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An in-silico assessment of the performance of 3D video-fluoroscopy for the analysis of the kinematics of long bones is proposed.
A reliable knowledge of in-vivo joints kinematics in physiological conditions is fundamental in the clinical field. 3D video-
fluoroscopy theoretically permits a mm/deg level of accuracy in joint motion analysis, but the optimization algorithm for the
pose estimation is highly dependent on the geometry of the bone segment analyzed. An automated technique based on distance
maps and tangency condition was applied to the elbow bones. The convergence domain was explored to quantify and optimize
measurement accuracy in terms of bias and precision. By conditioning the optimization algorithm using simple image features,
the estimation error had small dispersion (interquartile range within 0.5 and 0.025 mm/deg for out-of-plane and in-plane pose
parameters, resp.), but with occasional bias and outliers. 3D video-fluoroscopy produced promising results for the elbow joint, but
further in-vitro validation studies should be carried out.

1. Introduction

3D video-fluoroscopy is a technique for the evaluation of
joint kinematics based on the alignment of 3D models of
bones or prostheses and series of 2D radiographic images
representing the relevant monoplanar or biplanar projec-
tions [1]. The joint kinematics is reconstructed calculating,
independently for each video-frame, the 6 degrees of free-
dom (DOF) absolute pose (3 translations and 3 rotations) of
each body segment, and then calculating the 6 DOFs of their
relative pose.

Reliable knowledge of in-vivo joint kinematics, in phys-
iological conditions, is fundamental for various clinical
applications: (i) the study of prosthesis design must aim at
the replication of intact joint biomechanical function [2, 3];
(ii) the development of quantitative diagnostic tools can help
the detection of pathological alterations in motion [4], and
(iii) the outcomes of orthopaedic surgery must be quantified
to find correlation with the recovery of physiological joint
motor activities [5, 6]. Moreover, from a methodological
point of view, accurate methods are necessary to validate and
to evaluate errors associated with non-invasive techniques

for the quantification of motion (i.e., inertial sensors, stereo-
photogrammetry [7]). 3D video-fluoroscopy could provide
this knowledge, because it theoretically permits to achieve
a millimetre/degree accuracy level in joint motion analysis
[8, 9], with relatively high dynamic performances (up to
more than 50 fps with modern fluoroscopes), sufficient to
analyze the motion during activities of daily living, and
simple joint-specific tasks that can be performed inside the
fluoroscopic volume (Figure 1).

In-vivo knee tasks, such as squat, stair climbing, chair
raising and sitting or step up-down, were widely analysed
with 3D video-fluoroscopy in replaced [10–13] and intact
knee [14]. 3D video-fluoroscopy was also applied to quantify
the in-vivo kinematics of ankle [15] and hip [16, 17] joints.

To estimate the 6 DOF of a bone segment in a frame
acquired by video-fluoroscopy, a 3D model of the bone is
virtually moved until it is best aligned to the relevant 2D
image. This automatic procedure is typically carried out
by means of an iterative optimization algorithms. Different
metrics have been used to quantify a cost or a fitness
function for the optimization such as: (i) the euclidean
distance between the contour of the virtual projection of
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Figure 1: Configuration of a single-plane fluoroscopic acquisition
system.

the model and the contour extracted from the fluoroscopic
image [8, 18], (ii) the root mean square distance between
the projection lines and the model surface [2], (iii) similarity
measures between the fluoroscopic image and digitally
reconstructed radiographies [19–23].

Promising accuracy levels have been reported for the
intact knee joint: 0.23 mm for translation, 1.2 deg for
rotation with biplanar fluoroscopy [22]; and 0.42 mm for
in-plane and 5.6 mm for out-of-plane translations, 1.3 deg
for rotation for monoplanar fluoroscopy [24]. However,
these accuracies cannot a priori be considered valid for the
other joints. Even if biplanar fluoroscopy is more robust, the
present work focused on monoplanar fluoroscopy because it
can investigate bigger volume with smaller X-ray dose for the
patient.

