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1 Introduction

Conformal field theories appear ubiquitously in physics. From the point of view of gauge
theories, conformal invariance seems to be a feature typically arising at strong coupling
regimes, making the study of conformal field theories particularly interesting. Recently [1–
38], special attention was given to five-dimensional superconformal field theories (SCFTs).
In dimension five, the Yang-Mills coupling gYM is dimensionful and 1

g2
YM

is seen, from the
point of view of the superconformal field theory, as a (instantonic) mass term. This fact
has two immediate consequences. The first one is that the superconformal fixed point can
be reached only as an infinite coupling limit. Secondly, some quantities, such as the Higgs
Branch (HB) of the theory, are protected against RG-flow just until we keep the coupling
finite: at infinite coupling fixed points some instantonic particles can become massless,
opening up new HB directions.

As a consequence, the gauge theory analysis can not be trusted to investigate the
superconformal fixed point, and we have to resort to different methods to study it. In this
sense, great help can come from string theory: stringy constructions, involving five-branes
webs in type IIB [36–42] or geometric engineering of M-theory on threefold Calabi-Yau
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Cz

R6,1
︷ ︸︸ ︷
Φ1|Φ2 Φ3

D6 ×

Table 1. IIA setup dual to M-th. on R6,1 ×ADE.

(CY) singularities [1–3, 20–22, 24, 26, 43] can be used to study and classify five-dimensional
superconformal fixed points. This latter M-theoretic geometric approach is well understood
for toric CY [22], but still less studied for other classes of CY (see, e.g., [3, 20, 21] for CY
that are elliptically fibered, and [24–26] for the case of Isolated Hypersurface Singularities
(IHS) for recently proposed approaches).

In this work we are going to focus on the last approach, applying the techniques pro-
posed in [1, 2]: we will engineer five-dimensional SCFTs as M-theory on a particular class
of IHS, namely those that can be described as fibrations of deformed ADE singularities
over a complex parameter w ∈ Cw. These threefold CY singularities are “terminal” singu-
larities (namely, they do not admit any crepant1 exceptional divisor) and admit either no
resolution, or a small crepant resolution (a crepant resolution whose exceptional locus is in
complex codimension two). This means that we have, from the point of view of the moduli
space of vacua of the SCFT, an empty Coulomb Branch (CB). If the singularity admits a
small crepant resolution, we can still have a non-empty Extended Coulomb Branch (ECB),
parametrized by the Kähler volumes of the compact holomorphic curves (possibly) inflated
in the resolution. These Kähler parameters will play the role of five-dimensional real mass
parameters. The approach of [2] uses a type IIA limit of M-theory (involving D6 branes
and O6− planes) to rephrase the M-theory dynamics in terms of a N = 1, D = 7 supersym-
metric gauge theory describing the D6 branes (plus, possibly, O6− planes) physics. In this
picture, the M-theory dynamics is captured by a complex-valued Higgs field Φ ≡ Φ1 + iΦ2,
constructed combining two out of the three adjoint scalars Φ1,Φ2,Φ3 whose eigenvalues
describe the D6 branes position in the transverse directions, as depicted in table 1.

From a threefold perspective, we are going to interpret Φ as a complex deformation
and Φ3 as the small blow-up modes. In particular, the D-term relation:

[Φ,Φ3] = 0 (1.1)

shows that Φ3 picks a constant VEV along the Cartan generators dual to the roots that
are being resolved, as explained in deeper detail in [2].

We will study and completely determine (as a complex algebraic variety) the Higgs-
Branches of two infinite classes of ADE-fibered IHS singularities:2 the (Aj , Al) series

x2 + y2 + zj+1 + wl+1 = 0, (x, y, w, z) ∈ C4, (1.2)

1A crepant resolution is a resolution that preserves the triviality of the canonical bundle of the threefold
(namely, the CY condition).

2We follow the notation of [44].
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and the (Ak, Dn) series:

x2 + zy2 + zn−1 + wk+1 = 0, (x, y, w, z) ∈ C4. (1.3)

Both the (Aj , Al) family and the (Ak, Dn) are extensively studied in type IIB setup, where
they realize the corresponding Argyres-Douglas four-dimensional SCFTs, and (apart from
the trivial (A1, A1) conifold case) are non-toric, and then difficult to approach from the
M-theory perspective. As the Coulomb Branches of the 5d theories are empty, we interpret
the localized modes as hypermultiplets: indeed, anytime we have a resolvable threefold
the exceptional curves resolving the singularity are rigid, and consequently the M2 branes
states wrapping the curves have to be interpreted as 5d hypermultiplets [45].

We stress that the range of application of our method is not limited to the analysis of
the (Aj , Al) and (Ak, Dn) singularities, but can be employed to study any one-parameter
family of deformed Al or Dn singularities.

The paper is structured as follows. In section 2 we focus on the (Aj , Al) series. We will
quickly recap the construction of [1, 2], produce an explicit example, and show a simple
rule to succinctly analyze all possible cases. We will finally outline an interpretation for
the studied HBs in terms of the geometry of nilpotents orbits of simple Lie algebras.

In section 3, we will focus on the (Ak, Dn) series, recalling how to include O6− planes
in the type IIA limit [2], furnishing explicit examples along the way.

We will conclude, in section 4, highlighting an interesting T-brane hierarchy structure,
explicit from the point of view of the branes dynamics, for both the (Aj , Al) and (Ak, Dn)
cases. In section 5, we will sum up our conclusions and propose possible follow-ups of our
work.

We will give the tables for the (Ak, Dn) series and elucidate some technical aspects of
our construction in the appendices.

2 (Aj, Al) singularities

In this section we want to completely characterize the Higgs Branches of the 5d SCFTs
engineered by M-theory on (Aj , Al) singularities.

In this case, the type IIA limit contains just D6 branes, and no O6− planes, and
hence the analysis is simplified. To take the type IIA limit explicitly, it is convenient to
rewrite (1.2) as:

uv = zj+1 + wl+1, u ≡ (x+ iy), v ≡ −x+ iy. (2.1)

The C∗ action describing the C∗ fibration is

u→ λu, v → v

λ
, λ ∈ C∗, (2.2)

and the combination uv appearing on the l.h.s. of (2.1) is the associated moment map.
The degeneracy locus of the C∗ fibration corresponds to the zeros of the moment map, and
in the type IIA limit it corresponds to the position of the D6 branes. Consequently, using
again (2.1) the brane locus “∆” is

∆ = zj+1 + wl+1 = 0. (2.3)
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We will now start showing how our techniques work in an explicit example, and then
we will generalize to the generic (Aj , Al) singularity.

2.1 Warm up: (A14, A8) singularity

Let us show an example: the singularity (A14, A8)

uv = z15 + w9, (u, v, w, z) ∈ C4. (2.4)

The brane locus is, in this case

∆ ≡ z15 + w9 = (z5 + w3)
(
z5 + e

2πi
3 w3

) (
z5 + e

4πi
3 w3

)
, (w, z) ∈ C2. (2.5)

We want to obtain ∆ as the characteristic polynomial of a “Higgs field” Φ(A14,A8) in the
seven-dimensional gauge algebra g = A14. More precisely, Φ(A14,A8) will be a 15 × 15
traceless matrix, with matrix entries being polynomials in w of degree at most one.

To find such Higgs field, we concentrate on the three irreducible factors of ∆ appearing
in (2.5). Each of the irreducible factors of ∆ will correspond to a diagonal sub-block of the
Higgs field, taking value in Mat(5,C[w]). Let’s concentrate on the first factor, z5 +w3. We
have (up to adjoint action of the subgroup SUC(5) ∼= Sl(5,C) of the seven-dimensional gauge
group SUC(15)) two possible Higgs field blocks3 with characteristic polynomial (z5 + w3):

A(I) =


0 w 0 0 0
0 0 1 0 0
0 0 0 w 0
0 0 0 0 1
−w 0 0 0 0

 , A(II) =


0 w 0 0 0
0 0 w 0 0
0 0 0 1 0
0 0 0 0 1
−w 0 0 0 0

 . (2.6)

We start choosing A(I) as the diagonal block of Φ(A14,A8) associated to z5 + w3; we will
comment later on the alternative choice A(II). For now, we just notice that A(I) and A(II)

are distinguished by their Jordan form at w = 0, ([2, 2, 1] for A(I) and [3, 1, 1] for A(II)),
or, equivalently, by the corresponding nilpotent orbits under SUC(15).

3Here we are using the fact that we are taking the entries of Φ(A14,A8) to be polynomial of w of degree
at most one.
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We can then take the block diagonal sum of the A(I) corresponding to each factor
in (2.5) obtaining:

Φ(A14,A8) ≡



0 w 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 w 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
−w 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 w 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 w 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −e 2πi

3 w 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 w 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 w 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 −e 4πi

3 w 0 0 0 0



, (2.7)

where we multiplied the lower-left entry of each block by an appropriate third root of
unity, in such a way to reproduce the factors of (2.5). One can explicitly check that the
characteristic polynomial of Φ(A14,A8) is ∆.

We now show how to count five-dimensional modes. First, we decompose the oscilla-
tions “ϕ” of the Higgs field and the seven-dimensional gauge algebra element g according
to the block decomposition of Φ(A14,A8):

Φ(A14,A8) =

A1 0 0
0 A2 0
0 0 A3

 , ϕ =

ϕ(1,1) ϕ(1,2) ϕ(1,3)
ϕ(2,1) ϕ(2,2) ϕ(2,3)
ϕ(3,1) ϕ(3,2) ϕ(3,3)

 , g =

 G(1,1) G(1,2) G(1,3)
G(2,1) G(2,2) G(2,3)
G(3,1) G(3,2) G(3,3)

 ,
(2.8)

where we recall that:

A1 ≡


0 w 0 0 0
0 0 1 0 0
0 0 0 w 0
0 0 0 0 1
−w 0 0 0 0

 , A2 ≡


0 w 0 0 0
0 0 1 0 0
0 0 0 w 0
0 0 0 0 1

−e2πi/3w 0 0 0 0

 , A3 ≡


0 w 0 0 0
0 0 1 0 0
0 0 0 w 0
0 0 0 0 1

−e4πi/3w 0 0 0 0


and G(i,j) ∈ Mat(5,C[w]), ϕ(i,j) ∈ Mat(5,C[w]). We now have to count deformations
ϕ that are not gauge equivalent to zero, modding by linearized gauge transformations[
Φ(A14,A8), g

]
= adΦ(A14,A8)(g):

ϕ ∼ ϕ+
[
Φ(A14,A8), g

]
. (2.9)
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The block decomposition of g is respected by the action of adΦ(A14,A8) :

[
Φ(A14,A8), g

]
=


[
A1,G(1,1)

]
A1G(1,2) − G(1,2)A2 A1G(1,3) − G(1,3)A3

A2G(2,1) − G(2,1)A1
[
A2,G(2,2)

]
A2G(2,3) − G(2,3)A3

A3G(3,1) − G(3,1)A1 A3G(3,2) − G(3,2)A2
[
A3,G(3,3)

]
 , (2.10)

and we can proceed to gauge fix the oscillations ϕ blockwise. Let’s concentrate, for example,
on the block ϕ(1,2):

ϕ(1,2) ≡


δ1,1 δ1,2 δ1,3 δ1,4 δ1,5
δ2,1 δ2,2 δ2,3 δ2,4 δ2,5
δ3,1 δ3,2 δ3,3 δ3,4 δ3,5
δ4,1 δ4,2 δ4,3 δ4,4 δ4,5
δ5,1 δ5,2 δ5,3 δ5,4 δ5,5

 . (2.11)

The corresponding block of
[
Φ(A14,A8), g

]
is:

A1G(1,2) − G(1,2)A2 = A+ wB,

where we indicated with A,B the following matrices:

A ≡


0 0 −g1,7 0 −g1,9
g3,6 g3,7 g3,8− g2,7 g3,9 g3,10− g2,9
0 0 −g3,7 0 −g3,9
g5,6 g5,7 g5,8− g4,7 g5,9 g5,10− g4,9
0 0 −g5,7 0 −g5,9

 , B ≡



(−1)2/3g1,10 + g2,6 g2,7− g1,6 g2,8 g2,9− g1,8 g2,10

(−1)2/3g2,10 −g2,6 0 −g2,8 0
(−1)2/3g3,10 + g4,6 g4,7− g3,6 g4,8 g4,9− g3,8 g4,10

(−1)2/3g4,10 −g4,6 0 −g4,8 0
(−1)2/3g5,10− g1,6 −g1,7− g5,6 −g1,8 −g1,9− g5,8 −g1,10


.

