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Abstract

In this paper, we present a gesture recognition system for
the development of a human-robot interaction (HRI)
interface. Kinect cameras and the OpenNI framework are
used to obtain real-time tracking of a human skeleton. Ten
different gestures, performed by different persons, are
defined. Quaternions of joint angles are first used as robust
and significant features. Next, neural network (NN)
classifiers are trained to recognize the different gestures.
This work deals with different challenging tasks, such as
the real-time implementation of a gesture recognition
system and the temporal resolution of gestures. The HRI
interface developed in this work includes three Kinect
cameras placed at different locations in an indoor environ‐
ment and an autonomous mobile robot that can be remotely
controlled by one operator standing in front of one of the
Kinects. Moreover, the system is supplied with a people re-
identification module which guarantees that only one
person at a time has control of the robot. The system’s
performance is first validated offline, and then online
experiments are carried out, proving the real-time opera‐
tion of the system as required by a HRI interface.

Keywords Feature extraction, Human gesture modelling,
Gesture recognition, Gesture segmentation

1. Introduction

In recent decades, the development of highly advanced
robotic systems has seen them spread throughout our daily
lives in several application fields, such as social assistive
robots [1, 2], surveillance robots [3] and tour-guide robots
[21], etc. As a consequence, the development of new
interfaces for HRI has received increasing attention in order
to provide a more comfortable means of interacting with
remote robots and encourage non-experts to interact with
robots. Up to now, the most commonly-used human-robot
interfaces ranged from mechanical contact devices, such as
keyboards, mice, joysticks and dials, to more complex
contact devices, such as inertial sensors, electromagnetic
tracking sensors, gloves and exoskeletal systems. Recently,
the latest trend has been to develop different human-robot
interfaces that are contactless, non-invasive, more natural
and more human-centred. This trend is increasingly
prominent thanks to the recent diffusion of low-cost depth
sensors, such as the Microsoft Kinect. This 3D camera
allows the development of natural human-robot interac‐
tion interfaces, as it generates a depth map in real-time.
Such HRI systems can recognize different gestures accom‐
plished by a human operator, simplifying the interaction
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process. In this way, robots can be controlled easily and
naturally.

In this paper, we will focus on the development of a gesture
recognition system by using the Kinect sensor with the aim
of controlling a mobile autonomous robot (PeopleBot
platform). At present, gesture recognition through visual
and depth information is one of the main active research
topics in the computer vision community. The Kinect
provides synchronized depth and colour (RGB) images
whereby each pixel corresponds to an estimate of the
distance between the sensor and the closest object in the
scene together with the RGB values at each pixel location.
By using this data, several natural user interface libraries
which provide human body skeleton information have
been developed. The most commonly-used libraries are
OpenNI (Open Natural Interaction), which is used in this
paper, NITE Primesense, libfreenect, CL NUI, Microsoft
Kinect SDK and Evoluce SDK.

2. Related work

In recent years, the scientific literature on the development
of gesture recognition systems for the construction of HRI
interfaces has expanded substantially. Such an increase can
be attributed to the recent availability of affordable depth
sensors such as the Kinect, which provides both appearance
and 3D information about the scene. Many papers present‐
ed in the literature in the last couple of years have used
Kinect sensors [5-13] and they select several features and
different classification methods to build gesture models in
several applicative contexts.

This section will overview those studies mainly focused
on gesture recognition approaches in the HRI context [14]
and  (if  not  explicitly  expressed)  which  use  the  Kinect
camera  as  a  RGB-D sensor.  The  ability  of  the  OpenNI
framework to easily provide the position and segmenta‐
tion of the hand has stimulated many approaches to the
recognition  of  hand  gestures  [8,  15,  16].  The  hand’s
orientation  and  four  hand  gestures  (open  hand,  fist,
pointing  index  and  pointing  index  and  thumb)  are
recognized in [15] to interact with a robot which uses the
recognized pointing direction to define its goal on a map.
First, the robot detects a person in the environment and
the hand tracker is initialized by detecting a waving hand
as a waving object in the foreground of the depth image.
Next,  by using an example-based approach, the system
recognizes  the  hand  gestures  that  are  translated  into
interaction commands for the robot. In [16], static hand
gestures are also recognized to control a hexagon robot
by using the Kinect and the Microsoft SDK library. Xu et
al.,  in  [8],  also propose a  system that  recognizes  seven
different  hand  gestures  for  interactive  navigation  by  a
robot, although in contrast to the previously cited works,
the gestures are dynamic. This involves the introduction
of a start-/end-point detection method for segmenting the
3D hand gesture from the motion trajectory. Successive‐
ly, hidden Markov models (HMMs) are implemented to

model  and  classify  the  segmented  gesture.  HMMs  are
also  applied  in  [17]  for  dynamic  gesture  classification.
First,  an  interactive  hand-tracking  strategy  based  on  a
Camshift algorithm and which combines both colour and
depth data is designed. Next,  the gestures classified by
HMM  are  used  to  control  a  dual-arm  robot.  Dynamic
gestures based on arm tracking are instead recognized in
[18]. The proposed system is intended to support natural
interaction with autonomous robots in public places, such
as  museums  and  exhibition  centres.  The  proposed
method  uses  the  arm  joint  angles  as  motor  primitives
(features)  that  are  fed  to  a  neural  classifier  for  the
recognition process. In [19], the movement of the left arm
is recognized to control a mobile robot. The joint angles
of the arm with respect to the person’s torso are used as
features. A preprocessing step is first applied to the data
in order to convert feature vectors into finite symbols as
discrete HMMs are considered for the recognition phase.
Human  motion  is  also  recognized  by  using  an  algo‐
rithm based on HMMs in [20]. A service robot with an
on-board  Kinect  receives  commands  from  a  human
operator  in  the  form of  gestures.  Six  different  gestures
executed by the right arm are defined and the joint angles
of the elbow are used as features.

The work presented in this paper in principle follows the
previously cited works. The aim of this work lies in the
development of a more general and complex system which
includes three Kinect cameras placed in different locations
of an indoor environment and an autonomous mobile robot
that can be remotely controlled by one operator standing
in front of one of the Kinects. The operator performs a
particular gesture which is recognized by the system and
sent to the mobile robot as a proper control command. The
quaternions of the arms’ joints (returned by the OpenNi
framework) are used as input features to several NNs, each
one trained to recognize one predefined gesture. Ten
gestures have been selected among the signals of the USA
army [21].