The performance of 3D-fluoroscopy is affected by the
geometry of the bone segments analysed, and its accuracy
could vary considerably because local minima, caused by
symmetries of the models surfaces, or by occlusions, could
severely interfere with a correct estimation of the pose.
Therefore, the technique is highly dependent on the initial
guess of the pose for the optimization which is typically spec-
ified manually. However, the extent to which the intervention
of the operator can affect the final reliability of the pose
estimation has not been clarified yet. Therefore, 3D video-
fluoroscopy might currently still be operator-dependent [18]
and the application of 3D video-fluoroscopy is still too
cumbersome to be suitable for routine clinical practice. The
high potential of the method for routine clinical applications
cannot be exploited without a concrete automation of the
procedure, involving an automatic estimation of the initial
guess of the pose. Therefore, the convergence domain of the
optimization must be characterized in detail, exploring how
different algorithms behave around reference poses.

Currently, no fluoroscopic methods have been applied to
the in-vivo kinematics of the elbow joint. This joint has, how-
ever, been characterized ex-vivo [25], with Roentgen Stereo-
photogrammetric Analysis (RSA) [26, 27], and electromag-
netic tracking systems [28], as well as in-vivo with non-
invasive technique such as infrared stereo-photogrammetry
[29], or nuclear magnetic resonance (MRI) [30]. Infrared
stereo-photogrammetry, however, suffers accuracy limits
due to soft tissue artifacts (20–48% of loss of rotational
motion of the upper arm [31, 32]), while MRI fails to

detect the effect of the active contribution of muscles to
the motion. Even though fluoroscopy has not yet been
applied to the elbow, this joint is of particular interest
for its validation because it is characterized by (i) a high
degree of bone superimposition, (ii) being composed by
thin long bones (in contrast with the typical morphology
of knee prosthesis), and (iii) marked longitudinal cylindrical
symmetries (especially for the radius). These aspects make
the fluoroscopic analysis of the intact elbow considerably
difficult, thus particularly suitable for a validation study.

To significantly improve the quality and the robustness of
3D video-fluoroscopy, it is necessary to understand the effect
of the various sources of errors on the final accuracy. For this
purpose, an analytic approach is necessary in order to find
appropriate solutions to each single defect of the method.

In the present study, we analysed, by means of computer
simulation, the convergence property of a modified version
of the pose estimation algorithm proposed by Lavalleé and
Szelinsky [33] and based on adaptive distance maps (ADM),
in order to better understand the influence of local minima
and to optimize the pose estimation in terms of accuracy
and precision. This algorithm was chosen because of its light
computational weight and because it permits to achieve good
accuracies even with incomplete contours [2], which can
arise from occlusions or image blurring due to the bone
motion.

In this evaluation study we considered (i) the geometric
characteristic of the bone models, (ii) the resolution of the
fluoroscopic projections, and (iii) the resolution of ADM as
the only sources of errors. Confounding effects caused by
the geometric distortions, by errors in the calibration of the
fluoroscopic models, or by the incompleteness of the bone
contours were disregarded in the present study.

The aim of the present study was to investigate the
suitability of 3D video-fluoroscopy for the analysis of elbow
bones kinematics, through a detailed exploration of the
convergence domain of the minimization algorithm, in order
to quantify and optimize measurement accuracy in terms of
bias and precision.

2. Material andMethods

2.1. Pose Estimation Algorithm. An established technique was
implemented to estimate the 3D pose of an object of known
3D geometry given its monoplanar fluoroscopic projection
[2]. The algorithm was originally proposed by Lavallée
and Szeliski [33] for biplanar projection, and is based on
3D adaptive distance maps. In brief, (i) the fluoroscope
is virtually modelled with a perspective projection model;
(ii) the 3D pose estimation is obtained with an iterative
procedure that finds the best alignment between a bone
surface model and its 2D fluoroscopic projection (typically
a 1024 × 1024 DICOM image). In the present study, the
bone surface was modelled with triangles meshes, however
different representation can be used (i.e., cloud of points,
NURBS). The resolution of the meshes was not relevant,
because the images for the alignment were generated in-silico
projecting exactly the same models. There was, thus, a perfect
correspondence between the 3D model and the projection
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independently from the meshes properties. The quality of the
alignment is represented by a cost function defined as:
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RMSD is the root mean square distance between the surface
Sm(p) of the model m positioned in the pose p = (Tx Ty Tz,
Θx, Θy, Θz) and n projection lines l. The projection lines
l represent the X-rays that generated the edge points of the
bone segment projection extracted by a Canny edge detector
[34] in the fluoroscopic image and is expressed in parametric
form
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)
λ, λ ∈ [0,Li], (2)