(2.12)
Let’s start the gauge fixing from the entry δ1,1. The corresponding entry of the linearized
gauge transformations is

w((−1)2/3g1,10 + g2,6) ∈ (w) ⊂ C[w], (2.13)

and we can, for w 6= 0, always put

(−1)2/3g1,10 + g2,6 = −
δ(1,1)
w

, (2.14)

and set to zero the mode in this matrix entry. On the other hand, we can not gauge fix to
zero δ1,1 at the point w = 0. From a mathematical point of view we have, after the gauge
fixing:

δ1,1 ∈ C[w] gauge fix−−−−−→ δ1,1 ∈ C[w]/(w), (2.15)

This means, in the algebraic geometry language, that the mode δ1,1 is a “delta function”
localized at the intersection w = 0 between the D6-brane stacks associated to A1,A2 of
the D6 branes system.4

4All the factors of ∆ intersect (with multiplicity) just at w = 0.
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Let’s proceed with another gauge fixing. The entry δ1,3 can be completely fixed to zero
choosing

g1,7 = wg2,8 + δ1,3 (2.16)

and does not correspond to any five-dimensional mode. Finally we remark that, proceeding
with the gauge-fixing procedure, it might be that a mode δi,j cannot be localized at all,
the corresponding entry of

[
Φ(A14,A8), g

]
being empty. In this case, δi,j is a physical mode

that cannot be gauge fixed to zero, but that is not localized in five dimensions. As we will
see momentarily it is also uncharged under all the symmetries, and then decouples. We
can proceed in a similar way to gauge fix all the modes, obtaining:

ϕgauge fixed
(1,2) =


δ1,1 δ1,2 0 δ1,4 0
0 0 0 0 0
δ3,1 δ3,2 δ3,3 δ3,4 δ3,5
0 0 0 0 0
δ5,1 γ δ5,3 τ δ5,5

 , (2.17)

with δi,j ∈ C[w]/(w) ∀i, j and γ, τ ∈ C[w]/(w2), that hence give two complex dimensional
modes each.5 In total, we have fifteen five-dimensional modes localized in the block corre-
sponding to ϕ(1,2). The analysis proceeds similarly for the other blocks.

To completely characterize the Higgs Branch, we now have to understand the action
of the flavor and discrete symmetries on the five-dimensional modes. We have, if we pick
the seven-dimensional gauge group to be SU(15),

Stab(Φ) ∼=
(
U(1)3/U(1)diag

)
× Z5, (2.18)

where the stabilizers Stab(Φ) are computed w.r.t. the adjoint action of the seven-dimen-
sional gauge group G7d,

Φ −→ GΦG−1, G ∈ G7d. (2.19)

We identify, following [2], U(1)3/U(1)diag to be the five-dimensional flavor group, and Z5
the five-dimensional discrete gauging group. The flavour group is:

Gflavor ≡

 e
iα15

eiβ15
eiγ15

 ∈ U(1)3/U(1)diag, α+ β + γ = 2πn
5 , (2.20)

while the generator of the discrete gauging is:

Ggauge ≡


e

2πi
5 15

15

15

 ∈ Z5. (2.21)

Both the discrete gauging group and the flavour group act on the modes by adjoint action:

ϕ→ Ggaugeϕ(Ggauge)−1, ϕ→ Gflavorϕ(Gflavor)−1. (2.22)
5The reason is that an element in C[w]/(w2) is determined by two complex constants.
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Then, simply doing a linear algebra computation we have that, e.g., all the modes in ϕ(1,2)
transform linearly with charge one under U(1)α, they transform with charge minus one
under U(1)β , are singlets w.r.t. U(1)γ , and transform linearly under Z5, each one being
multiplied by a fifth root of unity. The following table, where we filled each block with the
number of localized five-dimensional modes, permits (together with (2.20) and (2.21)) to
extract the action of the flavor and discrete group on the modes, and then to characterize
the Higgs branch as a complex variety:

modes =

 8 15 15
15 8 15
15 15 8

 . (2.23)

Block nmodes U(1)α U(1)β U(1)γ Z5

ϕ(1,1) 8 0 0 0 —
ϕ(2,2) 8 0 0 0 —
ϕ(3,3) 8 0 0 0 —

ϕ(1,2) 15 1 −1 0 X

ϕ(1,3) 15 1 0 −1 X

ϕ(2,3) 15 0 1 −1 —

ϕ(2,1) 15 −1 1 0 X

ϕ(3,1) 15 −1 0 1 X

ϕ(3,2) 15 0 −1 1 —

Summing up, we have a Higgs branch of quaternionic dimension 57 (as it can be
computed also with alternative methods [50]), and the Higgs branch is, as a complex
algebraic variety:

HB = C54 × C60

Z5
, (2.24)

with Z5 multiplying by e 2πi
5 the first half of the coordinates of C60, and by e− 2πi

5 the second
half. We remark here that, instead of choosing SU(15) as seven-dimensional gauge group,
we could have chosen a different global structure for the 7d gauge group, i.e. SU(15)/Γ, with
Γ a subgroup of the center of SU(15). This changes the five-dimensional discrete group and
corresponds, from the M-theory perspective, to a specific choice for the fluxes background
on the boundary of the ADE singularity in the starting R6,1 × ADE setup [48, 49]. For
example, if we choose PSU(15) instead of SU(15), we do not get any five-dimensional
discrete gauging, and HB ∼= C114.

2.2 General case: (Aj, Al) singularity

In this section we aim at obtaining the Higgs Branch of M-theory on a generic (Aj , Al)
singularity, given by the equation (2.1), that we repeat here for convenience:

uv = zj+1 + wl+1.
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In order to achieve this task, we decompose (as in (2.5)) the brane locus in irreducible
factors (namely, polynomials in (w, z) that do not admit further factorization). Each
factor corresponds, geometrically, to an irreducible component of the brane locus (seen as
a one-dimensional subvariety of Cw × Cz).

We write (Aj , Al) as (Amp−1, Amq−1), with p, q coprimes, p ≥ q, and m = gcd(j+1, l+
1). It then becomes manifest that we can always factor the brane locus as follows:

∆ = zmp + wmq =
m∏
s=1

(zp + e2πis/mwq). (2.25)

The factor (zp + e2πis/mwq) in (2.25) can be realised, for all the (p, q), as the characteristic
polynomial of a p × p matrix As, with matrix entries being polynomials in w of degree at
most one.

The blocks “As” (they are, indeed, characterized by the four integers p, q, s,m, appear-
ing in each factor of (2.25) but we omit p, q,m for ease of notation) whose characteristic
polynomials are the irreducible factors appearing in (2.25) can be put in the following
canonical shape:6

As(w) =



0 ∗ 0 · · · 0
0 0 ∗ 0 0
... 0 . . .

. . . 0
0 0 0 0 ∗

−e2πis/mw 0 0 0 0


, (2.26)

where the ∗ entries are filled either with w, or are constants (that can be set to 1); to
reproduce the right characteristic polynomial, we have to fill q − 1 ∗-entries with “w”.

Depending on the position where we place the “w”, one has a different number of zero-
modes. D-brane states realizing the same brane locus (or, analogously, dual to the same
M-theory geometry) but with a different number of zero-modes are known in this context
as T-brane states.

We found a nice criterium to understand (without performing any computation7) if
the chosen As describes a T-brane background. The argument holds more generally for
any Higgs field Φ. Indeed, we can think of As itself as the Higgs field associated to the
singularity uv = χ(As), with As ∈ Ap−1 and χ the characteristic polynomial. Keeping the
characteristic polynomial fixed, we associate to Φ the nilpotent orbit O0 obtained acting
with the seven-dimensional gauge group on Φ|w=0. We found that the number nind of
linearly independent elements of the seven-dimensional gauge algebra “g” supporting a
five-dimensional zero-mode always equals the complex codimension of O0 in the nilpotent
cone of g:

nind = codC

(
O0 ↪→ g

)
. (2.27)

6Notice that the canonical form (2.26) is precisely in the shape of a companion matrix, as usually
understood in the mathematical literature.

7As we will explain below, one can always run the gauge fixing analysis to check this a posteriori.
The codimension formula for Aj-fibered threefolds simply shortens this process. Unfortunately, the same
argument can not be applied in the Dk case.
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(2.27) holds also for the Higgs fields associated to the threefolds analyzed in section 3,
namely one-parameter families of Dn singularities. Notice that if there are 5d localized
modes supported on C[w]/(wk) with k > 1, then nind does not coincide with the total
number of 5d modes localized in the Higgs background.

Furthermore, we found that in all the (Aj , Al) cases the Higgs maximizing nind also
maximizes the total number of five-dimensional modes. Consequently, the Higgs field Φ
displaying the maximum number of five-dimensional modes is the block-diagonal sum of
blocks As corresponding to the O0 that sits at the lowest position in the Ap−1 nilpotent
orbits Hasse diagram, while the other Higgs fields have obstructed five-dimensional modes.8
A first example is (2.6), the leftmost block has no obstructed deformation because the
corresponding orbit [2, 2, 1] sits below [3, 1, 1] in the A5 Hasse diagram. Another example
is the one we get considering the case (m = 1, p = 5, q = 2) analyzed in [2]. The threefold is:

uv = z5 + w2, (u, v, w, z) ∈ C4. (2.28)

We have two possible Higgs backgrounds9 reproducing the same geometry:

A(I) =


0 1 0 0 0
0 0 w 0 0
0 0 0 1 0
0 0 0 0 1
−w 0 0 0 0

 , A(II) =


0 w 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−w 0 0 0 0

 . (2.29)

If we want to have no obstructed five-dimensional modes we have to pick the first Higgs,
A(I). Indeed, the orbit corresponding to A(I) is, in [46] notations, the one with partition
[3, 2], that is below the orbit [4, 1] (associated to A(II)) in the A4 nilpotent orbits Hasse
diagram. It also turns out that [3, 2] is the tiniest orbit that contains a matrix (that is,
As|w=0) realizing (z5 + w2) as its characteristic polynomial.

