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*is paper deals with the optimization of the Check-in, passengermigration, and Security Control processes in an airport land side
terminal. Given the layout of the terminal, the passengers’ flow, and the scheduled flights in a given time interval, the number and
the position of Check-in counters and Security Control gates to be opened are output. *e objective function is the minimization
of the costs to activate the Check-in counters and the Security Control gates plus the costs that measure the passengers’ discomfort.
*e stochastic passengers’ behaviour and their preferences are simulated by a discrete event model, while the managing costs and
the passengers’ discomfort are optimized by the Surrogate Method. Capodichino Airport, located in Naples (IT), has been
considered for the test phase. Results show the effectiveness and efficiency of the solutions of the SurrogateMethod compared with
the performances of other algorithms.

1. Introduction

In this paper a decision support system for different pro-
cesses carried out in the land side area of an airport is
proposed.*e focus is on the connected processes of Check-
in management, passengers’ migration to the Security
Control barrier, and Security Control operations. *ese
processes usually involve several types of resources and
services, affecting the costs and the performances of the
airport management and of airline companies, together with
the passengers’ satisfaction. *e paper addresses the prob-
lem of minimizing the Check-in and Security Control costs
and the passengers’ discomfort in terms of waiting times in
line.

*e increasing growth in the demand of air trans-
portation services highlights the limited capacity of the
involved systems and the necessity of developing decision
support systems able to manage such growth, optimizing the
performances, and limiting the effective costs. *e problems
arising in the airport environment involve both of the air
side area and the land side area and affect each other.

Moreover, most of the issues arising in this environment are
complex, since they are marked out by a large variety of
resources and services; they imply complex interactions
among the involved processes and are affected by the sto-
chastic nature of the behaviour of the actors operating and
using the airport.

Several models have been developed over the last decade
to support management decision making in optimizing the
use of the resources and performing optimal services. *ere
are different models and tools that can be classified on the
basis of the levels of details [1]: microscopic models (high
level of details), mesoscopic models (medium level), and
macroscopic models (low level). In practice, macroscopic
models help to make a very preliminary analysis of the
solution effects; however they often lack realism and are not
able to reproduce the complexity, variability, and stochastic
nature of the airport. Microscopic models take into con-
sideration several real details and can represent specific
processes involving only some parts or aspects of the airport.
One of the main shortcomings is that they neglect the in-
teraction among different processes. Mesoscopic models

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 6328016, 14 pages
https://doi.org/10.1155/2020/6328016

mailto:adacher@dia.uniroma3.it
https://orcid.org/0000-0002-0215-798X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6328016


have a suitable level of realism, since they are able to model
interaction among processes integrated with the passengers’
behaviour. *ey also allow inferring an accurate measure of
the performance of subsets of connected services from the
point of view of different actors, such as passengers, com-
panies, and airport management, becoming a good support
for airport planning.

In this paper authors combine simulation and optimi-
zation techniques to solve the problem of optimizing the
Check-in, passenger migration, and Security Control pro-
cesses in an airport land side terminal. *ey provide the
optimization of a multicriteria cost function that models the
costs of opening Check-in counters and Security Control
barriers and discomfort of the passengers waiting in queue.
Afterwards, the interaction between simulation and opti-
mization phases provides the objective function value and its
minimization. For this kind of problems, traditional opti-
mization methods based on derivatives cannot be applied.
Most known approaches are based on some form of random
search or ordinal optimization approach. In addition, also
because the simulation is computationally expensive, the
extensive exploration of the entire solution domain would
imply unacceptable calculation time. To avoid these prob-
lems, the Surrogate Method is introduced. *is Method
combines the advantages of stochastic approximation type of
algorithm with the ability of obtaining sensitivity estimates.
*e gradient information necessary to drive the stochastic
approximation part of the Surrogate Method is simplified
considering the estimation of the objective function for a
selection set (it will be described in Section 4).

*is paper presents a mesoscopic model composed by an
optimization module and a simulation module. *e former
minimizes the direct costs for the airport management and
airline companies and the indirect costs modelling pas-
sengers’ dissatisfaction. *e latter cyclically interacts with
the optimization module to compute the objective function
value that is affected by the stochastic behaviour of the
passengers. *e simulator takes into consideration passen-
gers with different needs, preferences, and behaviour.