where F= (Fx,Fy ,Fz) is a point representing the X-ray source
position (focus), Ci= (Cix,Ciy ,Ciz) is the ith of the n points
of the contour, both expressed in the fluoroscopic system of
reference, and Li is their distance:

Li = ‖F − Ci‖ (3)

To quantify RMSD, li is sampled and, for each sampling
point Pi

k = li(λk), the distance from Sm(p) is computed.
The distance of the projection line from the surface is then
defined as the minimum distance among those of the line
sampling points:
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The best alignment condition is finally identified finding
the values of the pose p that minimize the RMSD with the
Levenberg–Marquardt (LM) method [35]:

RMSDmin = min
p

(
RMSD

(
p
))
. (5)

The VXL [36] implementation of LM was used in the present
work.

For a faster quantification of the distance d(Sm, li)
between the line and the model surface, and to define the
sampling step of li, adaptive distance maps (ADM) of the
models surface were pre-computed and stored. Briefly, the
ADM is an octree-based representation of an object [37]. In
this representation, the volume outside and inside the surface
of the object is non-uniformly discretized. The map assigns
to each point of the discretization the corresponding signed
distance from the surface of the model: positive if outside,
negative if inside the object. The distance is computed as the
minimum distance between the discretization point and the
surface of model of the bone. The structure of the ADM is
an octree which is built with an iterative procedure which
subdivides a cube (also called octant) iteratively in other
8 half-side octants only if it contains at least one point of
the mesh. The octree is then refined to avoid discontinuities
between the levels of subdivision of two adjacent octants. The
vertices of the octants are the volume discretization points.
The distance of a generic point from the surface is then

computed with a tri-linear interpolation of the distances of
the 8 vertices of the smallest octant containing the point. The
octant side dimension gets smaller closer to the surface, thus
the interpolation error becomes negligible. In the present
work, the resolution of the octree (smallest octant side) will
be referred as DMR (Distance Map Resolution). For a further
improvement of the algorithm speed, also the sampling step
of the projection lines is adaptive. The sampling step varies
accordingly to the local resolution of the ADM and gets
smaller closer to the surface. If sik is the side of the smallest
octant containing the sampled point Pi

k then the next point
to evaluate the distance will be

Pi
k+1 = li(λk+1),

λk+1 = λk +
sik
2
.

(6)

Finally, li is resampled around the closest point to the surface
with a uniform step length ten times smaller than DMR.

A global reference frame was defined with the x and y
axis parallel and z-axis perpendicular to the image plane,
with the origin in the centre of the image plane. The Euler
zxy convention was used for rotations. The field of view was
represented with a diameter of 400 mm. The X-ray source
was virtually placed in F = (0, 0, 1000) mm, representing a
typical distance of a standard fluoroscope, and pixel spacing
was fixed at 0.34 mm. The effects on the final accuracy of the
errors associated to the identification of the principal point
(xy-coordinates of the X-ray source) and principal distance
(z-coordinate of the X-ray source) were disregarded in the
present study as already quantified elsewhere [38]. The X-
rays were represented by a beam of straight lines and the
effect of the geometrical image distortions, caused by the
electronics of the image formation chain of real fluoroscopes
[39], was not considered in the present study because, dealing
with real images, the geometrical distortion can be efficiently
corrected using a global spatial warping techniques [40, 41].