Summing up, if we want to maximize five-dimensional modes, for a given factor zp +
e2πis/mwq in (2.25) we pick the block As such that codCO0 ↪→ NAp−1 is maximized (with
NAp−1 the nilpotent cone of Ap−1). To obtain them factors of the brane locus corresponding
to the full Higgs field, we take the block direct sum of all the As blocks:10

Φ(Amp−1,Amq−1) ≡



As=1 0p 0p 0p

0p As=2
...

...
. . . 0p

...
... As=m


︸ ︷︷ ︸

m blocks

. (2.30)

The previous procedure applies similarly for all the (Amp−1, Amq−1) singularities, and we
can describe it in general terms as follows:

8A more precise geometric proof of this is given in B.
9With polynomial entries of degree at most one in w.

10The integers p, q are the same for all the blocks, the phase e2πis/m multiplying the lowest-left entry
in (2.26) is opportunely tuned in such a way that each block As reproduces each of the factors of (2.25).
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1. the five-dimensional modes localize with the following pattern:

ϕ ≡



(p− 1)(q− 1)modes p · q modes · · · p · q modes

p · q modes . . .
...

...
. . . p · q modes

p · q modes . . . p · q modes (p− 1)(q− 1) modes


︸ ︷︷ ︸

m blocks

;

(2.31)
2. the discrete group is always isomorphic to Zp. We can pick the generator to be:

Ggauge ≡



e
2πi
p 1p 0p 0p 0p

0p 1p
...

...
. . . 0p

...
... 1p


︸ ︷︷ ︸

m blocks

; (2.32)

3. the flavor group matrix Gflavor ∈ U(1)m/U(1)diag is:

Gflavor ≡



eiα11p 0p . . . 0p

0p eiα21p
...

...

...
...

. . . 0p

0p . . . 0p eiαm1p


︸ ︷︷ ︸

m blocks

,
m∑
s=1

αs = 2πn
p

; (2.33)

4. Ggauge, Gflavor act on the modes by adjoint action:

ϕ→ Ggaugeϕ(Ggauge)−1, ϕ→ Gflavorϕ(Gflavor)−1; (2.34)

The data in the matrix (2.31) allows us to completely reconstruct the Higgs Branches as
complex varieties.11 That matrix and the shape of the flavour and discrete gauging are
already sufficient to reconstruct completely the Higgs Branch, and determine the action of
the flavor group.

For the (Amp−1, Amq−1), we can do more, and recollect the result in a closed compact
formula. Looking at (2.31), we get the following general formula for the Higgs branch:

HBm,p,q = C(m2−2m+2)pq+m(1−p−q) × C2(m−1)pq

Zp
. (2.35)

The Zp acts multiplying the first half of the C2(m−1)pq complex coordinates (corre-
sponding to, say, the chiral complex scalars inside the hypers) by e

2πi
p , and the second

11In particular, we cannot determine the hyperkähler metric.
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Figure 1. The A14 Dynkin diagram, with the resolved nodes in black.

half of the C2(m−1)pq complex coordinates (that correspond to the complex scalars in the
anti-chiral part of the hyper) by e− 2πi

p . One can readily check that (2.24) satisfies (2.35).
As we remarked below (2.24), the discrete gauging group might disappear if we make a
different choice for the seven-dimensional gauge group global structure.

The flavor group is U(1)m/U(1)diag, as we saw in (2.33). These abelian factors cor-
respond, in the resolved CY geometry, to the P1s inflated in the resolution. These P1s
correspond to the roots at positions r× p, with r = 1, . . . ,m− 1 in the Dynkin diagram of
the Amp−1 ADE singularity. For example, in the case of the (A14, A8) singularity analyzed
in section (2.4), the resolved P1s correspond to the node at position five and at position
ten of the A14 Dynkin diagram in figure 1.12

Each of the flavor U(1) of (2.33) acts linearly, with charge one, on m(q − 1)(p − 1)
modes:

Qi → eiαsQi, Q̃i → e−iαsQ̃i, i = 1, . . . , ncharged hypers, s = 1, . . . ,m. (2.36)

We checked explicitly the formula (2.35) in a large number of examples.
To conclude, in view of the (more complicated) case of the (Ak, Dn) singularities, we

quickly recap our strategy to get to (2.35). Given, as input datum, the equation of the
(Amp−1, Amq−1) singularity:

1. We computed the brane locus ∆ looking where the C∗ fibers of the threefold degener-
ate.

2. We factored the brane locus (2.3) in polynomials that can be represented by the
characteristic polynomials of a traceless matrix As with entries being w-dependent
polynomials of degree at most one. We found that any polynomial that enters in the
factorization of the brane locus of the (Amp−1, Amq−1) singularity is the characteristic
polynomial of some block As of the shape (2.26).

3. We counted the number of five-dimensional modes that are localized in the diagonal
blocks. More precisely, each of the As selects a minimal su(p) ↪→ Amp−1 subalge-

12For the Ak families case (namely, if we have no O6− planes in the IIA limit), the correspondence
between nodes of the Dynkin diagram and U(1) subgroups of SU(k) is particularly easy to read. The node
at position n in the Dynkin diagram corresponds to the Cartan element

(hn)i,j =


1, i = j = n,

−1, i = j = n+ 1,
0 otherwise.

In our notation, the exponential of hn corresponds then to the antidiagonal combination αi+1 = −αi, and
αj = 0 ∀j 6= i, i+ 1 of the flavor group.
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bra that corresponds to the block containing As (2.31) (we highlighted the su(p)
subalgebras corresponding to the various As with different colours in (2.30)). The
localization of modes inside a certain su(p) subalgebra is determined just by the
corresponding block As, and is always the same for all the s.

4. We counted the number of five-dimensional modes that a pair As, As localizes in
the corresponding off-diagonal blocks of the block decomposition of the sl(mp,C[w])
matrix (see the equation below):

(p− 1)(q − 1) modes . . . · · · p·q modes
...

. . .
...

...
. . .

...

p·q modes . . . . . . (p− 1)(q − 1) modes


. (2.37)

3 (Ak, Dn) singularities

In the course of this section, walking along the path undertaken in the preceding pages, we
aim at achieving the following results: explicitly construct Higgs field configurations for all
the 5d N = 1 theories engineered from M-theory on (Ak, Dn) singularities, compute their
massless spectrum and determine the continuous and discrete charges, therefore completely
characterizing their Higgs Branches.

The standard algebraic expression for the (Ak, Dn) singularities reads:

x2 + zy2 + zn−1 + wk+1 = 0, (x, y, w, z) ∈ C4. (3.1)

We should realize (Ak, Dn) singularities as one-parameter families of deformed Dn

singularities (with w being the deformation parameter), generalizing the technique already
employed in [2] for flops of length two.

The starting point is a singular threefold, characterized as a deformed Dn family, that
constitutes the compactification space of our M-theory setup. As we did in the (Aj , Al)
case, we can make use of the M-theory/Type IIA duality relating a C∗-fibered threefold,
namely our deformed Dn family, to a type IIA setup involving D6 branes and O6− planes,
the latter being the new ingredient with respect to the deformed-Al cases of the previous
section.

More precisely, to engineer the deformed Dn singularities we consider a stack of n
D6/image-D6 pairs, placed on top of a O6− plane [47] and therefore generating a SO(2n)
gauge group in the 7d N = 1 theory living on the branes worldvolume. This configura-
tion possesses three real adjoint scalar fields Φ1,Φ2,Φ3, belonging to the vector multiplet,
describing motion transverse to the brane worldvolume: as in the case of (Aj , Al) singu-
larities, we package Φ1 and Φ2 into a single complex scalar field Φ = Φ1 + iΦ2, depending
polynomially on a complex deformation parameter w, which can be explicitly described by
a 2n×2n matrix in so(2n). The structure of the allowed resolution fixes the scalar field Φ3,
which picks a constant VEV along the Cartan generators dual to the roots that are being
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resolved. Consequently, the block structure of the Higgs field Φ describing the deformation
of the D6 brane stack is fixed by the relation [Φ,Φ3] = 0. In this perspective, we pick the
following standard basis for the matrices in the so(2n) algebra:

Φ =
(
A B

C −At

)
, with B,C skew-symmetric. (3.2)

As a result, a generic matrix G in the basis (3.2) belongs to so(2n) if and only if it satisfies:

G · Q+Q ·Gt = 0, (3.3)

with Q a quadratic form given by the matrix:

Q =
(

0 1n×n
1n×n 0

)
. (3.4)

In the following, we will always put the Higgs in the form (3.2), or in a block-diagonal form
such that every block is in the form (3.2).

From a physical point of view, switching on a non trivial VEV for Φ deforms the stack
of D6 branes, breaking the SO(2n) group to the subgroup preserved by Φ, and giving rise
to a Dn deformed family. The deformation depends on a complex parameter w appearing
in the VEV of the Higgs field Φ(w). The explicit connection between the Higgs VEV
describing the dynamics of M-theory on the (Ak, Dn) singularities and the shape of the Dn

fibration can be nicely expressed in the following terms:13

x2 + zy2 + ∆(z, w)
z

= x2 + zy2 +
√
det(z1 + Φ(w)2)

z
= 0, (3.5)

where ∆(z, w) is the locus of D6 branes after a VEV for Φ has been switched on. Introducing
an orientifold-covariant coordinate ξ, we can rewrite z as:

z = ξ2, where ξ → −ξ under the orientifold projection. (3.6)

Similarly to (2.2), the C∗ fibration basis is (w, ξ) ∈ C2, with fibral coordinates x, y con-
strained by (3.5) and the brane locus is

∆(ξ2, w) = Discy
(
ξ2y2 + det(ξ21 + Φ(w))

ξ2

)
= det(ξ21 + Φ(w)), (3.7)

where Discy indicates the discriminant with respect to y (thus justifying the ∆ symbol).
At this stage, the story proceeds exactly as in the deformed Al case: we pick a (Ak, Dn)

singularity, and solely by looking at the brane locus we are able to predict which 2-cycles
can be resolved and which cannot, thus constraining the block structure of Φ.