Such a system involves some challenging tasks, such as:

• The real-time recognition of gestures;

• The spatial and temporal resolution of gestures;

• The independence of the gesture classifier from users.

All these problems have been investigated and tackled in
depth. One of the main aims of this work is to find a solution
to one of the crucial issues related to real-time application,
viz., gesture segmentation. This deals with the detection of
the starting and ending frame of each gesture and the
normalization of the lengths of different gestures. An
algorithm based on a fast Fourier transform (FFT) has been
applied to solve this problem. Furthermore, the proposed
system has been provided with the ability to avoid false
positives when the user is not involved in any gesture.
Moreover, the system is supplied with a person re-identi‐
fication [22] module which guarantees that only one person
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at a time controls the robot through gestures. This is a
peculiarity that has been added to the system in order to
guarantee the precise control of the robot. Real experiments
demonstrate both the real-time applicability and the
robustness of the proposed approach in terms of detection
performance. The system performance is first validated
offline using video sequences acquired by a Kinect camera.
Next, online experiments are carried out proving the real-
time operation of the system as required by a human-robot
interactive interface.

The proposed system is described in section 3, whereas
section 4 presents the experiments carried out in our office-
like environment. Finally, section 5 outlines some conclu‐
sions and discussions.

Figure 1. Scheme of the system architecture: the Kinects are connected to the
computers which in turn wirelessly communicate with each other and with
the mobile robot

3. The proposed system

In Figure 1, a scheme of the system architecture is shown.
A human operator can take control of the mobile agent from
any one of the three cameras, which are connected to three
computers where the gesture recognition module process‐
es the image sequences continuously and provide motion
commands to the robot controller. The human operator
who is to control the mobile agent stays in front of one of
these cameras and executes an initialization gesture that
allows the Kinect sensor to calibrate and activate the
tracking procedure. From that moment onwards, all the
gestures obtained by the real-time analysis of the skeleton
are converted into control commands and are sent to the
mobile agent.

A display close to each Kinect sensor visualizes the
environment map with the current robot position (see
Figure 2) and provides messages to the operator to signal

whether any gestures have been recognized and translated
in a command or not. Only one person at a time is allowed
to control the mobile agent. Therefore, the first time he/she
enters the field of view of one camera, he/she has to execute
the initialization gesture. Once the initialization gesture is
recognized by the system, the RGB image silhouette of the
person is used by the person re-identification module to
build the signature of that person. As such, the person re-
identification module guarantees that the person control‐
ling the robot is the same if either the person exits the field
of view of one Kinect or else enters that of another Kinect.
The OpenNI framework instead guarantees the tracking of
the person during the execution of gestures. If another user
has to take the robot control, it is necessary that he/she
executes the initialization gesture, and the process starts
again.

Gesture segmentation is another fundamental cue for the
success of a gesture recognition method and it must be
solved before recognition in order to make the model-
matching more efficient. Therefore, a periodicity analysis
is carried out in order to extract and normalize the gesture
lengths and to acquire data comparable to the generated
models. First, some features are extracted from the image
sequences and are provided to different NN classifiers,
each one trained to recognize a single gesture. In addition,
in order to be independent of the starting frame of the
sequence, a sliding window and consensus analysis are
used to make a decision in relation to the recognized
gesture. In this way, the proposed system has no need for
a particular assumption about special boundary criteria, no
need for a fixed gesture length, and no need for multiple
window sizes, thus avoiding an increase in computational
load.

In the following subsection, a brief overview of a person re-
identification module will be given. Gesture recognition
and gesture segmentation approaches will be detailed.

Figure 2. Snapshot of a section of the environment map highlighting the
current robot position (red circle) and some goal positions (green squares)
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Figure 1. Scheme of the system architecture: the Kinects are
connected to the computers that wirelessly communicate each
other and with the mobile robot.

processes continuously the image sequences and provide
motion commands to the robot controller. The human
operator who has to control the mobile agent, stays in
front of one of these cameras and executes an initialization
gesture that allows the Kinect sensor to calibrate and
activate the tracking procedure. From that moment, all
the gestures obtained by the real time analysis of the
skeleton are converted into control commands and are
sent to the mobile agent. A display close to each Kinect

Figure 2. Snapshot of a section of the environment map with
highlighted the current robot position (red circle) and some goal
positions (green squares).

sensor, visualizes the environment map with the current
robot position (see Figure 2) and provides messages to the
operator to signal if gestures have been recognized and
translated in a command or not. Only one person at a
time is allowed to control the mobile agent. Therefore the
first time he/she enters the field of view of one camera,
he/she has to execute the initialization gesture. Once
the initialization gesture is recognized by the system, the
RGB image silhouette of the person is used by the people
re-identification module to build the signature of that
person. So the people re-identification module guarantees
that the person which controls the robot is the same, either

if the person exits the field of view of one Kinect or
enters that of another Kinect. OpenNI framework, instead,
guarantees the tracking of the person during the execution
of gestures. If another user has to take the robot control, it
is necessary that he/she executes the initialization gesture
and the process starts again.

Gesture segmentation is another fundamental cue for the
success of a gesture recognition method and it has to
be solved before recognition in order to make model
matching more efficient. Therefore a periodicity analysis
has been carried out in order to extract and normalize
the gesture length and to have data comparable with
the generated models. First, some features are extracted
from the image sequences and are provided to different
neural network classifiers each one trained to recognize
a single gesture. In addition, in order to be independent
of starting frame of the sequence, a sliding window and
a consensus analysis have been used to make a decision
on the recognized gesture. In this way the proposed
system has no need of particular assumption about special
boundary criteria, no need of fixed gesture length and no
need of multiple window sizes so avoiding an increase of
the computational load.

In the following subsection a brief overview of people
re-identification module will be given. Successively
gesture recognition and gesture segmentation approaches
will be better detailed.

Figure 3. Sample images of segmented silhouettes.