In the implementation of the LM minimization algo-
rithm, 3 parameters must be specified: (i) the convergence
tolerance on the RMSD ( ftol), (ii) the convergence tolerance
on the 6 DOF of the pose p (xtol), and (iii) the step length for
forward (FD) Jacobian computation (eps).

2.2. Algorithm Convergence Properties. High resolution mod-
els of humerus, ulna, and radius were downloaded from
the official site of the European project VAKHUM (contract
#IST-1999-10954 [42]) and used in the performed simula-
tions. For each model two ADM were calculated and stored
with DMR equal to 0.5 and 1 mm.

An anatomical reference frame was associated to each
bone model according to the ISB recommendations [43].
Each model was then placed in a reference pose (parallel
to xy-plane, lateral view, out of plane translation Tz =
200 mm) simulating a typical fluoroscopic frame. Flat shaded
projections were generated and the complete contour was
extracted and then used for the alignment (Figure 2).

The sensitivity of the cost function to each DOF of p
was analysed. The RMSD function was evaluated keeping
5 DOF constant and varying a single DOF at a time, with
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Figure 2: Perspective projection model. The bone model is placed
in a reference position and a flat shaded projection is generated.
The contour points are extracted and the projection lines are back
projected towards the X-rays source.

a step of 0.1 mm/deg, around the reference pose, from −30
to 30 mm/deg for translations and rotations, respectively.
The analysis was repeated for humerus, ulna and radius.
This permitted to evaluate how the shape and the symmetry
of the different bone models influence the minimization.
The RMSD with respect to each DOF analysed, can be
represented as a cusp. The sensitivity (S) of RMSD to the
variation of the pose parameters, was defined as the average
absolute slope between the left and the right tangents of the
curve around its minimum (Figure 3):
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where pm is the value of the generic pose parameter p
correspondent to the minimum of RMSD.

A detailed convergence domain analysis was carried out
for different sets of simulation parameters. The minimization
was started from 1000 randomly-chosen initial-condition
poses among 117649 permutations obtained varying the
translations (ΔTx, ΔTy, ΔTz) and rotations (ΔΘx, ΔΘy,
ΔΘz) between the values −10, −7, −3, 0, 3, 7, 10 mm/deg,
respectively, around the reference pose. The simulations
parameters were initially varied using different values for
DMR (0.5–1 mm), and eps (10−1–10−4 mm/deg) while xtol

and ftol were both kept fixed at 10−3 mm/deg.

2.3. Algorithm Conditioning. Different authors stressed that
the minimization of RMSD is affected by local minima and
by the large differences in the sensitivity to the various DOF
[13, 24]. If the minimization starts from initial conditions
inside a local minima basin, the pose estimation will be
incorrect. Two different solutions were implemented and

compared in order to better deal with the problem of local
minima.

The first, proposed by Fregly et al. [24], involved the
sequential (seq) minimization of the DOF in order of
sensitivity. For this purpose, three groups of DOF were
formed: (i) in-plane pose parameters (Tx, Ty, Θz); (ii) out-
of-plane rotations (Θx, Θy); (iii) out-of-plane translation
(Tz). After this three sequential minimization, the RMSD
was finally further minimized with respect to the 6 DOF
simultaneously.

The second solution (feat) involved the use of features
extracted from the image to get closer to the real pose before
starting the minimization. Two features were calculated on
the bone-contour points: (i) the direction of maximum
variance of the distribution, and (ii) the farthest point from
the field of view border among the projections of the bone-
contour point along the maximum variance axis. The first
feature was used to evaluate a first guess for the bone model
orientation around the projection axis (Θz) , while the in-
plane translation components (Tx, Ty) were estimated using
the second feature. The three DOF were modified iteratively
until convergence, and then the minimization was started as
previously described.

The analysis was repeated for each bone model, using
seq, feat and seq-feat together, with 2 values of eps
(10−1–10−4 mm/deg) and DMR = 0.5 mm.