More specifically, as shown in Figure 1, the input of the
problem is the layout of the airport, the passengers’ flow, and
the scheduled flights during a given time interval. *e main
output is the number and the position of Check-in counters
(for each airline) and Security Control gates to be opened.
*e objective is the minimization of the total costs: the cost
for activating the Check-in counters plus the cost measuring
the passengers’ discomfort. Other output information is
concerned with the average waiting times and the number of
passengers in line at the Check-in counters and Security
Control gates. *e simulation module consists of a discrete
event simulator: given the layout of the airport, the pas-
sengers’ flow, the number and the position of Check-in
counters (for each airline), and the active Security Control
gates, it simulates the passengers’ behaviour and computes
the objective function value. *e optimization module,
according to the value of the objective function provided by
the simulation module, finds the best solution (number of
Check-in counters and Security Control gates that must be
opened). *e system has been tested on the case study of

Naples Capodichino Airport (Italy) and the Surrogate
Method has been compared to different versions of Opt-
Quest, used in standard simulators such as Arena [2],
ProModel [3], Simul8 [4], and Simio [5]. OptQuest has been
developed by Glover et al. at the University of Colorado
[6, 7]. *e first version of OptQuest was customized to
optimize discrete event simulation systems modelled with
Micro Saint 2.0. OptQuest main optimization engine is
based on the scatter search methodology with the tabu
search strategy.

*e main contribution of this paper can be summarized
as follows:

(i) It provides an optimization/simulation decision
support system

(ii) It considers the integration of Check-in, passengers’
migration, and Security Control processes

(iii) It considers several types of passengers and services
to make the model as much realistic as possible

(iv) It adapts the Surrogate Method to the addressed
problem

(v) It compares the Surrogate Method performances to
those of the algorithms used by standard simulators

*e paper is organized as follows: Section 2 reports on
the related literature review. Section 3 presents the problem
formulation and an analysis of the objective function. In
Section 4, the Surrogate Method and its adaptation to the
problem are described. In Section 5, problem parameters,
assumptions, and instance classes, processed by the simu-
lation module, are specified. *e results on the comparison
between the Surrogate Method and OptQuest algorithm are
reported in Section 6. Section 7 is dedicated to the
conclusions.

2. Literature Review

In this section the authors provide a review of the recent
literature focused on three principal aspects of the presented
study, namely, the integration of the optimization and
simulation techniques, the costs’ minimization objective,
and the solution methods. *ese three features are not
singularly addressed by the researchers. Multiobjective
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Figure 1: General schema of integration of optimization and
simulation modules.
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approaches are very suitable for solving this kind of prob-
lems, but, given their complexity of the problem, it is difficult
to formulate pure mathematical models to evaluate their
performances. Simulation has been more widely used as the
tool to reproduce the complexity, variability, and stochastic
nature of different passengers. When the system operates in
a stochastic environment and no closed form expression for
the objective function is available, the problem is further
complicated by the need to estimate the objective function
values. Many approaches in the literature propose the
combination of optimization and simulation to solve such
issues. In particular on the basis of different level of details of
the scenarios, the optimization is solved by linear pro-
gramming or metaheuristic approaches: the former can
address detailed cases while the latter is able to produce fast
solutions when applied to limited models. *e evaluation of
different objective functions is computed by queue theory or
simulation tools that are able to represent interaction among
variables and stochastic aspects, such as the passengers’
behaviour or their preferences.

*emain scope of research in this field is tominimize the
total costs. *e considered costs can be both operational and
social, when passengers’ preferences or discomfort is con-
sidered and mapped into appropriate cost functions.

*e cost minimization for what concerns Check-in
operations has been addressed by several authors.

In [8] a counter assignment problem for an airport is
considered with the possibility of application in both
planning and operations mode. At the beginning, they
develop an integer programming optimization model to
solve the counter assignment problem to optimality. *en
they propose a decomposition algorithm which solves the
problem in reasonable computer time.*e efficiency of both
model and algorithm is also discussed. In [9], a binary linear
programming formulation is developed and solved by
CPLEX, for the workforce planning at the Check-in counters
for real-world demand scenarios. In [10], a combinatorial
optimization model to balance the operative costs of the
service and the passenger waiting time at the terminal is
proposed. In [11], the author proposes a linear programming
model to minimize the total number of counters in each
Check-in area, since in real-life counters for one flight
should be adjacent and the remaining number of counters in
each area should be fixed during Check-in operations.
Stochastic aspects are then modelled by simulation, and the
effects of various parameters, such as number of passengers
on a flight and Check-in counters opening and closing time,
have been studied. In [12], authors minimize the operational
costs, by proposing a methodology which combines opti-
mization based on integer linear programming and simu-
lation.*e aim is to determine the optimal number, location,
and schedule of Check-in counters to be opened for
departing flights, such that a given service level is ensured. In
[13] the authors present a hybrid methodology to simulate
the Check-in problems using an evolutionary algorithm that
considers several constraints combined with a discrete event
simulator that models the passengers’ behaviour. In [14], the
authors propose a static policy for the optimal allocation of a
fixed number of dedicated Check-in counters serving a

single flight. *e objective is the minimization of the total
cost of waiting counter operations and passenger delay. An
improvement has been proposed in [15] where the authors
consider the queuing optimization while developing a sto-
chastic dynamic programming model able to determine the
optimal numbers of counters to open in a given time
window. In [16], the authors consider a more complex and
complete problem suggesting a novel methodology which
combines an evolutionary algorithm and simulation. *e
algorithm solves the allocation problems considering the
minimum and maximum number of Check-in counters per
flight, load balance in the Check-in areas, opening times of
Check-in counters, and other restrictions imposed by the
level of service agreement. Once the solutions are obtained
through the algorithm, a second evaluation is performed by
using a simulation model of the terminal that takes into
account the stochastic aspects of the problem, with the
objective of determining the most efficient allocation that
maintains the quality indicators at the desired level.