3.1. People re-identification module

In order to allow the control of the robot by different
cameras, a people re-identification algorithm has been
implemented in order to allow the recognition of the same
person in different points of the environment. In this
work a modified version of the methodology published
in [23] has been applied. The Kinect cameras together
with the OpenNI framework allow an easy segmentation
of people entering in the cameras field of view. Actually
the extraction of the corresponding RGB silhouette is
immediate and avoid problems such as people motion
detection and background subtraction which instead are
investigated in [23]. Thanks to the OpenNI framework,
each time a person enter in the Kinect field of view, the
modules of people segmentation and tracking associate a
new ID to that person. Furthermore the bounding box
containing his/her RGB segmented silhouette is available
for further processing. In Figure 3 some sample images of
segmented silhouettes are shown. By using these images a
signature (or feature set) which provides a discriminative
profile of the person is obtained and is used for recognition
when new instances of persons are encountered. In our
approach, the signature is based on the evaluation of color
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Figure 3. Sample images of segmented silhouettes

3.1 Person re-identification module

In order to allow the control of the robot by different
cameras, a person re-identification algorithm has been
implemented in order to allow the recognition of the same
person in different parts of the environment. In this work,
a modified version of the methodology published in [23]
has been applied. The Kinect cameras together with the
OpenNI framework allow for the easy segmentation of
people entering in the camera’s field of view. In fact, the
extraction of the corresponding RGB silhouette is immedi‐
ate and avoids problems such as people-motion detection
and background subtraction, which are instead investigat‐
ed in [23]. Thanks to the OpenNI framework, each time a
person enters into the Kinect’s field of view, the modules
of the person segmentation and tracking associate a new ID
to that person. Furthermore, the bounding box containing
his/her RGB segmented silhouette is available for further
processing. In Figure 3, some sample images of segmented
silhouettes are shown. By using these images, a signature
(or feature set) which provides a discriminative profile of
the person is obtained and is used for recognition when
new instances of persons are encountered. In our approach,
the signature is based on the evaluation of colour similarity
among uniform regions and the extraction of robust
relative geometric information that is persistent when
people move in the scene. The signature can be estimated
on one or more frames, and a distance measure is intro‐
duced to compare signatures extracted by different
instances of people returned by the human-tracking
module. As such, the method can be summarized in the
following steps:

• First of all, for each frame a segmentation of the silhou‐
ette in uniform regions is carried out;

• For each region, some colour and area information is
evaluated;

• A connected graph is generated: nodes contain the
information of each region, such as colour histograms
and area occupancy, while connections among nodes
contain information on the contiguity of regions.

• A similarity measure is introduced to compare graphs
generated by different instances that considers some
relaxation rules to handle the varying appearance of the
same person when observed by different point of views.

In order to recognize the same person in different images
or when the person exits and re-enters in view of the same
camera, a decision about the similarity measures has to be
taken. By experimental validation, some sets of signatures
of different persons are evaluated and a threshold on
possible variations of inter-class signatures (the signatures
of the same person) is estimated. If the similarity of two
different signatures is under this threshold, the person is
recognized. For more details about the person re-identifi‐
cation method, see [23].

3.2 The gesture recognition approach

The OpenNI framework provides the human skeleton with
the joint coordinates useful for gesture recognition.
Different gestures executed with the right arm are selected
from the "Arm-and-Hand Signals for Ground Forces" [21].
Figure 4 shows the gestures that were chosen for the
experiments. Throughout this paper, we will refer to these
gestures using the following symbols G1 , G2 , G3 ,..., G10 .

similarity among uniform regions and the extraction of
robust relative geometric information that are persistent
also when people move in the scene. The signature
can be estimated on one or more frames, and a distance
measure is introduced to compare signatures extracted
by different instances of people returned by the human
tracking module. So the method can be summarized in
the following steps:

• first of all for each frame a segmentation of the
silhouette in uniform regions is carried out;

• for each region some color and area information are
evaluated;

• a connected graph is generated: nodes contain the
information of each region such as color histograms
and area occupancy, while connections among nodes
contain information on the contiguity of regions.

• a similarity measure is introduced to compare graphs
generated by different instances that considers some
relaxation rules to handle the different appearances of
the same person when observed by different point of
views.

In order to recognize the same person in different views or
when the person exits and re-enters in the same camera,
a decision about the similarity measures has to be taken.
By experimental validation, some sets of signatures of
different persons have been evaluated and a threshold on
possible variations of inter class signatures (the signatures
of the same person) has been estimated. If the similarity
of two different signatures is under this threshold, the
person is recognized. For more details about the people
re-identification method see [23].

3.2. The gesture recognition approach

The OpenNI framework provides the human skeleton
with the joint coordinates useful for gesture recognition.
Different gestures executed with the right arm have been
selected from the "Arm-and-Hand Signals for Ground
Forces" [21]. Figure 4 shows the gestures that have been
chosen for the experiments. Throughout the paper we will
refer to these gestures by using the following symbols G1,
G2, G3, ... G10.

Figure 4. Ten different gestures selected from the army visual
signals report [21] are shown. Gestures G5, G6, G8 and G9 are
pictured in a perspective view as the arm has a forward motion.
In gestures G1, G2, G3, G4, G7 and G10 the arm has lateral motion
instead, so the front view is drawn.

The problem of selecting significant features which
preserve important information for classification,
is fundamental for gesture recognition. Different
information is used in literature: many papers consider
the coordinate variations of some joints such as the hand,
the elbow, the shoulder and the torso nodes. However
when coordinates are used, a kind of normalization is
needed in order to be independent of the position and
the height of the people performing the gestures. For this
reason, in many cases joint orientations are preferred as
they are more robust and are independent on the position
and the height of the gesturer. In this paper, two types of
features are compared: the angles and the quaternions of
some joint nodes.

Figure 5. Joint angles used as features: α angle among
hand-elbow-shoulder joints; β angle among elbow-shoulder-torso
joints and γ among elbow-rightshoulder-leftshoulder joints in the
XY plane.