In order to fully characterize the Higgs Branches of M-theory on all the (Ak, Dn)
singularities we should then resort to the recipe outlined at the end of section 2. All the

13For threefolds other than the ones that describe M-theory dynamics on (Ak, Dn), there can be additional
deformation terms in (3.5). For a generic expression in the case of a singularity admitting a single flop we
refer to [2].
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required steps are straightforward and can be performed exactly following the strategy
adopted for the (Aj , Al) singularities, except the second step, in which a caveat applies: in
general, not all possible factorizations into irreducible polynomials of the brane locus of a
Dn deformed family can be translated into a viable Higgs field. Let us explain this crucial
point in more detail. The key ingredient is the relation between the brane locus and the
Higgs field Φ:

∆(ξ2, w) = det(ξ21 + Φ(w)). (3.8)

Suppose that the brane locus can be factorized in irreducible holomorphic polynomials of
the form:

∆(ξ2, w) = P1(ξ2, w) . . . Pm(ξ2, w). (3.9)

Then, according to (3.8), we would be tempted to build a Higgs field made up of m blocks
B(j), with j = 1, . . .m, in some basis of so(2n), each contributing a factor Pj(ξ2, w) to the
characteristic polynomial, namely:

Φ =



B(1) 0 · · · 0

0 . . .
...

. . .
...

. . .

0 B(m)


, with:


χ(B(1)) = P1(ξ2, w),
...

χ(B(m)) = Pm(ξ2, w),

(3.10)

where χ indicates the characteristic polynomial.
It turns out that in general this is not possible,14 meaning that a completely generic

irreducible polynomial Pj(ξ2, w) does not have a counterpart in terms of the characteristic
polynomial of a block living in a subalgebra of so(2n): as a result, the powerful and general
(irreducible polynomial)↔(block) correspondence that enabled us to analyze the (Aj , Al)
singularities is broken in the (Ak, Dn) cases. There is, however, some good news: the
correspondence is not completely disrupted, and we can reverse the logic of the argument
asking the question: is there a way to determine which polynomials in the factorization of
the brane locus can be built as the characteristic polynomial of blocks in subalgebras of
so(2n), and which cannot?

We will now show that, for (Ak, Dn), this is indeed possible: we can hence proceed in
giving a shortlist of necessary and sufficient blocks needed to reconstruct the brane loci of
all the (Ak, Dn) singularities.

In doing so, we define an irreducible block B as follows:
Let B live in a subalgebra of so(2n), and its characteristic polynomial be a polynomial

P (ξ2, w). In general, P (ξ2, w) might be algebraically reducible and decomposable into
factors, but suppose that at least one of these factors cannot be realized as the characteristic
polynomial of a block living in a subalgebra of so(2n). Then we say that B is an irreducible
block.

14This is a known fact in the mathematical literature, as there are no orthogonal companion matrices
for orthogonal matrices. This means that, contrarily to the (Aj , Al) series, a canonical representative for a
block in a subalgebra of so(2n) with arbitrary characteristic polynomial does not exist.
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B χ(B) smin

(a)
(
ξ2r+1 + c1w

t
) (
ξ2r+1 − c1w

t
)

su(2r + 1)

(b) ξ2 (ξ2r + c2w
2t+1) so(2r + 2)

(c)
ξ4r + c3w

2t+1ξ2r + c4w
2(2t+1)

(r, 2t+ 1) coprime
so(4r)

Table 2. Irreducible blocks and minimal subalgebras.

The list of irreducible blocks also fixes a list of types of polynomials, i.e. the charac-
teristic polynomial of each block, in which the brane locus ∆(ξ2, w) can be consistently
factorized.

Let us illustrate this concept with a simple example: suppose that in the brane locus
factorization of a (Ak, Dn) singularity a factor of the following form appears, corresponding
to a block living in a so(4) subalgebra of so(2n):

P (ξ2, w) = ξ4 + w2. (3.11)

We would be tempted, on the algebraic level, to go on with the decomposition and write
it as the product of two factors, each corresponding to a block in so(2) ⊂ so(2n):

P (ξ2, w) = ξ4 + w2 = (ξ2 + iw)︸ ︷︷ ︸
P1

(ξ2 − iw)︸ ︷︷ ︸
P2

. (3.12)

However, an explicit computation shows that this is not possible, i.e. there does not exist
any holomorphic block in so(2) ⊂ so(2n) such that its characteristic polynomial is P1 or P2.

Luckily, with some work it is possible to classify the irreducible blocks that are needed
to build all the Higgs configurations for the (Ak, Dn) singularities that we are interested
in.15 In table 2 we list the corresponding characteristic polynomials, which are the polyno-
mials that appear in the factorization of the brane locus, as well as the minimal subalgebras
smin of so(2n) containing the blocks.

The ci in the expressions of the polynomials are some constant parameters (that can
also be vanishing). Notice that all the block classes (a), (b), and (c) are labelled by two
integer parameters r and t. In the following, we will refer to a given block in some class
using the notation B(i), with i = a, b, c, suppressing the dependence on r and t for graphical
ease. For the explicit expressions of the blocks concretely realizing these polynomials, we
refer to A. In addition, the minimal subalgebras smin in which the blocks B(i) live are a
natural generalization of the subalgebras u(p) in which the blocks As (2.26) in the (Aj , Al)
case resided.

It is useful at this point, in order to summarize the above argument, to fully restate
the recipe to analyze the M-theory dynamics on the (Ak, Dn) singularities:

15We have checked this explicitly for (Ak, Dn) singularities with k and n up to the hundreds, and we see
no reason not to conjecture that our classification holds for any k and n.
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1. Choose a (Ak, Dn) theory and compute its brane locus using equation (3.7).
2. Factorize the brane locus into factors corresponding to irreducible blocks, listed in

table 2.
3. Build the Higgs field Φ corresponding to the theory (Ak, Dn) direct-summing the irre-

ducible blocks found at the previous point. The result is a Higgs Φ in the shape (3.10)
made up only of irreducible blocks.

4. Compute the stabilizer of such Higgs field, obtaining the continuous and discrete
flavour/gauge symmetries.

5. Compute the matter modes localized near the branes intersections, as well as their
charges under the flavour/gauge group.

Notice that the main difference with respect to the (Aj , Al) series lies at the second
point of the recipe: it is crucial to decompose the brane locus of the (Ak, Dn) singularities
into irreducible blocks, as intended in table 2.

On the other hand, in a completely analogous way with respect to the (Aj , Al) singu-
larities, the continuous and discrete groups that are preserved by the deformed D6 brane
stack can be obtained by computing the stabilizer of the Higgs field, made up of the blocks
in table 2.

In the generic case, valid for all the (Ak, Dn) singularities, the Higgs field is never
made up of more than one copy of the exact same block: this means that, if more than one
block of type B(i) enters the Higgs (say e.g. B(1)

(i) and B(2)
(i) ), then they either have different

sizes or they possess different constant coefficients.16 In this case the preserved flavour
(continuous) and gauge (discrete) group is nothing but the direct product of the centers of
the groups Smin whose Lie algebras are the minimal subalgebras smin in which the blocks
reside.17 In other words, for a Higgs as in (3.10), given the subgroup Smin,j corresponding
to the minimal subalgebra smin,j in which the block B(j) lives (we momentarily suppress
the lower index labelling the type of block, which can be any), we have:

Stab(Φ) = Z(Smin,1)× · · · × Z(Smin,m), (3.13)

with m the number of blocks appearing in the Higgs field Φ. As a result, we can easily
rewrite table 2 explicitly stating the center of the subgroup Smin corresponding to each
block. In this way, we obtain table 3.

Letting 2u be the size of the matrix representation of the minimal subalgebra smin
in which a generic block lives, according to table 2, then the explicit realizations of the
generators of the centers Z(Smin) are:

U(1) =
(
eiα1u 0

0 e−iα1u

)
, Z2 = (±12u) . (3.14)

16We noticed that, if one chooses two exactly equal blocks in the Higgs field, one finds a non-isolated
singularity in the threefold.

17In general, the Lie algebra smin is not enough to determine the global structure of the group Smin. In
our case, however, we can use the fact that Smin must be a subgroup of the 7d gauge group to fix the global
structure.
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B χ(B) smin Z(Smin)

(a)
(
ξ2r+1 + c1w

t
) (
ξ2r+1 − c1w

t
)

su(2r + 1) U(1)

(b) ξ2 (ξ2r + c2w
2t+1) so(2r + 2) Z2

(c)
ξ4r + c3w

2t+1ξ2n + c4w
2(2t+1)

(r, 2t+ 1) coprime
so(4r) Z2

Table 3. Irreducible blocks and stabilizer groups.

Remarkably, the above table furnishes a powerful tool to analyze the resolutions of (Ak, Dn)
singularities: if the irreducible polynomial factorization (3.10) of a given singularity con-
tains at least one block of type (a), then it admits a small resolution inflating a 2-cycle.
The number of blocks of type (a) predicts the maximum number of 2-cycles that can be
resolved. This happens because the U(1) groups preserved by blocks of type (a) come from
the reduction of the M-theory 3-form C3 on the 2-cycles inflated by the resolution.

Furthermore, we can give a useful criterion to predict how many uncharged hypers
(both under the flavour and gauge groups) are localized at the intersection of the D6
branes, just by taking a look at the irreducible block-decomposition of the brane locus. We
have previously seen that the flavour and gauge groups in the 5d theory are determined
by the decomposition of the brane locus into irreducible blocks B(i) of the classification in
table 3. The discrete gauge groups can be explicitly realized as the diagonal matrices (3.14),
that act non-trivially only on modes localized in the off-diagonal blocks. Analogously, only
the modes in the off-diagonal blocks can be charged under the U(1) flavour groups in (3.14),
except for the charge 2 modes, that are always localized inside the blocks of type (a).

As a result the uncharged localized hypers w.r.t. the discrete gauging can be found
only inside the blocks B(i). In pictures, this means that we can have uncharged hypers only
inside the minimal subalgebras smin from table 3:B(i)

B(j)
B(l)

 −→
 uncharged charged charged

charged uncharged charged

charged charged uncharged

 . (3.15)

We can explicitly summarize the number of uncharged hypers under the discrete groups
appearing in each block B(i) using their dependence on the parameters r and t in table 3,
obtaining table 4.

Let us summarize what we have shown so far: just by looking at the brane locus factor-
ization of a (Ak, Dn) singularity we are able to predict the allowed resolution, the flavour
and gauge groups and the number of uncharged hypers w.r.t the discrete groups in the
5d theory. In addition, by performing easy mechanical computations, we can compute all
the 5d modes and their respective charges under the flavour and gauge groups, completely
characterizing the Higgs Branch.

We have done this explicitly for all the (Ak, Dn) singularities for k = 1, . . . 8 and
n = 4, . . . 15, reporting the results for the dimension of the Higgs Branches of the 5d
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B Uncharged hypers
t = 0 t ≥ 1

(a) =
(
ξ2r+1 + c1w

t
) (
ξ2r+1 − c1w

t
) t(t−1)

2

(b) = ξ2 (ξ2r + c4w
2t+1) 2t(r + 1)

(c) = ξ4r + c2w
2t+1ξ2n + c3w

2(2t+1) r − 1 4t2 + 2r − 1

Table 4. Irreducible blocks and uncharged hypers under discrete symmetries.