As for the integration of service performance and pas-
sengers’ expectation and satisfaction, many papers study the
passengers’ profiles and the perceived service quality.

In [17] the authors provide information on the low cost
airlines passengers’ behaviours, as well as managerial and
research implications for effective passenger relationship
management at two major British airports. In [18] authors
provide passengers’ assessments by considering some not
observable features that depend on the management and the
airport characteristics. *ey reach the conclusion that the
quality assessment improves when price competition and
private attendance affect the management. In [19] the au-
thors compare different multicriteria evaluation methods to
analyze passengers’ preferences and satisfaction with respect
to the performed passenger service. In [20] the authors
combine optimization and simulation to model the airport
passenger flow and to assign the resources to tasks in order
to improve the level of services.

*e specific problem of optimizing the Check-in process
and customer satisfaction has been examined by several
authors.

*e paper [10] deals with the optimization of the Check-
in desks schedule by determining the optimal number of the
Check-in gates to balance the operative costs of the service
and the passenger waiting time. In [21] the authors propose a
mathematical model for the optimal management of the
Check-in process, in which the objective function represents
a measure of personnel costs associated with the delivery of
the service. Available shift systems are taken into account, as
a constraint for the model. *e paper [22] presents a linear
programming model to define an operators schedule that
also meets the passenger arrival which varies during the day.
In [14] the objective is to minimize the (expected) total cost
of waiting, counter operation, and passenger delay costs
which they show to be convex in the number of counters
allocated. Only a few authors analyze the problem of
minimizing costs related to the Security Control barriers. In
[23] a model is presented for the security gates of a typical
American airport. *e model includes parameters such as
the flow profile of the passengers and the counters activated
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in every procedure. In [24] the minimum walking distances
of passengers, the minimum idle time variance of each gate,
the minimum number of flights at parking apron, and the
most reasonable utilization of large gates are selected as the
optimization objectives. Probably the reason of the little
interest in optimizing of the Security Control process lays in
the fact that the objective function is convex that makes the
problem easy to solve (as shown in Subsection 3.2).

3. Problem Description

In this section the addressed problem is described. It consists
in optimizing the management of Check-in counters, pas-
sengers’ migration, and Security Control gates that char-
acterize the airport land side area departure operations.
Departing passengers go through the Check-in controls and
then migrate towards the Security Control gates. *e ob-
jective of airline companies is to minimize the costs of
activating the Check-in counters; the aim of the airport
management is to minimize the cost of activating the Se-
curity Control gates. On the other hand, passengers prefer a
limited queue both at the Check-in counters and at the
Security Control gates and a fast path between the two areas.
Hence the average length of the path between the Check-in
area and the Security Control gates should be minimized by
assigning the Check-in counters closer to the Security
Control area to the companies with the highest number of
passengers.

Figure 2 reports on a simple schema of the passenger
flow in the land side area of the terminal. Departing
passengers can either go to the Check-in area or use the
Check-in kiosks or directly go to the Security Control
gates, if they have passed the Check-in online. *e first
group of passengers can be tourist or business passengers
and access either the common Check-in area or the
dedicated one. As the name suggests, a common Check-in
counter processes passengers going to several destinations
of a given airline company, while a dedicated Check-in
counter processes only the passengers of a specific flight.
Business and tourist passengers can travel in a group and/
or can carry a certain number of suitcases. Service time by
Check-in operators depends on the number of people in
the group and on the number of luggage. Smart passengers
use the online Check-in procedures. *e three main flows
of passengers can either directly go to the Security Control
gates or pass through the shopping area before reaching
the Security Control barriers. Such passenger behaviour
determines the arrival profile at the Security Control gates
and affects the main travel time of the passengers from the
Check-in area to the Security Control area. Service time at
the Security Control gates increases if the passenger has a
hand luggage.

Given the terminal layout, a stochastic passenger arrival
and type distribution, and a set of departing flights in a time
slot, the decision support system determines the number of
Check-in counters to be activated for each company, their
type (common or dedicated), their position, and the number
of the Security Control gates which minimize the activation
costs and, at the same time, maximize the passengers’

satisfaction, allowing the passenger flows to be as much fluid
as possible.

