. 
 

 
Fig. 3. First isostatic scheme. 
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Pointing attention, as an example, to the displacement u1 due to an applied load F1, the solution arises from the integral 
 

1
10

1 ( )( ) ( )Mu M d
EI F

 
   


  

  (11) 

 
The first compliance term c11 thus requires to compute the bending moment as a function of θ  
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The integral (11) results composed by the product of several terms 
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The resulting integral is very long, but, after the application of double-angle formulae, it results as composed by sine 
and cosine recursive integral terms, such those given by eq.(14) and eq.(15). 
 

1sin( ) cos( ) cos( )
n

n nx nx cx dx cx x cx dx
c c
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1sin
cos( ) sin( )

n
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Indeed, an enormous number of trivial terms occurs, all of them supply an analytical solution, but easily manageable 
using a symbolic solver. 
Repeating eq.11 for all the three degrees of freedom of the beam, it is possible to obtain, in closed form, the matrix of 
flexibility of the first structure shown in Figure 3. 
 

1

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

  
u c c c F
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     
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 (16) 

 
The inversion of the flexibility matrix provides the constrained stiffness matrix in the reference of node 1  
 

1
11 12 12 11 12 12

1
21 22 23 21 22 23

31 32 33 31 32 33

II

c c c k k k
c c c k k k
c c c k k k


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       
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K  (17) 

 
To obtain the second part of the stiffness matrix it is necessary to constrain the node 1 and apply loads at node 2. 
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Fig. 4. Second isostatic scheme. 

The same equation as before is valid, as long as a different reference system, on node 2, is now considered (Fig. 4) 
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The new coefficients, identified by an apex, can be related to the previous computed ones if the spanning angle is 
given by   , after equating the curvature radius given by eq.s (5) and (18). The new coefficients result 
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(19) 

 
The nomenclature for the flexibility matrix links the forces at node 2 with the displacements at the same node 
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accordingly, the constrained stiffness matrix is: 
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Now the 2Kjj matrix refers to the second local coordinate system. This second stiffness matrix is reconducted to the 
first reference by the simple rotation 
 

1 2
21 21
T
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Where the transformation matrix, note sign opposite to usual, is given by 
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To complete the 6x6 stiffness matrix, which relates the forces at node 1 to the displacements at node 2, equilibrium 
conditions are invoked 
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Where X1, Y1, X2, Y2, are the node coordinates respectively of node 1 and 2. All values are expressed in the reference 
located at node 1. 
The stiffness matrix in the same reference system emerges by composition of the previous partial matrices. 
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Bending stiffness is not sufficient to gives stability to the matrices, when the section loads result oriented as the local 
tangent. Therefore, the axial contribution is computed again by Castigliano’s theorem. 
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The axial stiffness contribution acts in series with the bending stiffness, therefore its contribution is simply added at 
the flexibility matrix, derived from pure bending treatment. 
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1 11 11 12 12 13 1

2 21 21 22 22 23 2

3 31 32 33 3
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 (28) 
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(29) 

 
Applying eq.s (16-25) allows to get the matrix of the bending-axial curved. 

3. Test Cases 

The first interesting point is to highlight the family of curved functions that can be fitted by the approximated strategy 
provided here. To accomplish this task, a simple set of curves are represented in Fig. 5, all of them characterized by 
the same ending points.  
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Fig. 5. Family of possible curves as power of the tangent angle. 

The family of curves are grouped in this way: continuous or blue line have constant curvature radius; dash-dot or red 
lines have linear-varying radius; dash-dash lines have quadratic radius of curvature, cubic variations are not 
represented to make it easy the analysis of the picture at a glance. The geometric lines that are manageable comes 
from a combination of these basic types. Whenever the attention is pointed on a curved wire that does not present a 
monotonical increase of the tangent angle, it can be subdivided in several parts respecting this last requirement. An 
effective example is presented in Fig. 6, taken from a knitted astromesh reflector. The coloured segments identify the 
basic structure that form the entire mesh, when repeated at neighbour patterns after mirroring or flipping. In synthesis, 
four coloured sequence form a repeated pattern. The different colours (blue, red, green, cyan) distinguish the regions 
where monotonical θ increase holds; other reasons for the requirement of element division comes out for an 
unacceptable fitting (e.g. splitting of blue and red parts). 
 

 
Fig. 6. A portion of astromesh and its modelling by four curved beam element, coefficients are within the picture. 
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Fig. 7. Scheme of a cantilever circular beam. 

Test cases deal with a single element configuration having 3 different geometries and load dispositions. Each curved 
wire, modelled with appropriate coefficients, is compared with a multi-beam fem model, consisting of 1000 small 
straight elements. All test cases refer to a local reference system pointed on first node 1. 
First test case consists of a quarter circle with constant radius. The circular wire is steel made and has a diameter as 1 
mm, curvature radius 100 mm, and 206 GPa Young’s modulus. The node 1 is fully constrained and the forces are 
applied on node 2. The displacement comparisons by the analytical curved beam and Finite Element results are 
presented in Table 1. For this simple test case, a simple theoretical solution is also available to compare. The analytical 
displacements are perfectly corresponding to the expected theoretical values. FEM results are slowly scattered because 
they suffer the number of elements used. Decreasing the numbers of straight beam elements causes the error to 
increase, as expected. 
 