In the first case, three joint-angles have been selected:
α defined among hand-elbow-shoulder joints, β
among elbow-shoulder-torso joints and γ among
elbow-rightshoulder-leftshoulder joints (see Figure 5).
These three joint angles produce a feature vector Vi for
each frame i

Vi = [αi, βi, γi]

In the second case, the quaternions of the shoulder and
elbow right nodes have been selected. A quaternion is a
set of numbers that comprises a four-dimensional vector
space and is denoted by

q = a + bi + cj + dk

where a, b, c, d are real numbers and i, j, k are imaginary
units. The quaternion q represents an easy way to code
any 3D rotation expressed as a combination of a rotation
angle and a rotation axis. The quaternions of the shoulder
and elbow right nodes produce a feature vector for each
frame i defined by:

Vi = [as
i , bs

i , cs
i , ds

i , ae
i , be

i , ce
i , de

i ]

where the index s stands for shoulder and e stands for
elbow.

Once the feature vectors have been defined, the
models of the gestures have been learned by using
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Figure 4. Ten different gestures selected from the army visual signals report
[21] are shown. Gestures G5 , G6 , G8 and G9 are pictured in a perspective

view as the arm engages in a forward motion. In gestures G1 , G2 , G3 , G4 ,
G7 and G10 , the arm has lateral motion instead, and so the front view is
drawn.

The problem of selecting significant features which
preserve important information for classification is funda‐
mental for gesture recognition. Different information is
used in the literature, and many papers consider the
coordinate variations of some joints such as the hand, the
elbow, the shoulder and the torso nodes. However, when
coordinates are used, a kind of normalization is needed in
order to be independent of the position and the height of
the people performing the gestures. For this reason, in
many cases joint orientations are preferred as they are more
robust and are independent of the position and the height
of the gesturer. In this paper, two types of features are
compared - the angles and the quaternions of the joint
nodes.

In the first case, three joint-angles are selected: α defined
among hand/elbow/shoulder joints, β among elbow/
shoulder/torso joints, and γ among elbow/right shoulder/
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left shoulder joints (see Figure 5). These three joint angles
produce a feature vector V i for each frame i :

= [ , , ]i i i iV a b g

In the second case, the quaternions of the right shoulder
and elbow nodes are selected. A quaternion is a set of
numbers that comprises a 4D vector space and is denoted
by:

=q a bi cj dk+ + +

where a,b,c,d  are real numbers and i, j,k  are imaginary units.
The quaternion q represents an easy way to code any 3D
rotation expressed as a combination of a rotation angle and
a rotation axis. The quaternions of the right shoulder and
elbow nodes produce a feature vector for each frame i
defined by:

= [ , , , , , , , ]s s s s e e e e
i i i i i i i i iV a b c d a b c d

where the index s stands for the shoulder and e stands for
the elbow.

Once the feature vectors have been defined, the models of
the gestures are learned by using 10 different NNs, one for
each gesture. Concordantly, 10 different training sets are
constructed in light of the feature vector sequences of the
same gesture as positive examples and the feature vector
sequences of the other gestures as negative examples. To
this end, different people were asked to repeat the gestures.
As a consequence, the length of the gesture - in terms of
number of frames - can greatly vary. Accordingly, in order
to be invariant with respect to execution of the gestures, a
pre-processing step was applied. The feature sequences
were sampled within a fixed interval. The interval length
was fixed to 60 frames, and so the gesture duration is
around two seconds since the frame rate of the Kinect is 30
fps. Linear interpolation in order to re-sample (up-sam‐
pling or down-sampling) the number of frames was

similarity among uniform regions and the extraction of
robust relative geometric information that are persistent
also when people move in the scene. The signature
can be estimated on one or more frames, and a distance
measure is introduced to compare signatures extracted
by different instances of people returned by the human
tracking module. So the method can be summarized in
the following steps:

• first of all for each frame a segmentation of the
silhouette in uniform regions is carried out;

• for each region some color and area information are
evaluated;

• a connected graph is generated: nodes contain the
information of each region such as color histograms
and area occupancy, while connections among nodes
contain information on the contiguity of regions.

• a similarity measure is introduced to compare graphs
generated by different instances that considers some
relaxation rules to handle the different appearances of
the same person when observed by different point of
views.

In order to recognize the same person in different views or
when the person exits and re-enters in the same camera,
a decision about the similarity measures has to be taken.
By experimental validation, some sets of signatures of
different persons have been evaluated and a threshold on
possible variations of inter class signatures (the signatures
of the same person) has been estimated. If the similarity
of two different signatures is under this threshold, the
person is recognized. For more details about the people
re-identification method see [23].

3.2. The gesture recognition approach

The OpenNI framework provides the human skeleton
with the joint coordinates useful for gesture recognition.
Different gestures executed with the right arm have been
selected from the "Arm-and-Hand Signals for Ground
Forces" [21]. Figure 4 shows the gestures that have been
chosen for the experiments. Throughout the paper we will
refer to these gestures by using the following symbols G1,
G2, G3, ... G10.

Figure 4. Ten different gestures selected from the army visual
signals report [21] are shown. Gestures G5, G6, G8 and G9 are
pictured in a perspective view as the arm has a forward motion.
In gestures G1, G2, G3, G4, G7 and G10 the arm has lateral motion
instead, so the front view is drawn.

The problem of selecting significant features which
preserve important information for classification,
is fundamental for gesture recognition. Different
information is used in literature: many papers consider
the coordinate variations of some joints such as the hand,
the elbow, the shoulder and the torso nodes. However
when coordinates are used, a kind of normalization is
needed in order to be independent of the position and
the height of the people performing the gestures. For this
reason, in many cases joint orientations are preferred as
they are more robust and are independent on the position
and the height of the gesturer. In this paper, two types of
features are compared: the angles and the quaternions of
some joint nodes.

Figure 5. Joint angles used as features: α angle among
hand-elbow-shoulder joints; β angle among elbow-shoulder-torso
joints and γ among elbow-rightshoulder-leftshoulder joints in the
XY plane.