In this paper, Naples Capodichino International airport,
located in Naples, Italy (NAP in the international IATA
code), has been chosen as case study.*e land side of NAP is
composed by Terminal 1 (T1) and Terminal 2 (T2) (see
Figure 3).*e passengers’ flow on T1 is modelled (since T2 is
used only in spring and summer season and for charter
flights). Passengers entering T1 access the Check-in oper-
ations on the ground floor where Check-in counters and
kiosks are located. Afterwards, passengers migrate to the
Security Control gates located on the first floor that also
presents some shops and food services that passengers can
visit before accessing the Security Control gates.

*e problem has been modelled and solved for both a
single airline company and several airline companies. When
the authors examine just one airline company, Alitalia is
considered, since 61% of the total number of the flights per
day in NAP belongs to it.

3.1. Problem Formulation. *is subsection defines param-
eters and variables used to formulate the complete problem.
As highlighted above, each passenger can belong to one of
the following five different categories of the set C:
C � d, c, dB , cB{ }, where sm passengers can directly access
the Security Control gates, d passengers are served by
dedicated Check-in counters, c are served by common
Check-in counters, dB passengers have a business class ticket
and are served by a dedicated Check-in counter, and cB

passengers have a business class ticket and are served by a
common Check-in counter.

*e parameters are as follows.

(i) N is the number of airline companies
(ii) F is passenger distribution, which involves arrival

times and categories
(iii) Qcat is the tolerable length of the queue for a pas-

senger belonging to category cat ∈ C

Decision variables related to the i − th airline company
are as follows.

(i) ci: number of common Check-in counters activated
(ii) di: number of dedicated Check-in counters

activated
(iii) cBi: number of common Check-in counters acti-

vated for business passengers
(iv) dBi: number of dedicated Check-in counters acti-

vated for business passengers

In addition, scc identifies the number of Security Control
gates activated and Qsc represents the tolerable length of the
queue for a passenger at the security gates. *e variables are
all integer and nonnegative.

Due to the complexity of the problem and the ran-
domness of the passengers’ behaviour, the objective function
value and the arrangement of the passengers in the queues
are computed by a discrete event system simulator. In
particular, the value indicating the arrangement of the
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passengers in the Check-in area is denoted by PinQcat and
identifies the average number of passengers belonging to the
category cat ∈ C in a queue. Analogously PinQsc identifies
the average number of passengers in line at the Security
Control gates.

3.2. )e Objective Function. *e objective function involves
the following cost items: (C0) is the cost for activating a
Check-in counter; (Csc) is the cost for activating a Security

Control gate; (CPsc) is the discomfort cost of the passenger
at the Security Control queue; (CPcB) is the discomfort cost
of a business passenger at a common Check-in counter
queue; (CPdB) is the discomfort cost of a business passenger
at a dedicated Check-in counter queue; (CPc) is the dis-
comfort cost of a tourist passenger at a common Check-in
counter queue; and (CPd) is the discomfort cost of a tourist
passenger at a dedicated Check-in counter queue [10, 20].
Hence, the objective function OF, to be minimized, is

OF � 
N

i�0
C0 ci + di + cBi + dBi(  + Cscscc + CPscmax PinQsc − Qsc, 0(  + CPcBmax PinQcB − QcB, 0( 

+ CPdBmax PinQdB − QdB, 0(  + CPcmax PinQc − Qc, 0(  + CPdmax PinQd − Qd, 0( .

(1)

Constraints are



N

i�1
ci + cBi + di + dBi( ≤Maxck− in, (2)

scc≤Maxsc, (3)

ci, di, cBi, dBi, scc ∈ Z
+
. (4)

Parameters Maxck− in and Maxsc identify the maximum
number of Check-in counters and Security control gates,
respectively. Hence, the set of constraints [25] bounds the
number of Check-in counters due to the physical capacity of
the airport. Analogously [26] bounds the number of Security
control gates. *ese sets of constraints are referred to as
capacity constraints.

X and Y are the sets of integer decision variables: X �

ci, di, cBi, dBi  is the set of variables related to the Check-in
counters and Y � scc{ } is the set of variables related to the
Security Control gates.

*e analysis of the objective function can be done by
considering its trend when one of the decision variables
varies and the others are constant. Figure 4 reports on the
trend of the objective function for only one airline company.
*e trend of the objective function with respect to the Se-
curity Control Check gates (Y) is convex, while its trend, as a
function of the Check-in counters variables (X), presents
many valleys and then many local minima.

*is characteristic requests an optimization approach
that is able to get away from local minima.

4. OptimizationModule: The SurrogateMethod

*e Surrogate Method was proposed by Gokbayrak and
Cassandras to solve stochastic discrete optimization prob-
lems with not negative integer decision variables [27]. *e
Surrogate Method provides good results in various appli-
cation areas finding good or suboptimal solutions for the
original discrete problem and assuring very fast convergence
[25–28]. In a previous work [29], the authors firstly test the
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Surrogate Method to a similar problem with a single airline
company and some restrictions on passenger categories.