G0
gauge D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

A1 0 0 0 0 0 0 0 0 0 0 0 0
A2 Z2 0 0 Z2 0 0 Z2 0 0 Z2 0 0
A3 0 Z2 0 0 0 Z2 0 0 0 Z2 0 0
A4 0 0 Z2

2 0 0 0 0 Z2
2 0 0 0 0

A5 0 0 0 Z2
2 0 0 0 0 0 Z2

2 0 0

A6 0 0 0 0 Z3
2 0 0 0 0 0 0 Z3

2

A7 0 0 0 0 0 Z3
2 0 0 0 0 0 0

A8 Z2 0 0 Z2 0 0 Z4
2 0 0 Z2 0 0

Table 5. Discrete gauge groups of (Ak, Dn) theories modded by the center of SO(2n).

theories, the continuous and discrete symmetries, as well as the charges of the localized
modes, in C.

In this regard, it is interesting to notice that there is a connection between the discrete
symmetries enjoyed by the 5d theory and the one-form symmetry of the Argyres-Douglas
theories arising from the geometric engineering of Type IIB theory on the (Ak, Dn) singu-
larities, as computed by [24]. More specifically we found that, given a starting 7d gauge
group SO(2n)/Z2 (i.e. SO(2n) quotiented by its center), the discrete symmetries in 5d are
exactly equal to the one-form symmetries of 4d Argyres-Douglas theories. In other words,
given a (Ak, Dn) singularity, we define as G0

gauge the discrete gauge symmetry of the 5d
theory quotiented by the centre of SO(2n), i.e.:

G0
gauge = Ggauge

Z(SO(2n)) . (3.16)

Then we find that the groups G0
gauge are as depicted in table 5.

Notice that table 5 is manifestly identical to the table presented in [24].
This confirms the expectation of [24, 26] that 1-form symmetries of Type IIB reduced on

(Ak, Dn) singularities are linked to 0-form discrete symmetries of the 5d theories engineered
with M-theory on the same singularities. We note that in equation (3.16), where we have
quotiented by the center of the 7d group, we have apparently made an arbitrary choice
of global structure of the 7d theory we started with. The M-theory interpretation of this
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ambiguity was deepened in [48, 49]. We will address this point more thoroughly in a
forthcoming paper.

In the next sections we concretely apply the machinery we have set up to study M-
theory on the (Ak, Dn) singularities, exhibiting explicit examples admitting no resolution,
an infinite family displaying one resolved 2-cycle, and a final example with two resolved
2-cycles.

3.1 Example 1: no resolution

In this section we tackle the (A2, D4) singularity, the simplest non-trivial singularity of
type (Ak, Dn) that admits no resolution, fully characterizing its Higgs branch. Its defining
equation is:

x2 + zy2 + z3 + w3 = 0, (x, y, w, z) ∈ C4. (3.17)

To complete this task, we follow the recipe outlined in the preceding section: the
starting point is the brane locus, that can be computed employing equation (3.7). It is
immediate to see that the result is:

∆(A2,D4) = ξ2(ξ6 + w3). (3.18)

We can now completely factorize it into the irreducible blocks in table 2, obtaining:

∆(A2,D4) = ξ2
(
ξ2 + w

)
︸ ︷︷ ︸

type (b)

(
ξ4 + w2 − ξ2w

)
︸ ︷︷ ︸

type (c)

, (3.19)

where we have highlighted the specific type of blocks. The fact that there are no blocks
of type (a), corresponding to U(1) flavour groups, indicates that the singularity is non-
resolvable. Direct summing the irreducible blocks we obtain the explicit Higgs field repro-
ducing the D6 brane configuration of the (A2, D4) theory, where each diagonal block is in
the basis (3.2):

Φ =



0 1 0 w
4 0 0 0 0

−w
4 0 −w

4 0 0 0 0 0
0 1 0 w

4 0 0 0 0
−1 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 w

4

0 0 0 0 3w
4 0 −w

4 0
0 0 0 0 0 1 0 −3w

4

0 0 0 0 −1 0 −1 0



. (3.20)

We decompose Φ as:

Φ =
(
B(b) 0

0 B(c)

)
with:

χ(B(b)) = ξ2 (ξ2 + w
)

type (b),
χ(B(c)) =

(
ξ4 + w2 − ξ2w

)
type (c),
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where we have explicitly highlighted the block decomposition. It is also easy to verify that
the relationship (3.7) between the Higgs field and the algebraic definition of the (A2, D4)
precisely holds.

The stabilizer group of (3.20), corresponding to the flavour (for the continuous part)
and gauge (for the discrete part) symmetry of the 5d SCFT can be promptly read off
table 3, noticing that each block contributes a Z2 factor, yielding:

Ggauge = Z2 (3.21)

and a trivial flavour group Gflavour. We have only one factor of Z2 acting on the modes, as
opposed to the full stabilizer of Φ, which is Z2 × Z2, as the diagonal combination belongs
to the center of the seven-dimensional gauge group SO(8).

Studying fluctuations ϕ around the Higgs background Φ, subject to the equivalence
ϕ ∼ ϕ+ [Φ, g], with g a generic matrix of parameters in so(8), we can identify the content
of the Higgs branch, obtaining:

ϕ =
(

∅ 4 modes
4 modes ∅

)
. (3.22)

All in all, we get a total of 4 hypers, as expected from previous results in the litera-
ture [50, 51].

Summarizing, we find that the Higgs branch of the (A2, D4) theory coincides with
existing results [24]:

HB(A2,D4) = C8

Z2
, (3.23)

with Z2 acting reflecting all the coordinates of C8.

3.2 Example 2: one resolved 2-cycle

In this section we get to a more interesting family of examples, admitting a small resolution
of a single 2-cycle, a fact that is signalled by the appearance of a U(1) symmetry in the sta-
bilizer of the Higgs background. The family is formed by the singularities (A2k−1, D2kn+1):

x2 + zy2 + z2kn + w2k = 0, (x, y, w, z) ∈ C4. (3.24)

Such family was pinpointed and studied by Closset et al.,18 and employing our techniques
we show how to fully characterize their Higgs branch.

The D6 brane loci corresponding to the geometry (3.24) can be computed as:

∆(ξ2, w) = ξ2(ξ4kn + w2k). (3.25)

Fully decomposing the brane locus into factors of the allowed form, presented in table 3,
we get:

∆(ξ2, w) = ξ2︸︷︷︸
type (a)

k−1∏
s=0

(ξ4n + e2πis/kw2)︸ ︷︷ ︸
type (c)

. (3.26)

18C. Closset, private communication with Andrés Collinucci.
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The fact that we obtain a block of type (a), that preserves a U(1) flavour symmetry, is the
telltale sign that a small resolution of a single 2-cycle is allowed by this Higgs configuration.

Direct-summing the blocks corresponding to each of the factors in (3.26) we obtain the
full Higgs field Φ, expressed in an appropriate basis of the Lie algebra so(4kn+ 2), where
each block factor is in the basis (3.2):

Φ =


B(a)

B(1)
(c)

. . .

B(k)
(c)

 , with:



χ(B(a)) = ξ2,

χ(B(1)
(c) ) = ξ4n + w2,

...

χ(B(k)
(c) ) = ξ4n + e2πi(k−1)/kw2.

(3.27)

In this way, we can trivially check that the determinant of the full Higgs correctly repro-
duces the brane locus (3.25) of the (A2k−1, D2kn+1) singularities.

Using the techniques outlined in the previous section, namely studying fluctuations of
Φ, we can easily compute the hypermultiplet content of the 5d theory and their charges
under the flavour and gauge symmetries.

As regards the matter modes, they can be nicely displayed in a block form, following
the structure of the Higgs field Φ (3.27):

Φ =


B(a)

B(1)
(c)

. . .

B(k)
(c)

 −→ modes =



∅ 2 · · · · · · 2
2 2n− 2 4n · · · 4n
... 4n . . .

. . .
...

...
...

. . .
. . . 4n

2 4n · · · 4n 2n− 2


. (3.28)

The stabilizer group Gstab of Φ reads, according to table 3:

Gstab = U(1)× Z2 × · · · × Z2︸ ︷︷ ︸
k

=


U(1)

Z2
(1)

. . .

Z2
(k)

 , (3.29)

obtaining a U(1) flavour group coming from the resolved 2-cycle, as well as k discrete Z2
gauge groups. Taking a look at the block structure of (3.28), it is immediate to see that
different colors correspond to different charges under the flavour U(1) and the gauge Z(i)

2
groups: 

red : charge ±1 under U(1), and one of the Z(i)
2

green : charged under two Z(i)
2 factors

black : uncharged
(3.30)

We remark that we will use this color notation also in the systematic tables of C.
As regards the discrete charges, it is of course possible to precisely track the charge of

each mode under every Z(i)
2 group, just by taking a look at the block structure (3.28).
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Summing up, for the infinite family of singularities (A2k−1, D2kn+1) we find a total of
2nk2 + k − nk hypers, with charges:

• 2k hypers charged under U(1)
• 2nk(k − 1) hypers charged only under some Z2

• k(n− 1) uncharged hypers

As result, the general formula for the Higgs Branch is:

HB = C2k(n−1) × C4k × C4nk(k−1)

Zk−1
2

. (3.31)

Notice that, as it happened in the previous example 3.1, one combination of the Z(i)
2 is

always decoupled, leaving the effective flavour/gauge group G as:

Gflavour = U(1), Ggauge = Z2 × · · · × Z2︸ ︷︷ ︸
k−1

. (3.32)

We stress that our method gives a complete understanding of the structure of the Higgs
Branch. In other words, we can completely reconstruct, from (3.28), the action of the
discrete group Ggauge giving, e.g., the Hilbert series (HS) of the Higgs Branch. For example,
choosing k = 3, n = 1, we get, using [52] the Molien formula:

HS = N(t)
D(t) , (3.33)

with

N(t) = t20− 10t19 + 190t18− 570t17 + 4845t16− 7752t15 + 38760t14− 38760t13 + 125970t12+
− 83980t11 + 184756t10− 83980t9 + 125970t8− 38760t7+
+ 38760t6− 7752t5 + 4845t4− 570t3 + 190t2− 10t+ 1,

D(t) = (t− 1)36(t+ 1)20.

(3.34)

3.3 Example 3: two resolved 2-cycles

As a final example of the practicality of our techniques, we examine the (A3, D4) singularity,
that can be readily shown to admit a small resolution inflating two 2-cycles. Its algebraic
definition is:

x2 + zy2 + z3 + w4 = 0. (3.35)

The corresponding brane locus reads:

∆(ξ2, w) = ξ2(ξ6 + w4). (3.36)

The factorized brane locus hence is:

∆(ξ2, w) = ξ2︸︷︷︸
type (a)

(ξ3 + iw2)(ξ3 − iw2)︸ ︷︷ ︸
type (a)

. (3.37)
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Notice the appearance of two different blocks of type (a), signalling the presence of two
commuting preserved U(1) groups, and hence two resolvable 2-cycles.