2.4. Data Analysis. For each set of parameters, the final
deviations between estimated and reference poses, and the
relevant residual RMSD were quantified. Bias and precision
of the final estimates of the pose were quantified calculating
for each DOF the median (m) and the interquartile range
(iqr). For bias results, a Student’s t-test (P < .05) was per-
formed to determine if the values were statistically different
from zero, indicating the presence of a systematic error.
Moreover, to measure how outlier-prone the distributions
were, the kurtosis (k) was also calculated.

To investigate the effects of the different minimization
parameters (DMR, eps, seq, feat, bone models and initial
deviations) on the final estimates and RMSD, an n-way
analysis of variance (ANOVA) was performed considering a
significance level α = 0.05 (with Bonferroni adjustment for
multiple comparisons).

3. Results

3.1. Sensitivity Analysis. The cusp shape of RMSD with
respect to each DOF, except Tz, was verified, while with
respect to Tz, RMSD showed a rounder trend. In particular
the trend of the cost function for the humerus is shown in
Figure 3. Similar trends were obtained also for the ulna and
the radius models.

For all the bone models analysed, the sensitivity analysis
highlighted the presence of an evident global minimum
in correspondence of the reference pose (ΔTi = 0 and
Δθi = 0, i= x, y, z). This was true for all the 6 DOF
but with higher sensitivity for the in-plane DOF, see
Table 1. In particular, the highest sensitivity was obtained
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Figure 3: The root mean square distance RMSD plotted against the perturbation on the translations (a) and rotations (b) for the humerus
bone. The RMSD forms a cusp around its minimum.

for Θz (mean value 8.5e− 1 mm · deg−1) while the smallest
was obtained for Tz (mean value 1.2e−3 mm · mm−1). A
clear local minimum, however, is shown for the humerus at
approximately Δθx = 15 deg (Figure 3), but was not found
for the other bone models. All the sensitivity values of the
radius, excepted STx and Sθz, were approximately one order
of magnitude smaller than those of ulna and humerus. The
RMSD versus ΔTy was asymmetric: since the analysed bone
models were defined with the epicondyles in the middle of
the imaging field, the RMSD grew faster when the model
is moved further out of the imaging field (ΔTy > 0 mm),
slower in the opposite direction. The same behaviour was
found also for ulna and radius, but, since the bone models
were defined in the opposite part of the imaging field, the
RMSD grew faster in the opposite direction, thus for ΔTy <
0 mm.

3.2. Distance Map Resolution. Results of the convergence
domain analysis without conditioning (DMR = 1 mm and
0.5 mm; eps = 10−4 mm/deg) showed that a median error
lower than 1 mm/deg was produced for each bone model and
each DOF. The distributions, however, had large dispersions
especially for Tz and Θx (iqr > 5 mm/deg). Nevertheless, also
for the other DOF we found numerous outliers: k ranged
from a minimum of 8 (Ty of the radius, DMR = 0.5 mm)
to a maximum of 866 (Θz of the radius, DMR = 1 mm).
For all three bone models, with eps = 10−1 mm/deg, the iqr
was larger than 1 mm/deg for in plane DOF and Θy, and
larger than 10 mm/deg for Θx and Tz. Generally, for all three

models and both values of eps, the interquartile ranges were
always smaller when using a DMR = 0.5 mm rather than
1 mm (P < .05). We report in Table 2 the results obtained
for the radius, representing the most problematic case.

3.3. Sequential Alignment. The sequential alignment with
DMR = 0.5 mm slightly decreased the number of local min-
ima and outliers identified by the LM algorithm (Figure 4):
k ranged from a minimum of 1.4 (Tx of the ulna, eps =
10−4 mm) to a maximum of 265 (Tz of the humerus, eps =
10−4 mm). The mean value of k between the models and the
DOF was equal to 31 for eps = 10−4 mm, and equal to 25 for
eps = 10−1 mm.

Using eps = 10−4 mm/deg, the optimization of Tx,
Θz and Θy resulted in median < 0.04 mm/deg, iqr <
0.10 mm/deg even if Θy had a large number of outliers.
Ty had a median < 0.1 mm/deg, with iqr < 0.50 mm/deg:
Figure 4 shows the outliers gathered together only for posi-
tive values of Ty. Especially for the radius, the minimization
process of Θx and Tz tended to prematurely stop during
its descent towards the global minimum, resulting in large
dispersions (median < 0.05 mm/deg, iqr = 5.10 deg and iqr =
4.10 mm, respectively).