With respect to the cited paper in this work the authors
better fit the Surrogate Method parameters to the addressed
problem. To this aim, a detailed study of the gradient step
size is here reported. Moreover, the authors now provide a
comparison with different version of commercial tools that

validate the effectiveness of the Surrogate Method. Finally,
the solution approach is generalized up to four airline
companies (instead of only one).

In general, the Surrogate Method transforms the discrete
problem into a surrogate continuous problem. *e discrete
problem is also denoted as the original one that is the
problem that has to be solved, while the surrogate
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Figure 3: Terminal 1 of Naples Capodichino Airport.
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continuous problem is obtained by the relaxation of the
integer constraints of the original problem. *e continuous
problem is solved by applying the standard gradient-based
procedure. *is procedure presents two distinctive features
that make the Surrogate Method more efficient and effective
as follows.

(i) *e cost of the discrete system is cyclically adjusted;
i.e., the updating of the continuous and discrete
states is computed at each iteration of the algorithm,
rather than at the end when the best solution in the
continuous field has been checked (step 14 of Al-
gorithm 1). Since the best solution in the continuous
field does not necessarily correspond to the best
solution in the discrete field, this feature allows
evaluating the effectiveness of the solution in the
discrete field and increasing the probability of
finding a good solution for the original problem.

(ii) In the classical gradient procedure, when the con-
tinuous solution has been updated, the gradient is
computed in the continuous field, while in the
Surrogate Method the gradient is evaluated in the
discrete field (step 16 of Algorithm 1). Hence, the
gradient direction is influenced by the trend of the
solution in the discrete field.

*e specific application of the Surrogate Method to the
problem addressed in this paper has been sketched in Al-
gorithm 1, where the reader can find the steps of the al-
gorithm on the left side and the comments on the right side.
*e comments in bold represent the main phases of the
algorithm.

Parameters H and K represent the maximum number of
consecutive iterations where the solution does not improve,
and the maximum number of iterations of the algorithm,
respectively.

Vector Z � (X, Y) is an integerM-dimensional decision
vector where each component denotes the number of re-
sources that have to be activated, subject to the capacity
constraints [25, 26, 28]. OF(Z) is the cost of the solution
when the state is Z. *e integer constraint is relaxed and a
resulting surrogate problem is obtained. Steps from 4 to 13
form the selection set S(ρk) that is the set of the discrete
vectors (not necessarily feasible for the original problem)
used to compute the gradient (see [27] where the authors
prove the effectiveness of this procedure).

When and if a solution of the surrogate problem ρk is
obtained, it is possible to map it through the transformation
function f into a discrete point zk � f(ρk), which is the
solution of the discrete problem. Function f selects the in-
teger d that minimizes the difference |d − ρk| as reported in
step 14.

Note however that the sequence ρk , k � 1, 2, . . .,
generated by an iterative scheme to solve the relaxed
problem, consists of real-valued solutions which are un-
feasible for the discrete problem.

Here, the key feature of the Surrogate Method that at
each iteration k of the scheme updates the discrete state zk

through the function f: zk � f(ρk) as ρk is highlighted. *en
the state is updated. Notice that the choice of the step size
(ηk, in step 16 of Algorithm 4) determines the performance
of the convergence rate, as usual in the classical gradient
procedure.
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Steps from 17 to 23 update the optimal solution in the
discrete field (step 24).

In Figure 5, the integration of the simulation module
into the optimization module is represented. Given the
capacity constraints of Check-in and Security control
areas and the number of companies as input, the Sur-
rogate Method starts from a random feasible solution and
determines the selection set S(ρk) described in Steps 5–13
of Algorithm 4. *e input to the simulation module
consists of information related to the airport layout, the
flights’ schedule, and the passenger flow, since it is sup-
posed to simulate the stochastic behaviour of the
passengers.

Note that, for each updating step of the Surrogate states
(step 16 of Algorithm 1) the objective function value is
computed M + 1 times by the simulation module. Hence, it
becomes crucial to develop an efficient simulation module
which performs an acceptable computation time. A discrete
event simulator is implemented with Java.

5. Simulation Module: The Parameters

*e section examines the problem parameters and as-
sumptions for the instances processed by the simulation
module.

*e model is a discrete event simulation model: the state
of the system changes when asynchronous events occur.
Each event occurs at a particular time; thus the simulation
can directly jump in time from one event to the next. *e
computation of the objective function value is possible
thanks to the simulation of the passenger flow, represented
by the formation of the queues at the Check-in counters or at
the Security Control gates (see [30]). *e simulator provides
also the waiting time of the passengers at lines and the
routing to reach Security Control gates. In order to simulate
the passenger flow it is necessary to introduce some sim-
plifying assumptions as follows.