In the first case, three joint-angles have been selected:
α defined among hand-elbow-shoulder joints, β
among elbow-shoulder-torso joints and γ among
elbow-rightshoulder-leftshoulder joints (see Figure 5).
These three joint angles produce a feature vector Vi for
each frame i

Vi = [αi, βi, γi]

In the second case, the quaternions of the shoulder and
elbow right nodes have been selected. A quaternion is a
set of numbers that comprises a four-dimensional vector
space and is denoted by

q = a + bi + cj + dk

where a, b, c, d are real numbers and i, j, k are imaginary
units. The quaternion q represents an easy way to code
any 3D rotation expressed as a combination of a rotation
angle and a rotation axis. The quaternions of the shoulder
and elbow right nodes produce a feature vector for each
frame i defined by:

Vi = [as
i , bs

i , cs
i , ds

i , ae
i , be

i , ce
i , de

i ]

where the index s stands for shoulder and e stands for
elbow.

Once the feature vectors have been defined, the
models of the gestures have been learned by using
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Figure 5. Joint angles used as features: α angle among hand/elbow/shoulder
joints, β angle among elbow/shoulder/torso joints, and γ among elbow/
right shoulder/left shoulder joints in the XY plane

applied, as it marks a good compromise between compu‐
tational burden and quality of results.

The architecture of the NNs was defined relative to the
types of features. As such, in the case where the joint angles
α,β and γ are used as features, each NN has an input layer
of 180 nodes (three features for 60 frames). Conversely, in
the case of quaternions, the input layer of each NN has 480
nodes (eight features for 60 frames). In both cases, each NN
has one hidden layer and one node in the output layer
which has been trained to return 1 if a gesture is recognized
and zero otherwise. A backpropagation algorithm was
used for the training phase, whereas the best configuration
of hidden nodes was selected in a heuristic manner after
several experiments. At the end of training, offline testing
was carried out. The sequence of features of one gesture is
provided to all 10 NNs and the one which returns the
maximum answer is considered. If this maximum answer
is above a fixed threshold, the sequence is recognized as the
corresponding gesture, otherwise it is considered as a non-
gesture.

3.3 Length gesture estimation and gesture segmentation

As mentioned above, the length of a gesture can vary if
either the gesture is executed by the same person or else by
different people. Furthermore, during the online operation
of the gesture recognition module, it is not possible to know
the starting frame and the ending frame of each gesture. For
these reasons, two further steps are introduced.

First, in order to solve the problem of gesture length, a FFT-
based approach was applied. Repeating a gesture a number
of times, it is possible to approximate the feature sequence
as a periodic signal. Accordingly, different people were
asked to repeat the same gesture without interruption and
all the frames of the sequences were recorded. Applying
the FFT and tacking the position of the fundamental
harmonic component, the period could be evaluated as the
reciprocal value of the peak position. The estimated period
was then used to interpolate the sequence of feature vectors
in 60 values which could be provided to the 10 NNs.

Furthermore, the performance of the gesture recognition
module can worsen during the online operation if the
sequence of frames provided to the classifiers does not
contain the exact gesture. In other words, the starting and
ending frames are not know a priori. As such, a sliding
window approach was applied as shown in Figure 6. The
video sequences were divided into multiple overlapping
segments of n frames, where n is the period of the gesture
evaluated in the previous step with the FFT. Next, these
segments were resized with the linear interpolation in
order to generate windows of the same size as those used
during the training phase, and were then fed to all 10 NNs.
Consensus decision-making was applied to recognize the
sequence as one gesture. This was based - again - on a
sliding window approach and was used to evaluate the
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number of consecutive concordant answers of the same
NN.

4. Experimental results

Different experiments were executed: offline experiments
for the performance evaluation of the gesture recognition
module; online experiments for the gesture-length estima‐
tion and segmentation; finally, a selection of gestures was
used as robot commands to control in real-time the Peo‐
pleBot mobile platform, allowing its navigation in the
environment.

4.1 Gesture recognition: offline experiment

The gesture recognition module was tested using a data‐
base of 10 gestures performed by 10 different people. Some
gestures performed by five subjects were used to train the
10 NNs, while the remaining gestures together with all the

sequences of the other five people were used for the test.
Initially, the experiments were distinguished by first
considering the five people whose gestures were in the
training sets (the first five people) and then the other five
people. This difference is important, as the execution of the
same gestures can be very different if either they are
executed by the same people in different sessions or by new
people.

Sequences of 24, 26, 18, 22, 20, 20, 21, 23, 23 and 25 execu‐
tions of gestures G1 , G2 , G3 , G4 , G5 , G6 , G7 , G8 , G9 and
G10 , respectively, performed by the first five people were
used as positive examples in the 10 training sets for the 10
NNs. In other words, the first training set contains 24
positive examples of gesture G1 and the remaining execu‐
tions (i.e., 26 of G2 , 18 of G3 , 22 of G4 , and so on) as negative
examples. The same strategy was then used for building the
training sets of the other nine NNs.

Figure 6. The proposed approach for the on line gesture recognition module.

Figure 7. The scatter matrix for the recognition of the 10 gestures
when the joint angles are used as features. Tests performed
on gesture sequences executed by the same people used in the
training set.

Figure 8. The scatter matrix for the recognition of the 10 gestures
when the quaternions are used as features. Tests performed
on gesture sequences executed by the same people used in the
training set.

Figure 9. The scatter matrix for the recognition of the 10 gestures
with quaternions as features and with the threshold Th = 0.7. Tests
performed on gesture sequences executed by the same subjects
used in the training set.

Figure 10. The scatter matrix for the recognition of the 10
gestures with quaternions as features and with the threshold Th =
0.4. Tests executed on gesture sequences executed by people not
included in the training set.
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Figure 6. The proposed approach for the on line gesture recognition module

Figure 7. The scatter matrix for the recognition of the 10 gestures when the
joint angles are used as features. Tests performed on gesture sequences
executed by the same people as used in the training set.

Figure 8. The scatter matrix for the recognition of the 10 gestures when the
quaternions are used as features. Tests performed on gesture sequences
executed by the same people as used in the training set.
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Figure 9. The scatter matrix for the recognition of the 10 gestures with
quaternions as features and with the threshold Th =0.7 . Tests performed
on gesture sequences executed by the same subjects as used in the training
set.

Figure 10. The scatter matrix for the recognition of the 10 gestures with
quaternions as features and with the threshold Th =0.4 . Tests executed on
gesture sequences executed by people not included in the training set.