Table 1. Displacements of cantilever circular beam, for curved beam model, multi-beams and theoretical value 

Force at Node 1 
[N] 

Displacement 
[mm] 

Curved Beam                         
(1 element) 

Multi Beam              
(1000 elements) 
No Shear Effect 

Theoretical 

      
Fx = 0.01 Ux 0.77670388 0.77670283 0.77670388 

  Uy -0.49445887 -0.49445847 -0.49445887 
  Rot z -0.00988924 -0.00988923 -0.00988924 
      

Fy = 0.01 Ux -0.49445887 -0.49445847 -0.49445887 
  Uy 0.35225411 0.35225399 0.35225411 
  Rot z 0.00564474 0.00564474 0.00564474 
      

Mz = 1 Ux -0.98892392 -0.98892267 -0.98892392 
  Uy 0.56447414 0.56447376 0.56447414 
  Rot z 0.01553398 0.01553397 0.01553398 

 
A second test is sketched in Fig. 8. The curved beam has now a linearly growing radius, cross section and material are 
the same as before. The scheme between the two nodes is now different, resulting a simply-supported beam. The only 
load applied is a concentrated moment at node 1, rotations on both ending nodes are picked up. The results are shown 
in Table 2. The comparison is again almost perfect by respect to FEM, but no theoretical well known values are simply 
available. 
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Fig. 8 .Spiral beam geometry. 

        Table 2. Displacements of spiral beam comparison with multi-beam model.  

Force at Node 2 
[N] 

Displacement 
[mm] 

Curved Beam              
(1 element) 

Multi Beam              
(1000 elements) 
No Shear Effect 

Err [%] 

      
Mz = 10 Rot z (Node 1) 0.12450012 0.12449944 0.000550464 

  Rot z (Node 2) 0.05564610 0.05564565 0.000822931 
 
In the last test, a most general case with cubic polynomial representation of the radius is presented, so that all four 
coefficients are not vanishing. The curved beam is fully constrained on node 1 and loads are applied on node 2. The 
results are displayed in Table 3. Again, for this more general case, errors between the analytical developed curved 
beam and the multi-beam FE model are very low. 
 

 
Fig. 9. Generic curved beam geometry. 
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         Table 3. Displacements of generic curved beam comparison with a multi-beam FE model.  

Force at Node 1 
[N] 

Displacement 
[mm] 

Curved Beam                         
(1 element) 

Multi Beam              
(1000 elements) 
No Shear Effect 

Err [%] 

      
Fx = 0.01 Ux 0.45762659 0.45762582 0.000168236 

  Uy 0.02259979 0.02259967 0.000554164 

  Rot z 0.00811160 0.00811159 0.000116319 

      
Fy = 0.01 Ux 0.02259979 0.02259967 0.000554165 

  Uy 0.04198039 0.04197990 0.001165151 

  Rot z 0.00077002 0.00077001 0.000945798 

      
Mz = 1 Ux 0.81116035 0.81115941 0.000116319 

  Uy 0.07700169 0.07700096 0.000945797 

  Rot z 0.01806017 0.01806014 0.000190059 

 
It appears evident, in all tests, the convenience to use this analytical curved beam element at the place of the assembled 
multi beams. According to the said refinement and in plain domain, the number of dof’s in the stiffness matrix reduces 
from 6006 to 6. This means that a knitted net can be appropriately modelled keeping it reasonable the overall number 
of dof’s. 
 

4. Conclusion 

In the present work, a closed solution for the stiffness matrix of curved beam is proposed. The planned solution makes 
use of the second Castigliano’s Theorem. Both bending and axial effects are taken into account. The analytical solution 
is carried out for a curved beam through a cubic function of the radius of curvature. This interpolation allows to 
manage analytically all integrals, since it yields terms that can be resolved by recursive application of integrals of 
simple functions. The coefficients of the cubic function are given by Least Square interpolation; however, if 
interpolation results non-satisfactory, the wire can be divided in portions, each appropriately fitted. The displacement 
comparisons with multi-beam fem models demonstrate the truthfulness of the solution. As a matter of fact, no 
approximations are introduced within the frame of Euler Beam theory. 
The present work allows to model structures made of curved wires, such as the metal nets for space applications, by 
means of very few elements, in the contest of an exact solution. 
The method is also very promising for nonlinear analyses, when high displacements and eventual mutual contacts are 
considered. At each step the interpolating coefficients can be recomputed in the new equilibrium position. Further 
researches are now under investigation, and will be the subject of successive works. 
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