(i) Discretization of the problem: the time horizon T is
divided into intervals with constant duration t. *e
problem becomes a discrete problem, and all the
parameters and variables are referred to each in-
terval t. *e simulation time is divided into 32 time
slots, each of 15 minutes.

(ii) Arrival distribution: Check-in service demand
can be expressed in terms of passengers, repre-
sented by stochastic variable. *e passengers’
arrival distribution is shown in Figure 6. In each
time slot the interarrival time is uniformly dis-
tributed. *ree types of passengers are here
considered: business, travelling alone and with
one baggage only; tourist travelling alone or in
groups up to 4 people carrying from 0 to 4
luggage; and smart who skips the Check-in op-
erations and goes directly to the Security Control
gates. 10% of the passengers are business pas-
sengers while 90% are tourist passengers. It is
assumed that 75% of passengers use the airport
counters, 20% use the Check-in online (smart

passengers), and 5% use the kiosk. 60% of pas-
sengers proceed directly from facility to facility
and the remaining 40% spend time in bar or
shops (a uniform distribution from 5 to 25
minutes has been considered). Moreover 60% of
passengers know the airport or/and have no
orientation or physical impediments and take the
shortest path to reach their destination. 25%
spend 10% more and the remaining 15% spend
20% more to reach their destination with respect
to the shortest path travel time (this might be due
to some moving speed limitations by old people
or families with babies and/or to the preference
of visiting shops before reaching the Security
Control barriers).

(iii) Service time: service time represents the time
needed to process the passenger. As already men-
tioned, this study takes into consideration two types
of Check-in counters: common to the flights of the
same airline company or dedicated to a specific
flight of an airline company. 60% of the Check-in
counters are common, whereas 40% are dedicated.
At the Check-in counter, the processing time is
based on the number of bags. Each bag needs
0.5mins to be processed. 60% of business passen-
gers have no luggage and 40% have only one
suitcase. Let G be the number of people of the group
each passenger belongs to. Nlug is the number of
luggage for each passenger. Four categories of
tourist passengers, each identified in a column of
Table 1, are considered.

(iv) At the Security Control gate, it is assumed that the
processing distribution is k-Erlang distribution with
k� 0 and mean� 0.5.

(v) Unit costs to evaluate the objective function are
provided in Table 2 [31].

*e maximum number of Check-in counters that can be
opened is 56, while the maximum number of Security
Control gates is 25. *e tolerance threshold for the length of
the line is set to 10 for business passengers and 15 for the
others.

*e results reported in the following are the mean values
calculated on 20 different runs with the same probability
distribution of the simulation parameters.

6. Results Analysis

*is section reports on the test results highlighting the efficacy
and effectiveness of the solutions provided by the Surrogate
Method. *e rate of convergence of the Surrogate Method
depends not only on the characteristics of the objective
function but also on the choice of the step size (ηk in Algo-
rithm 4, step 16). For this reason, different step sizes and two
different procedures are considered: one static (just one value
for ηk) and one dynamic (ηk changes considering the gradi-
ent’s value). In the static procedure, ηk varied from 0.01 to 0.9
with step 0.01, whereas the choice of the dynamic procedure is
reported in Table 3, where five different options are examined.
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To prove the good performance of the Surrogate
Method, a comparison with different versions of OptQuest
(v1, v2, and v3) is reported. Since the genetic algorithms
performances typically depend on the initial population

dimension, different numbers of initial individuals have
been considered. In v1, the dimension of the initial pop-
ulation is fixed to 100 as proposed by Laguna; in v2, it is
increased to 200; and in v3, it is equal to 300. When only one

S (ρk) = {z1, …, zM}, M + 1
feasible solutions 

[Steps 5–13]

[Steps 2-3]

Update ρk + 1 and Zk + 1[Steps 16–22]

J (z1 )…J (zM) 

k = k + 1
Is a stop 

condition 
satisfied?

ρk + 1, zk + 1

NO YES
z∗
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Simulation module
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Passengers flow,
airport layout,

flights schedule

[Step 24]

Figure 5: General scheme of the proposed approach.

(1) Initialize ρ0 � z0 satisfying constraints [25, 26] (ρ0 is a continuous vector, z0 is a discrete vector, both of dimension M + 1)
(2) Initialize ρ∗ � ρ0, z∗ � z0 (ρ∗ is the optimal solution of the continuous problem)
(3) Initialize h � 0
(4) while ((k≤K)∨ (h≤H)) do (K and H integer parameters, Form the selection set S(ρk) (steps 5–13): S(ρk) is a set of discrete

vectors)
(5) Initialize I� 1, . . . , M{ } and v � ρ − [ρ] (I is the set ofM integers, v is a continuous vector the component v[i] is the decimal part

of the ρ[i] component)
(6) while I≠ θ do
(7) i � argminj∈I(v[j])

(8) y[i] � v[i]