Figure 11. The results of the gesture recognition over a sequence of 600 frames during the continuous execution of gesture G7.

Figure 12. The results of the gesture recognition when the decision making approach is applied: G7 is correctly recognized.

the rotation axes of joints are not involved in this case.
Quaternions, instead, include not only the rotation angles
but also the rotation axes. Indeed the results shown in
Figure 8, that refer to the case of quaternions as features,
are better; the only failure case is for gesture G4 mistaken
with G10.

After the previous tests, quaternions have been chosen as
features for all the subsequent experiments. First of all
some experiments have been carried out by introducing
frame sequences that do not belong to any of the ten
gestures. This is for introducing a No Gesture (NG) class.
This is important as people can perform idle gestures
which must be associated to a NG class. Indeed the results
could greatly get worse since in any case the executed
gesture is always classified by one NN, even erroneously.
So a threshold Th has been defined in order to evaluate
the maximum answer among the 10 outputs of the NNs:
if this maximum value is under the threshold the gesture
is classified as No Gesture. In Figures 9 the scatter
matrix obtained by using Th = 0.7 is shown. As can be
seen some gestures that were correctly classified in the
previous test (see Figure 8), are classified as No Gesture
in this new case (see the last column (NG) of Figure
9). According to the threshold value the number of false
negatives (gestures recognized as No gestures) and true
negatives (No gestures correctly classified as No gestures)
can greatly change. So a final test has been carried out
whose results are reported in Figure 10: in this case
sequences of gestures executed by people not included
in the training sets are fed to the NNs. As expected the
output values returned by the 10 NNs are smaller than

those obtained when the same people of the training set
execute the gestures. This is because different people can
execute gestures each one with a personal interpretation of
the gestures. However the recognition of the ten gestures
is always guaranteed using a smaller threshold value of
Th = 0.4.

4.2. Gesture Recognition: On-line experiment

In order to test the ability of the system to perform
the recognition when people execute the gestures
in continuous and with different velocities, on-line
experiments have been carried out. In this case the gesture
recognition module has to work in continuous, i.e. during
the frame acquisition, so it has to manage both different
lengths of the gestures and no knowledge about the
starting and ending frame of the gesture sequence. As
described in section 3.3 a sliding window approach has
been applied.

In order to clarify these problems gestures G7 and G9
are used as examples since their respective NNs provide
similar output values. In Figure 11, the output values of
the NNs of G7 (NN7) and G9 (NN9) are reported on a
sequence of 600 frames, when a person executes gesture
G7. Notice that 600 frames correspond roughly to 10
executions of a gesture. During the on-line experiment
sequences of 300 frames are selected for being processed
supposing that the gesture has been executed at least
five times. In Figure 11, in red (∗) the correct answers
of NN7 and in green (+) the wrong answers of the
NN9 are shown. The output values of the remaining
NNs are negligible as correctly close to 0. It is evident
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Figure 11. The results of the gesture recognition over a sequence of 600 frames during the continuous execution of gesture G7

Figure 11. The results of the gesture recognition over a sequence of 600 frames during the continuous execution of gesture G7.

Figure 12. The results of the gesture recognition when the decision making approach is applied: G7 is correctly recognized.

the rotation axes of joints are not involved in this case.
Quaternions, instead, include not only the rotation angles
but also the rotation axes. Indeed the results shown in
Figure 8, that refer to the case of quaternions as features,
are better; the only failure case is for gesture G4 mistaken
with G10.

After the previous tests, quaternions have been chosen as
features for all the subsequent experiments. First of all
some experiments have been carried out by introducing
frame sequences that do not belong to any of the ten
gestures. This is for introducing a No Gesture (NG) class.
This is important as people can perform idle gestures
which must be associated to a NG class. Indeed the results
could greatly get worse since in any case the executed
gesture is always classified by one NN, even erroneously.
So a threshold Th has been defined in order to evaluate
the maximum answer among the 10 outputs of the NNs:
if this maximum value is under the threshold the gesture
is classified as No Gesture. In Figures 9 the scatter
matrix obtained by using Th = 0.7 is shown. As can be
seen some gestures that were correctly classified in the
previous test (see Figure 8), are classified as No Gesture
in this new case (see the last column (NG) of Figure
9). According to the threshold value the number of false
negatives (gestures recognized as No gestures) and true
negatives (No gestures correctly classified as No gestures)
can greatly change. So a final test has been carried out
whose results are reported in Figure 10: in this case
sequences of gestures executed by people not included
in the training sets are fed to the NNs. As expected the
output values returned by the 10 NNs are smaller than

those obtained when the same people of the training set
execute the gestures. This is because different people can
execute gestures each one with a personal interpretation of
the gestures. However the recognition of the ten gestures
is always guaranteed using a smaller threshold value of
Th = 0.4.

4.2. Gesture Recognition: On-line experiment

In order to test the ability of the system to perform
the recognition when people execute the gestures
in continuous and with different velocities, on-line
experiments have been carried out. In this case the gesture
recognition module has to work in continuous, i.e. during
the frame acquisition, so it has to manage both different
lengths of the gestures and no knowledge about the
starting and ending frame of the gesture sequence. As
described in section 3.3 a sliding window approach has
been applied.

In order to clarify these problems gestures G7 and G9
are used as examples since their respective NNs provide
similar output values. In Figure 11, the output values of
the NNs of G7 (NN7) and G9 (NN9) are reported on a
sequence of 600 frames, when a person executes gesture
G7. Notice that 600 frames correspond roughly to 10
executions of a gesture. During the on-line experiment
sequences of 300 frames are selected for being processed
supposing that the gesture has been executed at least
five times. In Figure 11, in red (∗) the correct answers
of NN7 and in green (+) the wrong answers of the
NN9 are shown. The output values of the remaining
NNs are negligible as correctly close to 0. It is evident
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Figure 12. The results of the gesture recognition when the decision-making approach is applied: G7 is correctly recognized

Analogously, the tests were carried out using 23, 19, 16, 22,
18, 15, 19, 19, 21 and 18 executions of gestures G1 , G2 , G3 ,
G4 , G5 , G6 , G7 , G8 , G9 and G10 , respectively, performed by
the same five people as in the training set. In Figures 7 and
8, the scatter matrices of two tests are reported: the first
refers to the results obtained using the joint angles as
features, whereas the second refers to those obtained when
quaternions are used. As expected, the results worsen in
the case of joint angles. Actually, they are not able to
disambiguate among certain different gestures: as an
example, G9 is mistaken for G4 and, conversely, G4 is
mistaken for G10 . In fact, these gestures involve the same β
and γ joint angles. Only the α angle is variable, but this
variation is not unambiguously recognized by the classifi‐

ers. The cause of this ambiguity is that the rotation axes of
the joints are not involved in this case. Quaternions, in
contrast, include not only the rotation angles but also the
rotation axes. Indeed, the results shown in Figure 8 that
refer to the case of quaternions as features are better; the
only failure case is for gesture G4 , which is mistaken for
G10 .