The irreducible brane locus (3.37) can be explicitly realized via the following Higgs
background, in an appropriate basis of so(8):19

Φ =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0

√
iw 0 0 0

0 0
√
iw 0 0 0 0 0

0 0 0 0 0 0 0 −
√
iw

0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −

√
iw 0


. (3.38)

Considering fluctuations ϕ of the background up to gauge transformations we find the
following matter modes:

modes =

 0 2 2
2 1 2
2 2 1

 . (3.39)

The colors indicate different charges under the flavour group20 Gflavour = U(1)α × U(1)β ,
that can be explicitly represented as:

Gflavour =


eiα 0
0 e−iα 0 0

0 eiβ13 0
0 0 e−iβ13

 =⇒


red : charge ±1 under U(1)α and U(1)β
blue : charge ±2 under U(1)β
black : uncharged .

As a result, we find a total of 7 hypers, charged as:

• 4 hypers with charge 1

• 2 hypers with charge 2

• 1 uncharged hyper

The Higgs Branch hence is:
HB = C2 × C12, (3.40)

where the C2 factor refers to the uncharged hyper, and the C12 factor to the hypers charged
under the flavour group.

19The first 2×2 vanishing diagonal block, as well as the remaining 6×6 diagonal block, are in the standard
basis (3.2).

20As predicted in [53], for Dn families we can find five-dimensional modes of charges up to two.
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4 T-branes hierarchy

As we have briefly mentioned in the case of (Aj , Al) singularities, the choice of the Higgs
background Φ deforming the stack of D6 branes is not unique. As first realized by [54],
and further investigated in a deluge of subsequent works [55–73] there exist various possible
Higgs backgrounds dual to M-theory on the same geometry, but displaying a different phys-
ical content. In our cases, this means that in general many different Higgs fields Φ(i)(w)
realizing the brane-loci of the (Aj , Al) singularities are allowed. These various choices can
be neatly labelled using the Lie algebra formalism involving nilpotent orbits: given a Higgs
field Φ(i)(w), we define as Φ(i)

0 = Φ(i)(w = 0) its constant component. We found that Φ(i)
0 is

always nilpotent for all the (Aj , Al) and (Ak, Dn), and thus belongs to some nilpotent orbit
O(i)

0 of Aj (supposing j > k). Consequently we can label every Higgs Φ(i)(w) using the
nilpotent orbit O(i)

0 in which its constant component resides. Furthermore, the codimen-
sion formula (2.27) relates the nilpotent orbit O(i)

0 to the number of linearly independent
elements of the 7d gauge algebra that support 5d modes localized at the intersection of
the D6 branes. For the (Aj , Al) singularities the story ends here: in order to obtain the
Higgs background for (Aj , Al) yielding the maximal number of modes, we take the blocks
in A(i) in (2.26), evaluated on w = 0, to lie in the biggest-codimension nilpotent orbit
O(i)

0 compatible with the geometry, namely reproducing the brane locus. We remark that
in general the total number modes for this Higgs configuration need not be equal to the
number of linearly independent elements in the 7d gauge algebra (i.e. there could be modes
supported on C[w]/(wk) with k > 1).

The exact same phenomenon happens in the (Ak, Dn) singularities, although the hi-
erarchy of the different Higgs backgrounds is more complicated. The goal of this section
is to show how a classification of the allowed Higgs backgrounds is possible, providing an
explicit example.

The starting point, as always, is the brane locus. The only constraint that must be
imposed on the Higgs Φ(w) is (3.7), that we reproduce here for convenience:

det (ξ1 + Φ(w)) = ∆(ξ2, w) = ξ2(ξ2n−2 + wk). (4.1)

As we have said, there is vast space for ambiguities in the choice of the Higgs, giving
rise to a hierarchy governed by the nilpotent orbits that can be associated to the Higgs
itself. Let us see how this precisely comes about.

Generally speaking, each Higgs comprises constant entries, along with entries depend-
ing on w (w-entries).

Correspondingly, by considering the constant and w-entries separately, we can analyze
their orbit structure. In particular, for all the cases in (4.1), we now show how to associate
both the constant entries and the w-entries to nilpotent orbits, that can be classified by
suitable partitions of [2n] as the Higgs Φ lives in the algebra so(2n). As is well known in the
mathematical literature, nilpotent orbits are organized hierarchically along Hasse diagrams,
and this structure will be reflected in the possible choices for the Higgs background, giving
rise in general to different spectrums. Following the notation for the (Aj , Al) cases, we will
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denote the nilpotent orbit associated to the constant entries as O0, and the one related to
the w-entries as Ow. More precisely, we define:

O0 = nilpotent orbit in which Φ(0) lives,
Ow = nilpotent orbit in which Φ− Φ(0) lives.

(4.2)

Consequently, the full Higgs field Φ can be decomposed as:

Φ = Φ(0) + (Φ− Φ(0)) ≡ Φ0 + Φw, (4.3)

where Φ0 ∈ O0 and Φw ∈ Ow.
When trying to pick a choice for Φ satisfying (4.1) for a given brane locus related to

some (Ak, Dn) singularity, one is confronted with the following logical steps:

• in general, each brane locus is compatible with many choices of O0,21 thus giving rise
to an ambiguity. There is always a minimal O0, giving rise to the largest spectrum.
Mathematically this is the lowest-lying orbit, among the compatible ones, in the
Hasse diagram.

Most notably, the choice of O0 completely fixes the number of linearly independent
elements inside the 7d gauge algebra supporting 5d localized modes, according to the
codimension formula (2.27).

• In general, each O0 is compatible with many bottom orbits Ow, namely with many
different choices of w-entries, barely sufficient to reproduce the correct brane locus
(where “barely” means that no “w” entry can be removed without affecting the brane
locus). Among the bottom orbits Ow there is always a minimal Ow, lying at the lowest
position in the Hasse diagram, giving rise to the maximal number of modes.

Each bottom Ow gives rise, in general, to a different number of total 5d modes.
• By deforming each bottom Ow, tuning zero-entries into w-entries while keeping the

brane locus and O0 fixed, we find a tower of allowed Ow, starting from the bottom
one and terminating on a top one (there always is a top orbit, as the size of the Higgs
is fixed by the brane locus).

Most importantly, each Ow belonging to the same tower22 gives rise to the same
number of total modes. In addition, towers starting from different bottom Ow need
not be disjoint (meaning that the same Ow can appear in many different towers,
producing different amounts of modes. What counts for the number of modes is the
bottom Ow at the base of the tower).

Summing up, given a brane locus in the (Ak, Dn) series, a choice of the Higgs is
completely determined once one picks:a nilpotent orbit O0, corresponding to the constant entries of Φ,

a bottom orbit Ow, corresponding to the w-entries of Φ.
(4.4)

21Here by compatible we mean that we can build an Higgs field Φ with Φ0 belonging to O0.
22We stress that this means that the Higgs associated to the Ow in the tower is obtained turning on some

w-entries in the Higgs associated to the bottom orbit, without modifying its brane locus.
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In order to understand this hierarchy of choices in a more intuitive way, it is instructive
to depict it graphically (see figure 2), indicating with segments the possible choices, and
with arrows the nilpotent orbits hierarchy in the Hasse diagram sense. Notice that we
have explicitly indicated the minimal O0 and minimal Ow orbits, that when combined in
the choice of the Higgs yield the M-theory dynamics with the maximal number of modes.
In an extensive case by case analysis we have always found that such choice is unique,
but we cannot rule out the possibility that there is more than one minimal choice of O0
and Ow yielding the maximal number of modes, as there could be more than one orbit on
the same level of the Hasse diagram hierarchy. We finally stress that each bottom orbit
Ow in the picture is the starting point of a tower of orbits, obtained deforming the Higgs
configuration corresponding to the bottom orbit, with the same number of total 5d modes
as the ones given by the bottom orbit. We have omitted such towers for a better graphical
depiction.

Finally, notice that for every choice of O0 we have indicated the total number of lin-
early independent elements of the 7d gauge algebra supporting localized 5d hypers (namely,
the number of 7d elements supporting localized 5d modes given by the codimension for-
mula (2.27) is twice the number we have indicated), and that for every bottom Ow we have
highlighted the total number of hypers.

Let us now examine a concrete example, so as to make the abstract remarks above a bit
more grounded. An interesting instance of brane locus giving rise to a T-brane hierarchy
is (A8, D8), that displays a remarkable structure. This singularity is non-resolvable and its
brane locus is:

∆(ξ2, w) = ξ2(ξ14 + w9)︸ ︷︷ ︸
type (b)

= 0. (4.5)

In figure 3, the red color refers to the O0, the blue color to bottom Ow and the dark
arrows to dominance in the Hasse diagram sense. We have instead omitted towers with the
same number of total hypers for the sake of graphical clarity. As before, we have indicated
the total number of 7d gauge algebra elements supporting localized 5d hypers for every
choice of O0 in the hierarchy, as well as the total number of hypers for every bottom Ow. As
it can be seen from the picture, the M-theory dynamics with maximal modes is reproduced
by the lowest O0 with the lowest Ow in the Hasse diagram, yielding 32 total hypers. All
the other partitions are instead T-brane configurations with a lower amount of modes.

It is clear that the T-brane hierarchy can be extremely rich, expressing peak complexity
in the (Ak, Dn) singularities and giving rise to a plethora of different Higgs backgrounds
encoding the same geometry, but a different amount of localized modes. The T-brane
hierarchy is of course a type IIA theory feature, and besides its interconnected structure, it
is suggestive of a corresponding intricacy in the dual M-theory description. In this regard,
the role and the characteristics of T-branes in M-theory have been discussed in [56, 58, 60,
66], showing that geometry is not enough to characterize a T-brane background, and that
additional structure is needed.

This is exactly what we have shown from a type IIA perspective in the preceding pages:
the choice of the Higgs background is intrinsically ambiguous and additional non-geometric
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data, e.g. the orbits O0 and Ow in (4.4), must be specified for a full characterization of the
spectrum and of the preserved symmetries.

5 Conclusions

In this paper we studied the Higgs Branches of five-dimensional rank-zero SCFTs engineered
by M-theory on threefold singularities of type (Aj , Al) and (Ak, Dn). Our method applies
to all the studied cases. We gave a closed formula (2.35) for all the Higgs Branches of the
(Aj , Al) series, and tables for the (Ak, Dn) series (prescribing, in this case, how to perform
the computation in the general case). We confirm the lore that these theories engineer
either discrete gaugings of hypermultiplets or free hypermultiplets, both in singularities
admitting a small crepant resolution and in the non-resolvable cases.

Furthermore, we clarified the open-string viewpoint on the T-branes states: open-
string exotic bound states whose brane locus coincides with the one dictated by the M-
theory/type IIA duality, but with some obstructed deformations. We re-organized these
data nicely according to the Hasse diagrams of nilpotent orbits of (respectively, for the
(Aj , Al) and the (Ak, Dn) series) g = Al and g = Dn. Loosely speaking, the number of
five-dimensional modes decreases when the nilpotent orbit that we associate to the T-brane
state climbs up (increasing its dimension) the Hasse diagram.