Increasing the step eps to 10−1 mm/deg, for all the three
models, the median values for Θx and Tz were smaller than
0.08 mm/deg, with a dispersion lower than 0.45 mm/deg.

3.4. Features. A further reduction of the number of outliers
was introduced by the use of features to estimate an initial
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Table 1: Sensitivity of the RMSD to the variation of the 6 DOF.

Model STx [mm·mm−1] STy [mm·mm−1] STz [mm·mm−1] SΘx [mm·deg−1] SΘy [mm·deg−1] SΘz [mm·deg−1]

humerus 5.5e−1 9.6e−2 1.5e−3 8.2e−3 1.6e−2 8.0e−1

radius 5.7e−1 7.6e−2 0.5e−3 1.0e−3 0.3e−2 9.2e−1

ulna 5.3e−1 1.6e−1 1.5e−3 5.0e−3 2.0e−2 8.4e−1
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Figure 4: Box and whisker plots of the seq alignment with DMR = 0.5, (panels a, b, c) eps = 10−4 mm/deg, or eps = 10−1 mm/deg (panels d,
e, f).

Table 2: Effects of the distance map resolution on the pose
parameters estimates for the radius model.

DOF
DMR = 1 mm DMR = 0.5 mm

m iqr k m iqr k

Tx [mm] −0.03 0.01 20.2 −0.02 0.01 50.7

Ty [mm] 0.26 0.75 8.4 0.21 0.48 9.7

Tz [mm] 0.79 7.15 16.6 −0.2 4.41 47.3

Θx [deg] −0.05 8.5 76.8 −0.11 5.5 74.1

Θy [deg] −0.22 0.12 140.2 −0.19 0.1 293.7

Θz [deg] 0.02 0.02 307.8 0.01 0.02 866.2

guess for the in-plane DOF, (Figure 5). As for the sequential
alignment, the use of a big step (eps = 10−1) for the
FD Jacobian computation, increased the precision of the

estimations of Θx and Tz (for the radius iqr = 0.31 deg
and iqr = 0.24 mm, resp.). The estimation of Tz was biased
for the humerus and radius with medians approximately
equal to −0.7 mm, as was Θy of the radius (median equal
to 0.2 deg), while for the other DOF and for the ulna
the median values were always lower than 0.01 mm/deg.
Considering the humerus and both the values of eps, the
LM algorithm sometimes converged to the local minimum
shown in Figure 5 (Tz ≈ −18 mm, Θx ≈ +18 mm), keeping
the value of k high (medium values: 62 for the humerus, 2.8
for the ulna, 3.3 for the radius).

3.5. Features and Sequential Alignment. The simultaneous
use of feat and seq had no significant effect on the final
RMSD, nor on the errors of the single DOF estimates (P >
.05). The final results obtained for humerus, ulna and radius
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Figure 5: Box and whisker plots of the feat alignment with DMR = 0.5, (panels a, b, c) eps = 10−4 mm/deg, or eps = 10−1 mm/deg (panels d,
e, f).

with eps = 10−1 mm/deg, and DMR = 0.5 mm are reported in
Table 3. The t-test showed that the final estimates were always
statistically different from 0, thus biased.

4. Discussion

In this work, a sensitivity analysis and a convergence
domain analysis of the minimization algorithm for the pose
estimation in 3D video-fluoroscopy were addressed.