After the previous tests, quaternions were chosen as
features for all the subsequent experiments. First of all,
some experiments were carried out by introducing frame
sequences that do not belong to any of the 10 gestures. This
is for introducing a non-gesture (NG) class, which is
important as people can perform idle gestures which must
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be associated with an NG class. Indeed, the results could
become significantly worse since in any case the executed
gesture is always classified by one NN, even erroneously.
As such, a threshold Th  is defined in order to evaluate the
maximum answer among the 10 outputs of the NNs: if this
maximum value is under the threshold, the gesture is
classified as a non-gesture. In Figure 9, the scatter matrix
obtained using Th =0.7 is shown. As can be seen, some
gestures that were correctly classified in the previous test
(see Figure 8) are classified as non-gestures in this new case
(see the last column (NG) of Figure 9). According to the
threshold value, the number of false negatives (gestures
recognized as non-gestures) and true negatives (non-
gestures correctly classified as non-gestures) can vary
greatly. Accordingly, a final test was carried out whose
results are reported in Figure 10: in this case, sequences of
gestures executed by people not included in the training
sets are fed to the NNs. As expected, the output values
returned by the 10 NNs are smaller than those obtained
when the same people of the training set execute the
gestures. This is because different people can execute
gestures with their own personal interpretation of the
gestures. However, the recognition of the 10 gestures is
always guaranteed using a smaller threshold value of
Th =0.4 .

4.2 Gesture recognition: online experiment

In order to test the ability of the system to perform recog‐
nition when people execute the gestures continuously and
with different velocities, online experiments were carried
out. In this case, the gesture recognition module has to
work continuously, i.e., during frame acquisition, and so it
has to manage different gesture lengths and has no
knowledge about the starting and ending frames of the
gesture sequence. As described in section 3.3, a sliding
window approach was applied.

In order to clarify these problems, gestures G7 and G9 are
used as examples since their respective NNs provide
similar output values. In Figure 11, the output values of the
NNs of G7 (NN7) and G9 (NN 

9
 ) are reported on a sequence

of 600 frames when a person executes gesture G7 . Notice
that 600 frames roughly correspond to 10 executions of a
gesture. During the online experiment, sequences of 300
frames are selected for processing supposing that the
gesture has been executed at least five times. In Figure 11
is shown, in red (*), the correct answers of NN7, and in green
(+), the wrong answers of NN9. The output values of the
remaining NNs are negligible as they are close to 0. It is
evident that for most of the time the maximum answers are
provided by the correct network (NN7), but at some regular
intervals NN9 also provides large values. The wrong
answers are justified by the fact that the sliding window -
when it slides on frames - encloses sequences that can be
confused with the erroneous gesture. In other words, some
gestures contain common sub-sequences that can increase
ambiguity; therefore, more NNs return a high output value.
This happens until the sliding window ceases to enclose the
correct sequence (from the first to the last frames) corre‐

sponding to the current gesture. This can be seen in Figure
11 where, since the starting and ending sections of G7 and
G9 are the same, both NN7 and NN9 return high output
values. The central section of G7 and G9 , instead, are
different and so NN7 correctly provides the maximum
value and NN9 correctly provides the minimum value. To
solve this problem, the consensus decision-making ap‐
proach described in section 3.3 is applied. A counter is
assigned to each gesture. First, the number of consecutive
concordant answers of the same NN is counted and, if it is
greater than a fixed threshold (heuristically fixed to 10 in
our case), then the gesture counter is incremented by one.
The gesture which has the counter at the maximum value
is the recognized one. In Figure 12, a graph of the decision-
making process is shown: most of the time, G7 is now
correctly recognized while, in the remaining intervals, a
non-gesture is returned.

As an additional test, the system was pressed to recognize
all the gestures executed with different velocities. For all
the gestures, two different experiments were carried out:
each gesture has been performed by one user (not included
in the training set) at two different velocities. Sequences of
300 frames were observed and the FFT module evaluated
the period of the gestures as described in section 3.3. As has
already been mentioned, the period is used to estimate the
size of the sliding window which in turn is used to resize
and extract the sequence of frames fed to the 10 NNs. In
Figure 13, the results are reported. In the first column, N
represents the number of frames extracted by the proposed
system in the window of 300 observations. This number can
be less than 300, as the feature extraction algorithm
depends upon the results of the skeleton detection made by
the OpenNI framework. If the skeleton detection fails, the
corresponding frames are not considered by the gesture
recognition software. As an example, during the first
execution of the gesture G1 , only 289 frames were consid‐
ered (see Figure 13). In the second column of the table, the
symbol P  refers to the period estimated by the FFT proce‐
dure highlighting the different velocities of the gesture
executions. By ’velocity’ we mean the number of frames
that contain the execution of one gesture. As an example,
and considering again gesture G1 , the two different
velocities are represented by P =57 and P =43 , meaning that
the gesture G1 performed slower in the first case and faster
in the second case. The remaining columns of the table
report how many times the corresponding NN has ob‐
tained concordant answers above the fixed threshold. The
numbers reported in bold in the main diagonal demon‐
strate that the proposed system is able to recognize the
gesture whatever its velocity may be. Some false positives
are detected, but they are due first to the ability of the Kinect
software to extract correctly the skeleton and the joint
positions, and secondly to the similarity of many gestures
in some portions of their movement. For example, gesture
G9 is often confused with G1 and G2 since, in some portions
of the gestures, the features have the same variations.
However, as we can observe in Figure 13, the maximum
value of the concordant answers is always associated with
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the correct gesture thanks to the decision-making process
described above.