Our work opens up many possible further developments. First of all, it is known [74]
that any small resolution of a threefold isolated singularity can be locally modelled as
an ADE fibration. Our paper rules out the possibility of rank-zero theories that are not
free hypermultiplets or discrete gauging of free hypers, at least for the Aj or Dn fibered
threefolds. We will address the E6, E7, E8 cases in a forthcoming paper.

Once we ruled out the rank-zero case, then, a natural continuation would be to apply
our method also to higher-rank theories, whose resolution inflates an exceptional locus of
complex-dimension two.

Finally, the structured hierarchy of T-branes that is manifest in our Type IIA analysis
naturally suggests a corresponding intricacy in the dual M-theory description, in resonance
with the existing literature [56, 58, 60, 66] and further motivating the necessity to go
beyond geometry to fully characterize a sensible M-theory brane background.
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A Explicit expressions of blocks in (Ak, Dn) singularities

In this appendix, we give a schematic account of the blocks living in a subalgebra of so(2n)
yielding the polynomials appearing in table 2 in the brane locus (∗ entries representing
either a constant or a term linear in w). Unless explicitly stated, we employ the basis (3.2)
for so(size of block).

• P(a)(ξ2,w) =
(
ξ2r+1 + c1w

t
) (
ξ2r+1 − c1w

t
)
.

The blocks B(a) such that its characteristic polynomial (indicated with “χ”) sat-
isfies χ(B(a)) = P(a)(ξ2, w) are of the form:

B(a) =
(
A(2r+1)×(2r+1) 0

0 −At(2r+1)×(2r+1)

)
, (A.1)

where A(2r+1)×(2r+1) has the form:

A(2r+1)×(2r+1) =



0 ∗ 0 · · · · · · 0
... 0 ∗ 0

...

...
. . .

. . .
...

...
. . .

. . .
...

... 0 ∗
∗ 0 · · · · · · · · · 0


. (A.2)

Notice that the form (A.2) is analogous to the one of the blocks (2.26) in the (Aj , Al)
cases, as indeed (A.1) belongs to a su(2r + 1) subalgebra of so(4r + 2).

• P(b)(ξ2,w) = ξ2 (ξ2r + c2w
2t+1).

The blocks B(b) are of the form:

B(b) =



0 ∗
. . . ∗

0 ∗ . .
.

0 . .
.

. . . ∗
∗ 0 ∗

0 0 ∗

0 ∗
. . .

. .
.
∗ 0

. .
.
. .
.

∗ 0

0 ∗
. . .

0 ∗ 0



, (A.3)
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where the ∗ on the over-diagonal of the upper diagonal block appears on the (r+1)
2

th

row if r is odd and on the r
2
th row if r is even. The other ∗ on the lower diagonal

block appears in the corresponding entry according to the basis (3.2).

• P(c)(ξ2,w) = ξ4r + c3w
2t+1ξ2r + c4w

2(2t+1), (r, 2t+ 1) coprime.
The blocks B(c) are of the form:

B(c) =



0 ∗ ∗
0 ∗ 0

. . .
. . . . .

.

. . . ∗ . .
.

0 ∗ 0
∗ 0 ∗
0 ∗ 0 ∗
∗ ∗ 0

∗
. . .

. . .
. . .

∗ 0
∗ 0



. (A.4)

B Codimension formula, and modes as directions in TΦ(w)g

Let’s start defining:
Φw = Φ− Φ(0). (B.1)

This coincides with the w-dependent entries of the Higgs field.
5d and 7d modes are infinitesimal deformations of the Higgs field Φ, up to gauge

equivalence. It makes sense, if one is interested just in counting the number of linearly
independent 7d elements supporting 5d localized modes, to identify them as tangent di-
rections in TΦg, with g the 7d gauge algebra, transverse to the seven-dimensional gauge
group orbits (since we already performed a gauge fixing). Indeed, we can interpret (2.27)
as a statement on the tangent space TΦ(0)g: 5d modes are directions

1. transverse to the nilpotent orbit O0,

2. tangent to the normal cone of g.23

Then, (2.27) suggests that, if we find an isomorphism24 (mentally thinking w → 0)

Ψ : TΦg→ TΦ(0)g, (B.2)
23In general, Φ(0) ∈ O0 ↪→ Sing (N ), and the tangent space is not well defined. The correct concept to

use then is the one of “normal cone of N at the point Φ(0)”: CΦ(0)N .
24N is, in general, a singular variety, but g is everywhere smooth, and then TΦ(0)g is well-defined.
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then,
Ψ(V5d) = TΦ(0)S0 ∩ CΦ(0)N , (B.3)

where S0 is the Slodowy slice through Φ(0), CΦ(0)N is the normal cone of N at the
point Φ(0) and V5d is the linear subspace of g supporting five-dimensional modes. We
guess (B.3) from (2.27) because (2.27) involves the codimension of O0 inside the nilpotent
cone, S0 models the transverse space to O0 at the point Φ(0) ∈ O0, and, to get something
of dimension nind, we need to intersect it with the correct “ambient” space (namely, the
nilpotent cone and not the full algebra g). This statement, at the level of tangent spaces,
becomes (B.3).

We used, to check if a mode δij belongs to CΦ(0)N , the following condition

χ(Φ + δ) = χ(Φ) +O(δ2). (B.4)

with χ indicating the characteristic polynomial. (B.4) defines the normal cone CΦ(0)N ,
and generalizes the condition of “tangency” to points belonging to the singular locus of
N . We found by a case by case analysis that we can always perform the gauge-fixing in
such a way that (B.4) is respected for all the 5d modes in all the studied cases. On the
other hand, we both checked in the analyzed cases and proven formally the transversality
condition, that we deal with in the next section.

B.1 Proof of the transversality of the 5d modes to O0

Let us call Y0 the nilnegative element of the standard triple {H0, Y0,Φ(0)} in the sense
of [46], with

H0 ≡ [Φ(0), Y0], (B.5)

Φ(0) acts as a raising operator in this triple. In the branching of g under the {H0, Y0,Φ(0)},
all the elements that are not the lowest weights states of their irreducible representation
are in Im(adΦ(0)) (the reason is that there exists a lower weight state that was “raised”
to them via Φ(0)), and can be completely gauged away. Viceversa, all the elements that
are not in Im(adΦ(0)) can not be completely gauged away, and produce either a 5d or a 7d
mode. We can then say that

δij is a (5d or 7d mode)⇔ δij ∈ Ker(Y0), (B.6)

since Ker(Y0) defines the space of lowest weights states in the branching of g under the
triple. Let’s link (B.6) to the property of being transverse to O0 at the point Φ(0). The
transverse space to O0 in g is modeled by the Slodowy slice through Φ(0),

S0 ≡ {Z ∈ g | [Z − Φ(0), Y0] = 0} = Φ(0) + Ker(Y0), (B.7)

where Φ(0) + Ker(Y0) is defined as the affine space through Φ(0) in direction Ker(Y0),
namely

Φ(0) + Ker(Y0) ≡ {Z ∈ g | Z = Φ(0) + λ, λ ∈ Ker(Y0)} . (B.8)

The last equality in (B.7) means that (B.6) is equivalent say that a necessary condition
for an oscillation to be a (five or seven-dimensional) mode is to being along the transverse
directions to O0 (namely, inside TΦ(0)S0 < TΦ(0)g).
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C Explicit Higgs Branches for (Ak, Dn)

In the following pages we determine completely, as algebraic varieties, the Higgs Branches
of M-theory on all the singularities (Ak, Dn), with k = 1, . . . , 8, and n = 4, . . . , 15. There
is nothing that forbids to continue the analysis for k > 8 and n > 15, and our methods still
apply, but we stopped here for space reasons. The tables are made up of four columns:

1. The first column indicates the Calabi-Yau threefold.
2. The second column indicates the Stab(Φ): the U(1) factors form the flavor group,

and the Z2 factors form the discrete gauging group. These groups were computed
assuming simply-connected seven-dimensional gauge groups.

3. The third column contains matrices that describe how the five-dimensional modes
localize w.r.t. the block decomposition of Φ into the blocks of table 3. Each number
corresponds to the amount of five-dimensional modes localized in that block. The col-
ors represent the charges of the modes w.r.t the flavour and gauge groups, according
to the key:

black: uncharged modes
red: modes with charge ±1 under (possibly more than one) U(1)

(and possibly one Z2 factor)
blue: modes with charge ±2 under U(1) (and possibly one Z2 factor)
green: modes charged only under some Z2 factors

4. The last column indicates the quaternionic dimension of the Higgs branch, that co-
incides with the expected one [50].

Let us do an example of how to use the data in table 6 to reconstruct the Higgs Branch.
Let’s pick, for example, the (A3, D5) singularity (that is the case k = 2, n = 1 of the family
we have already examined in section 3.2). With our method, we find that the stabilizers
of the Higgs field are:

Stab(Φ) ≡


eiα 0 0 0

0 e−iα 0 0

0 0 ε11a 0

0 0 0 ε21b

 , (C.1)

with α ∈ R, ε1, ε2 = ±1, a = 4, b = 4, and 0 indicates the zero matrix of the appropriate
size. The final result, with the data given in the tables, is independent from25 a, b (but
we needed them to compute the third column of the tables). In the second column of the
tables below, we shortened (C.1) as:

Stab(Φ) =

U(1)
Z2

Z2

 . (C.2)

25Consequently in the table we do not give the data to compute a, b.
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Notice that, passing from (C.1) to (C.2), we have condensed the first two rows into a single
row, and the first two columns into a single column: this is because the corresponding
block of type (a) in the Higgs Φ (for the definition of the blocks of type (a) we refer to A)
is a 2× 2 null matrix, that never contains any localized mode.

In more general cases, where the blocks of type (a) are not the null matrix, we explicitly
keep them separated into two rows and two columns. In the (A3, D4) case, for example, the
stabilizer is written as:

Stab(Φ) =


eiα 0 0 0

0 e−iα 0 0

0 0 eiβ1a 0

0 0 0 e−iβ1a

 ≡
U(1)α

U(1)β
U(1)β

 , (C.3)

where U(1)α refers to a vanishing 2× 2 block of type (a) in Φ, and U(1)β refers to a non-
vanishing block of type (a), that is therefore kept on two rows and two columns. That is
the reason why U(1)β appears twice in (C.3).

Summing up: we write stabilizers referred to blocks of type (a) on two rows and two
columns, except when the block is a 2 × 2 null matrix (in which case we write it only on
one row and column).