The sensitivity analysis showed that the cost function
(RMSD) varies differently with each DOF: the in-plane pose
parameters have a sensitivity at least one order of magnitude
larger than the out-of-plane pose parameters. Moreover,
the performed simulation showed that the cost function
could have different behaviours depending on the analysed
segment (Figure 3): considering Θx, we found a clear local
minimum for the humerus but not for ulna and radius.
For all three models, the RMSD with respect to Ty showed
an asymmetric trend. That is due to the fact that only a
partial part of the bone is included in the imaging field
(Figure 2), thus, given the long diaphysis of the bone, two
different scenarios occur while moving the model along the
y-axis: if the models moves further into the imaging field,

the projection lines coming from the bone contour points
intersect or pass near to the model surface, continuing to
give only a little contribution to the increment of the cost
function. On the other hand, if the model moves further
out of the imaging field, there is no model surface for
part of the projection lines to intersect with, increasing
their contribution to the cost function. The findings about
the RMSD explained the behaviour of the unconditioned
LM algorithm, which was found to be noticeably sensitive
to the local minima of the RMSD. Given the longitudinal
cylindrical symmetry, the estimations of the pose of long
bones were affected by large dispersions not only for Tz,
as previously thoroughly reported for the knee prostheses,
but also for Θx (see Table 2). Moreover, for the DOF with
relative small iqr such as the in-plane pose parameters, the
values of k were high (>8), that is the distributions were
affected by large number of outliers. The ANOVA confirmed
the hypothesis that the higher is the resolution of the distance
map (DMR) the more the accuracy and the precision of the
technique increase (P < .05). However, given the limits of the
resolution of the fluoroscopic image and of the surface model
mesh, a further increasing of DMR would be unnecessary.
For the unconditioned minimization, varying the step for the
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Table 3: Final accuracy in terms of median (m), interquartile range (iqr) and kurtosis (k) of the pose estimations, for the three bone models
with the seq-feat alignment.

DOF
Humerus Ulna Radius

m iqr k m iqr k m iqr k

Tx [mm] 0.003 0.004 14.0 0.005 0.008 3.0 −0.021 0.006 4.8

Ty [mm] −0.087 0.005 73.7 −0.018 0.025 2.2 0.051 0.025 3.1

Tz [mm] −0.766 0.153 5.0 0.132 0.155 3.3 −0.692 0.260 3.1

Θx [deg] −0.045 0.090 4.9 −0.071 0.474 2.0 0.017 0.317 3.1

Θy [deg] 0.011 0.032 5.6 −0.044 0.086 3.2 −0.195 0.073 4.2

Θz [deg] 0.001 0.011 26.8 0.007 0.019 2.9 0.007 0.003 4.9

FD Jacobian computation (eps) from 10−4 to 10−1 mm/deg
induced a further instability.

To solve the convergence problems of the LM algorithm,
the effect of the seq alignment on the minimization process
was evaluated. When the initial conditions are too far from
the reference pose, if not conditioned, the pure algorithm
tries to explore the value of the cost function varying all
the 6 DOF simultaneously, risking to move the less sensitive
DOF away from the global solution. With the seq alignments,
instead, the DOF with larger convergence domain are aligned
in a first step, while the more critical (out-of-plane) DOF are
minimized only when closed to the reference pose. Although
this technique leads to an improvement of the precision of
the estimate (Figure 4), the algorithm is still sensitive to local
minima, or to local low-sensitivity areas of the cost function
that can occur also for the in-plane pose parameters, such
as for Ty (Figure 3). This could be the cause for the still
high number of outliers (mean of k > 25) obtained with
the seq alignment. Varying eps from 10−4 to 10−1 mm/deg
permitted to improve the performance of the optimization
avoiding the early convergence for the less sensitive DOF (Tz
and Θx, Figure 4). However the problems of convergence are
not completely solved, probably because two different DOF
could have a correlated effect on the RMSD, thus, a sequential
minimization could interfere with a proper descending to the
global minimum.

The use of features completely avoided the problems
of the seq alignment, because, differently from seq, the feat
alignment is completely independent from the RMSD and,
thus, from its local minima. For our simulations, we used two
simple features: (i) the direction of maximum variance of the
distribution of bone-contour points to extrapolate Θz, and
(ii) a characteristic point such as the farthest from the field
of view border for Tx, Ty. These features are particularly
suitable for long bones, which cannot be completely included
in the field of view; for short bones or prosthesis, however,
the mean of the coordinates of the contour points can equally
be used. These minimization settings, together with a FD
Jacobian step eps = 10−1 (bigger enough to filter small noisy
fluctuation of the RMSD), permitted to significantly reduce
m, iqr, and k.