(9) Wi � j∈Iej (Wiinteger vector, ejthe versor with j-th component equal to 1)
(10) v � v − y[i]Wi

(11) I � I\ i{ }

(12) end while
(13) S(ρk) � Wi − ρ, i � 0, . . . , M  (Transform the continuous problem to the discrete problem, D is the set of the discrete

vectors that satisfy constraints [25, 26, 28])
(14) zk � f(ρk) � argmind∈D‖d − ρk‖ (Transformation function f, Gradient estimate)
(15) ∇OF(ρk) � [∇1OF, . . . ,∇MOF]T (OFObjective function declared in [29], where∇jOF(ρk) � OF(p) − OF(q), where k satisfies

p − q � ejand p, q ∈ S(ρk), Update state)
(16) ρk+1 � f[ρk − ηk∇OF(ρk)] (ηkis the step size of the gradient method, Optimal solution update)
(17) if OF(ρk)≤OF(ρ∗) then
(18) ρ∗ � ρk

(19) h � 0
(20) else
(21) h � h + 1
(22) end if
(23) end while (Return the optimal solution z∗)
(24) Return z∗ � argminzk

OF(zk)

ALGORITHM 1: *e Surrogate Method.
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company is taken into consideration the different optimi-
zation algorithms give similar results, but when the problem
becomes more complex the dominance of the Surrogate
Method is evident, as reported in Table 4. In the column
“Surrogate” the values of the objective function and of the
processing time of Surrogate Method are reported. It gives
the best performances. *e percentage results are calculated
with respect to this best solution and are given by the dif-
ference between the compared and the best solution values,
over the value of the best solution, times 100. *e costs are
measured in thousands of euro; the computation time is
measured in seconds.

OptQuest versions give worse performance with re-
spect to the Surrogate Method, from 2.5% to 52.5% for the
efficacy and from 33.2% to 287% for the efficiency. When

OptQuest is faster with respect to the Surrogate Method,
it does not converge to the optimal solution; in fact the
cost is 52.5% more expensive with respect to the solution
of the Surrogate Method. When four companies are
considered the OptQuest approach does not converge at
the optimal solution considering the number of itera-
tions limited to 45 (see Figure 7). *e number of iter-
ations is limited to 45 since the analysis of the rate of
convergence guarantees the convergence of the Surrogate
Method for the Check-in problem to 35 iterations (see
Figure 8).

When several companies are considered the problem
becomes more complex since the dimension of the de-
cision vector is bigger and the objective function presents
a higher number of local minima, hard to jump out. As
highlighted above, the evaluation of the Security Control
solution is not a difficult task (see Figure 4), but it can
significantly increase the computation time of the Sur-
rogate Method, since the research space has one more
component. In fact, the dimension of the decision variable
vector for one company presents |Z| � 5 and |X| � 4, for
two companies |Z| � 9 and |X| � 8, and for four compa-
nies |Z| � 17 and |X| � 16. For this reason the Surrogate
Method needs more iterations to find the optimal solu-
tion. It could be a valid solution to apply it to the Check-in
problem only and to calculate the best Security Control
solution via enumeration.

*e problem assuming X as decision variables and only
the constraints [25, 26] minimizes the following objective
function:

Table 1: Percentage distribution of variable Nlug in the four cat-
egories G1, . . . , G4.

Nlug G1 G2 G3 G4
0 41 15 10 7
1 43 40 33 14
2 5 40 30 8
3 1 5 27 71

Table 2: Unit costs.
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Figure 6: Passengers’ arrival distribution.
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OF(X) � 
N

i�1
C0 ci + di + cBi + dBi(  + CPcBmax PinQcB − QcB, 0(  + CPdBmax PinQdB − QdB, 0(  + CPcmax PinQc − Qc, 0( 

+ CPdmax PinQd − Qd, 0( .

(5)

Table 5 reports on the analysis of the convergence time
(in seconds) for the dynamic step size type 1. Varying the
number of companies on the rows, the second column
reports the total convergence time to compute the best
solution of the Check-in and Security Control problems,
with X and Y decision variables, whereas “Check-in” and
“SC (tot. enum)” report on the convergence times to solve

two problems of Check-in counters and Security Control
gates separately. Notice that the total enumeration is applied
after the Surrogate Method has fixed the Check-in solution.
*e sum of the values in columns three and four is lower
than the value in column two, and the percentage of such
time saving (with respect to column two) is reported in the
fifth column. By observing the values in column three, it can
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Figure 7: Algorithms’ trend considering 4 companies.

Table 3: Dynamic η values.