The third column of the table indicates how the five-dimensional modes localize w.r.t.
the block decomposition we highlighted in (C.1). In the case of the (A3, D5), the five-
dimensional modes distribute as follows:

0 0 1 1
0 0 1 1
1 1 0 4
1 1 4 0

 , (C.4)

that translates in the table as:  0 2 2
2 0 4
2 4 0

 , (C.5)

where as already explained above we have collapsed the first two rows and the first two
columns, corresponding to a vanishing block of type (a) in Φ, into a single one.
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CY Stab(Φ) Modes dimHHHHB

(A1, D4)

(
U(1)α

U(1)β

U(1)β

) (
0 1 1
1 0 1
1 1 0

)
3

(A1, D5)
(

U(1)
Z2

) (
0 2
2 2

)
3

(A1, D6)

(
U(1)α

U(1)β

U(1)β

) (
0 1 1
1 0 2
1 2 0

)
4

(A1, D7)
(

U(1)
Z2

) (
0 2
2 4

)
4

(A1, D8)

(
U(1)α

U(1)β

U(1)β

) (
0 1 1
1 0 3
1 3 0

)
5

(A1, D9)
(

U(1)
Z2

) (
0 2
2 6

)
5

(A1, D10)

(
U(1)α

U(1)β

U(1)β

) (
0 1 1
1 0 4
1 4 0

)
6

(A1, D11)
(

U(1)
Z2

) (
0 2
2 8

)
6

(A1, D12)

(
U(1)α

U(1)β

U(1)β

) (
0 1 1
1 0 5
1 5 0

)
7

(A1, D13)
(

U(1)
Z2

) (
0 2
2 10

)
7

(A1, D14)

(
U(1)α

U(1)β

U(1)β

) (
0 1 1
1 0 6
1 6 0

)
8

(A1, D15)
(

U(1)
Z2

) (
0 2
2 12

)
8

(A2, D4)
(

Z2
Z2

) (
0 4
4 0

)
4

(A2, D5)
(

Z2
) (

10
)

5

(A2, D6)
(

Z2
) (

12
)

6

(A2, D7)
(

Z2
Z2

) (
0 6
6 2

)
7

(A2, D8)
(

Z2
) (

16
)

8

(A2, D9)
(

Z2
) (

18
)

9

(A2, D10)
(

Z2
Z2

) (
0 8
8 4

)
10

(A2, D11)
(

Z2
) (

22
)

11

(A2, D12)
(

Z2
) (

24
)

12

(A2, D13)
(

Z2
Z2

) (
0 10
10 6

)
13

(A2, D14)
(

Z2
) (

28
)

14

(A2, D15)
(

Z2
) (

30
)

15
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CY Stab(Φ) Modes dimHHHHB

(A3, D4)

(
U(1)α

U(1)β

U(1)β

) (
0 2 2
2 1 2
2 2 1

)
7

(A3, D5)

(
U(1)

Z2
Z2

) (
0 2 2
2 0 4
2 4 0

)
8

(A3, D6)

(
U(1)α

U(1)β

U(1)β

) (
0 2 2
2 2 4
2 4 2

)
10

(A3, D7)

 U(1)α

U(1)β

U(1)β

U(1)γ

U(1)γ

  0 1 1 1 1
1 0 1 3 3
1 1 0 3 3
1 0 0 0 1
1 0 0 1 0

 12

(A3, D8)

(
U(1)α

U(1)β

U(1)β

) (
0 2 2
2 3 6
2 6 3

)
13

(A3, D9)

(
U(1)

Z2
Z2

) (
0 2 2
2 2 8
2 8 2

)
14

(A3, D10)

(
U(1)α

U(1)β

U(1)β

) (
0 2 2
2 4 8
2 8 4

)
16

(A3, D11)

 U(1)α

U(1)β

U(1)β

U(1)γ

U(1)γ

  0 1 1 1 1
1 0 2 5 5
1 2 0 5 5
1 0 0 0 2
1 0 0 2 0

 18

(A3, D12)

(
U(1)α

U(1)β

U(1)β

) (
0 2 2
2 5 10
2 10 5

)
19

(A3, D13)

(
U(1)

Z2
Z2

) (
0 2 2
2 4 12
2 12 4

)
20

(A3, D14)

(
U(1)α

U(1)β

U(1)β

) (
0 2 2
2 6 12
2 12 6

)
22

(A3, D15)

 U(1)α

U(1)β

U(1)β

U(1)γ

U(1)γ

  0 1 1 1 1
1 0 3 7 7
1 3 0 7 7
1 0 0 0 3
1 0 0 3 0

 24

(A4, D4)
(

Z2
) (

16
)

8

(A4, D5)
(

Z2
) (

20
)

10

(A4, D6)

(
Z2

Z2
Z2

) (
0 4 4
4 0 4
4 4 0

)
12

(A4, D7)
(

Z2
) (

28
)

14

(A4, D8)
(

Z2
) (

32
)

16

(A4, D9)
(

Z2
) (

36
)

18

(A4, D10)
(

Z2
) (

40
)

20

(A4, D11)

(
Z2

Z2
Z2

) (
0 6 6
6 2 8
6 8 2

)
22
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CY Stab(Φ) Modes dimHHHHB

(A4, D12)
(

Z2
) (

48
)

24

(A4, D13)
(

Z2
) (

52
)

26

(A4, D14)
(

Z2
) (

56
)

28

(A4, D15)
(

Z2
) (

60
)

30

(A5, D4)

(
U(1)α

U(1)β

U(1)β

Z2

) (
0 1 1 4
1 0 0 2
1 0 0 2
4 2 2 2

)
11

(A5, D5)
(

U(1)
Z2

) (
0 6
6 14

)
13

(A5, D6)

(
U(1)α

U(1)β

U(1)β

) (
0 3 3
3 4 6
3 6 4

)
16

(A5, D7)

(
U(1)α

Z2
Z2

Z2

) (
0 2 2 2
2 0 4 4
2 4 0 4
2 4 4 0

)
18

(A5, D8)

(
U(1)α

U(1)β

U(1)β

) (
0 3 3
3 6 9
3 9 6

)
21

(A5, D9)
(

U(1)
Z2

) (
0 6
6 34

)
23

(A5, D10)

(
U(1)α

U(1)β

U(1)β

Z2

) (
0 1 1 4
1 0 1 6
1 1 0 6
4 6 6 14

)
26

(A5, D11)
(

U(1)
Z2

) (
0 6
6 44

)
28

(A5, D12)

(
U(1)α

U(1)β

U(1)β

) (
0 3 3
3 10 15
3 15 10

)
31

(A5, D13)

(
U(1)

Z2
Z2

Z2

) (
0 2 2 2
2 2 8 8
2 8 2 8
2 8 8 2

)
33

(A5, D14)

(
U(1)α

U(1)β

U(1)β

) (
0 3 3
3 12 18
3 18 12

)
36

(A5, D15)
(

U(1)
Z2

) (
0 6
6 64

)
38

(A6, D4)
(

Z2
) (

24
)

12

(A6, D5)
(

Z2
) (

30
)

15

(A6, D6)
(

Z2
) (

36
)

18

(A6, D7)
(

Z2
) (

42
)

21

(A6, D8)

(
Z2

Z2
Z2

Z2

) (
0 4 4 4
4 0 4 4
4 4 0 4
4 4 4 0

)
24

(A6, D9)
(

Z2
) (

54
)

27
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CY Stab(Φ) Modes dimHHHHB

(A6, D10)
(

Z2
) (

60
)

30

(A6, D11)
(

Z2
) (

66
)

33

(A6, D12)
(

Z2
) (

72
)

36

(A6, D13)
(

Z2
) (

78
)

39

(A6, D14)
(

Z2
) (

84
)

42

(A6, D15)

(
Z2

Z2
Z2

Z2

) (
0 6 6 6
6 2 8 8
6 8 2 8
6 8 8 2

)
45

(A7, D4)

(
U(1)α

U(1)β

U(1)β

) (
0 4 4
4 3 4
4 4 3

)
15

(A7, D5)



U(1)α

U(1)β

U(1)β

U(1)γ

U(1)γ

U(1)δ

U(1)δ

U(1)ε

U(1)ε





0 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1 1
1 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


20

(A7, D6)

(
U(1)α

U(1)β

U(1)β

) (
0 4 4
4 6 8
4 8 6

)
22

(A7, D7)

 U(1)α

U(1)β

U(1)β

U(1)γ

U(1)γ

  0 2 2 2 2
2 1 2 3 3
2 2 1 3 3
2 3 3 1 2
2 3 3 2 1

 26

(A7, D8)

(
U(1)α

U(1)β

U(1)β

) (
0 4 4
4 9 12
4 12 9

)
29

(A7, D9)

 U(1)α

Z2
Z2

Z2
Z2

  0 2 2 2 2
2 0 4 4 4
2 4 0 4 4
2 4 4 0 4
2 4 4 4 0

 32

(A7, D10)

(
U(1)α

U(1)β

U(1)β

) (
0 4 4
4 12 16
4 16 12

)
36

(A7, D11)

 U(1)α

U(1)β

U(1)β

U(1)γ

U(1)γ

  0 2 2 2 2
2 2 4 5 5
2 4 2 5 5
2 5 5 2 4
2 5 5 4 2

 40

(A7, D12)

(
U(1)α

U(1)β

U(1)β

) (
0 4 4
4 15 20
4 20 15

)
43
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CY Stab(Φ) Modes dimHHHHB

(A7, D13)



U(1)α

U(1)β

U(1)β

U(1)γ

U(1)γ

U(1)δ

U(1)δ

U(1)ε

U(1)ε





0 1 1 1 1 1 1 1 1
1 0 1 3 3 3 3 3 3
1 1 0 3 3 3 3 3 3
1 0 0 0 1 3 3 3 3
1 0 0 1 0 3 3 3 3
1 0 0 0 0 0 1 3 3
1 0 0 0 0 1 0 3 3
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0


48

(A7, D14)

(
U(1)α

U(1)β

U(1)β

) (
0 4 4
4 18 24
4 24 18

)
50

(A7, D15)

 U(1)α

U(1)β

U(1)β

U(1)γ

U(1)γ

  0 2 2 2 2
2 3 6 7 7
2 6 3 7 7
2 7 7 3 6
2 7 7 6 3

 54

(A8, D4)
(

Z2
Z2

) (
4 12
12 4

)
16

(A8, D5)
(

Z2
) (

40
)

20

(A8, D6)
(

Z2
) (

48
)

24

(A8, D7)
(

Z2
Z2

) (
6 18
18 14

)
28

(A8, D8)
(

Z2
) (

64
)

32

(A8, D9)
(

Z2
) (

72
)

36

(A8, D10)

 Z2
Z2

Z2
Z2

Z2

  0 4 4 4 4
4 0 4 4 4
4 4 0 4 4
4 4 4 0 4
4 4 4 4 0

 40

(A8, D11)
(

Z2
) (

88
)

44

(A8, D12)
(

Z2
) (

96
)

48

(A8, D13)
(

Z2
Z2

) (
10 30
30 34

)
52

(A8, D14)
(

Z2
) (

112
)

56

(A8, D15)
(

Z2
) (

120
)

60

Table 6. Higgs branch data for (Ak, Dn) singularities.
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