Even if the combined effects of feat and seq did not
introduced further improvements (P-value > .05), with a
fine tuning of the minimization parameters, a high level
of precision can be achieved (iqr < 0.025 mm/deg for

in-plane pose parameters, iqr < 0.5 mm/deg for out-of-plane
pose parameters) but with a high variability between the
models (i.e., considering Θx, iqr equal to 0.09 deg for the
humerus, and equal to 0.47 deg for the ulna), confirming the
hypothesis that the performances of the method should be
assessed for each bone model to be analysed. The results also
showed that the final estimate is biased. This is due to the
intrinsic limitations of the technique given by the resolution
of the fluoroscopic projections and of the distance maps.
Moreover, in spite of the fine tuning of the optimization
parameters, the local minima showed in Figure 3 of the
RMSD versus Θx for the humerus, seldom caused the LM
minimization algorithm to detect false poses. These false
poses can generally be easily identified by an operator with
a visual feedback of the alignment and, in such cases, the
minimization can be repeated starting from a different initial
condition.

The results of this study confirm that the accuracy
and the precision that can be achieved, especially with the
feat alignment, allow the technique to be suitable for the
kinematic study of the elbow, but without excluding the
complete independence by the operator.

5. Conclusions

In the present work, we proposed an analytical process to
evaluate the performance of 3D video-fluoroscopy for its
application to the analysis of kinematics of long bones, by
means of in-silico simulations. The effects of the dominant
sources of error such as bone symmetries, distance map
resolution and image spacing, were investigated. Solutions
were proposed to improve the accuracy and the precision of
the method.

Given the high variability of the morphology of the
bones or prostheses that could be analysed with 3D
video-fluoroscopy, different performance assessment studies
should be carried out before undertaking any new appli-
cation of the technique, especially for clinical purpose. We
focused on the elbow because it allowed to investigate
different characteristics of 3D video-fluoroscopy applied to
long bones. Compared to knee prosthesis, which have been
deeply studied during the past years with 3D fluoroscopy
[10–12], the marked cylindrical longitudinal symmetries of
long bones constitute a dominant disturbing factor that
could interfere with the final accuracy of the technique.
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Figure 6: Real fluoroscopic image of the elbow: note the superim-
position of bones and the low-contrast contours and the results of
the Canny edge detection for the humerus.

The robustness of the alignment algorithm applied to
the elbow joint was completely characterized. Even if the
convergences to local minima was not completely avoided,
with a proper conditioning and a fine tuning of the
minimization algorithm parameters, excellent results can be
achieved in term of low bias and high precision. Moreover,
the methods and the findings addressed in this work focusing
on monoplanar projections, can easily be extended also to
biplanar 3D video-fluoroscopy.

In order to achieve a complete automation of the pose
estimation algorithm, the problem of local minima should
be completely solved. Robust optimization algorithms based
on simulated annealing [13] or on Unscented Kalman
Filtering [44] have been proposed. These techniques will be
implemented and evaluated in future works in combination
with the conditioning of minimization based on feat and seq
which was proven to effectively improve the performance
of LM. However, the bias errors committed will not be
avoided with either of these robust techniques, because the
errors are due to characteristics intrinsic to the monoplanar
fluoroscopic analysis. Furthermore, when considering other
sources of error typical of real fluoroscopic sessions such
as the geometric distortions, surface model inaccuracies,
errors in the calibration of the fluoroscopic models, and
incompleteness of the bone contours, the accuracy would
certainly worsen (Figure 6).

Again, all these considerations are to confirm that for
application to the kinematics of any particular joint, a
detailed validation study should be carried out, especially
for clinical studies. The accuracy and the precision achieved
with the feat alignment, allow the technique to be suitable
for the kinematic study of the elbow, and most likely even of
other long bones, however further in-vitro validation must
be carried out.
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