η dynamic |∇OF(ρk)|< 25 25< |∇OF(ρk)|< 50 50< |∇OF(ρk)|< 100 100< |∇OF(ρk)|< 200 200< |∇OF(ρk)|< 100000

Type 1 η � 0.06 η � 0.03 η � 0.02 η � 0.01 η � 0.007
Type 2 η � 0.2 η � 0.07 η � 0.03 η � 0.02 η � 0.005
Type 3 η � 0.1 η � 0.05 η � 0.025 η � 0.01 η � 0.005
Type 4 η � 0.09 η � 0.04 η � 0.02 η � 0.01 η � 0.005
Type 5 η � 0.8 η � 0.06 η � 0.03 η � 0.02 η � 0.005

Table 4: Comparison between the Surrogate Method (dynamic η type 1) and OptQuest performances.

Companies
Surrogate Method OptQuest v1 OptQuest v2 OptQuest v3

Cost Comp. time Cost Comp. time Cost Comp. time Cost Comp. time
1 120 2.92 +11.5% +139.5% +5.7% +217.2% +2.5% +287.5%
2 230 14.06 +26.1% +33.2% +17.5% +116.9% +15.9% +195.9%
4 484 99.92 +52.5% -0.94% +33.3% +69.6% +22.3% +154.8%
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be noticed that the convergence time does not increase with
a linear trend with respect to the number of companies (i.e.,
the convergence time for two companies increases by 443%,
rather 100%, with respect to the convergence time of the
problem with one company only). *e two problems of
Check-in and Security Control optimization can be effec-
tively considered separately. In fact when applying the
Surrogate Method to the whole problem or the Surrogate
Method plus the total enumeration to the separate problems
the optimal solutions coincide. Hence it is convenient to

solve the two problems’ time saving separately until the
56.4% of the convergence time.

In Table 6, the first set of results reports on the best so-
lution given by dynamic type 1 that is the values of the ob-
jective function (Cost) and convergence time in seconds. In
the following columns, values represent the percentage vari-
ation with respect to the solution given by dynamic type 1
(hence, if the value is positive, the related solution is worse
than dynamic type 1). *e table shows the best performances
of the SurrogateMethod solving the problemwith andwithout

Table 5: Convergence time analysis for the dynamic type 1.

Companies Check-in + SC Check-in SC (tot. enum) Time saving%
1 3.91 2.2 0.71 − 25.5
2 21.27 10.5 2.42 − 39.2
4 140.56 52.7 8.57 − 56.4
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Figure 8: Rate of convergence for different step size with or without Security Control gates.

Table 6: Performance of the Surrogate Method.

Companies
Dynamic type 1 Dynamic type 2 Static 0.07 Static 0.09

Cost Conv.
time Cost Conv.

time Cost Conv.
time Cost Conv.

time
Surrogate Method applied to the Check-in problem
1 120 2.2 +1% − 50% +1% − 10% +2% 0%
2 237.4 10.5 +4% − 30% +32% − 60% +33% 60%
4 484.3 52.7 +9% − 4% +160% − 88% +144% − 86%
Surrogate Method applied to the Check-in and Security
Control problems
1 246.28 3.91 +2% − 50% +3% − 1% +4% − 6%
2 487.19 21.27 +4% − 39% +60% − 14% +130% − 40%
4 950 140.56 +8% − 4% +86% − 78% +85% − 76%
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the Security Control variable. For a single company, the step
size does not affect the convergence time and value of the
Surrogate Method. When the number of companies increases
the objective function trend presents deeper local minima,
hence the static step does not jump out of local minima. Such
trend persists with and without the Security Control variable.

In Figure 8, the rate of convergence is reported; 80 it-
erations are considered. It is evident that the Surrogate
Method applied both to the Check-in and to the Security
Control problems needs a higher number of iterations to
converge to the optimal solution (or get closer to the op-
timal): for the dynamic step size the whole problem (Check-
in and Security Control) requires 65 iterations to converge,
whereas for only the Check-in control problem 35 iterations
are enough. *e trends of the results related to the Surrogate
Method with and without the Security Control problem are
the same and simply shifted upwards (when considering the
Security Control problem the objective function also
comprehends the additional costs for activating the Security
Control gates; hence, the total costs lines shift upwards due
to such additional terms).

With regard to the discomfort costs, the results related to
the test instance show that the queues at the Check-in
counters, for all the Check-in types, tend to satisfy the
tolerance threshold Qcat; on the contrary, there is an ad-
ditional discomfort cost for the Security Control gates.

7. Conclusions

*is paper presents an efficient and effective algorithm to
determine the number and the position of critical resources
at the airport terminal departure operations. An integrated
approach based on discrete event simulation (simulation
module) and the Surrogate Method (optimization module)
is proposed to minimize a generalized cost function that
takes into account not only the managing costs but also the
passengers’ satisfaction. *e Surrogate Method is compared
to the well-known OptQuest algorithm, and the results put
in evidence the effectiveness of the Surrogate Method, which
provides better performances thanks to its ability of jumping
out of local minima. *e integrated approach might be
useful both in optimizing an airport departure area and in
designing the size and the layout of the departure area of a
new airport.
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the data can be available on request.
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