Figure 13. The results of the proposed gesture recognition approach when
the gestures are executed with different velocities. N  represents the number
of observed frames. P  refers to the number of frames containing the
execution of one gesture (velocity of execution).

Gesture Command

G1 Initialization

G2 Home

G3 Go to the Goal

G4 Turn Around

G5 Go Wondering

G6 Stop

Table 1. The gestures and the associated commands

Figure 14. The results of the gesture recognition when a sequence of gestures is executed in real time. On the top of the figure the
ground truth is pictured, whereas at the bottom the system answers are reported.

erroneously confused with gesture G3. But as explained in
the previous section, if the command decision is made after
a sequence of 300 observations (frames), during which the
FFT is applied, also in this case the correct command can be
sent to the robot controller. In Figure 15, on the left column
the RGB images acquired by three Kinect sensors placed
in different points of the environment are shown. On the
right, the corresponding segmented silhouettes which are
provided to the re-identification module, are pictured. In
the images on the top the person is performing the gesture
G1 (initialize) which activates the signature generation for
the re-identification procedure. So, even if the person
enters another camera field of view or more subjects are
present in the same view (bottom of Figure 15), the system
is always able to maintain the attention on the same person
who made the initialization and took the robot control.
Figure 16 shows a snapshot of the robot which reaches the
goal position after the user performed gesture G3.

5. Discussion and Conclusions

In this paper we propose a gesture recognition system
based on a Kinect sensor which, in an effective way,
provides both the people segmentation and the skeleton
information for real time processing. We use quaternion
features of the right shoulder and elbow nodes and
different Neural Networks to construct the models of 10
different gestures. Off-line experiments demonstrate that
the NNs are able to model the gestures in both cases:
people included and not included in the training set.
Furthermore as the knowledge of the initial frame and the
length of gestures is not always guaranteed, we propose
the use of the FFT for the period analysis and a sliding
window approach to generate a decision making process.
In this way when the sliding window encloses exactly
the frames containing the gesture, the corresponding NN
provides the maximum answer, while when the window
overlaps the ending or starting portions of the gesture
some false positive answers can rise. The obtained results
are very encouraging as the number of false positives is
always smaller than that of true positives. Furthermore by
filtering on the number of consecutive concordant answers
of NNs, the correct final decision is always taken. Off-line

Figure 15. Some RGB images acquired by the Kinect
cameras placed in different positions of he environment with the
corresponding segmented images. On the top the image and
the detected silhouette and skeleton of the person who takes the
control of the robot (Initialization gesture).

Figure 16. A snapshot of the robot which reaches the goal
position.

tests have proved the ability of the system to recognize the
gestures even if users different from those in the training
set perform the gestures. The gesture recognition system
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Figure 14. The results of the gesture recognition when a sequence of gestures is executed in real-time. At the top of the figure, the ground truth is pictured,
whereas at the bottom the system answers are reported.

4.3 Human-robot interaction experiments

In this section, the online experiments of HRI are described.
Among all the gestures, six of them (see Table 1) were
selected for the real-time control of the mobile platform. In
order to evaluate the performance of the gesture recogni‐
tion system, in Figure 14 we report the results when a user
faces the Kinect sensor and performs the six selected
gestures in a continuous way in order to control the mobile
vehicle. At the top of Figure 14, the ground truth of the six
gestures is reported, while at the bottom the corresponding
system’s answers are plotted. The No-Command answer is
obtained when the number of consecutive concordant
answers of the same network is over the established
threshold (10 in our case), but their values are below the Th
threshold. In this case the decision is considered unreliable

and no command is sent to the robot. As shown in Figure
14 the system is mostly able to recognize the corresponding
gestures. Only gesture G6 is sometimes erroneously
confused with gesture G3 . However, and as explained in
the previous section, if the command decision is made after
a sequence of 300 observations (frames), during which the
FFT is applied, then in this case as well the correct com‐
mand can be sent to the robot controller. In Figure 15, on
the left column, the RGB images acquired by three Kinect
sensors placed at different points in the environment are
shown. On the right, the corresponding segmented
silhouettes which are provided to the re-identification
module are pictured. In the images at the top, the person is
performing gesture G1 (initialize), which activates the
signature generation for the re-identification procedure. As
such, even if the person enters another camera’s field of
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view or else if more subjects are present in the same view
(bottom of Figure 15), the system is always able to maintain
focus on the same person who made the initialization and
who took control of the robot. Figure 16 shows a snapshot
of the robot, which reaches the goal position after the user
performed gesture G3 .

Figure 14. The results of the gesture recognition when a sequence of gestures is executed in real time. On the top of the figure the
ground truth is pictured, whereas at the bottom the system answers are reported.

erroneously confused with gesture G3. But as explained in
the previous section, if the command decision is made after
a sequence of 300 observations (frames), during which the
FFT is applied, also in this case the correct command can be
sent to the robot controller. In Figure 15, on the left column
the RGB images acquired by three Kinect sensors placed
in different points of the environment are shown. On the
right, the corresponding segmented silhouettes which are
provided to the re-identification module, are pictured. In
the images on the top the person is performing the gesture
G1 (initialize) which activates the signature generation for
the re-identification procedure. So, even if the person
enters another camera field of view or more subjects are
present in the same view (bottom of Figure 15), the system
is always able to maintain the attention on the same person
who made the initialization and took the robot control.
Figure 16 shows a snapshot of the robot which reaches the
goal position after the user performed gesture G3.

5. Discussion and Conclusions

In this paper we propose a gesture recognition system
based on a Kinect sensor which, in an effective way,
provides both the people segmentation and the skeleton
information for real time processing. We use quaternion
features of the right shoulder and elbow nodes and
different Neural Networks to construct the models of 10
different gestures. Off-line experiments demonstrate that
the NNs are able to model the gestures in both cases:
people included and not included in the training set.
Furthermore as the knowledge of the initial frame and the
length of gestures is not always guaranteed, we propose
the use of the FFT for the period analysis and a sliding
window approach to generate a decision making process.
In this way when the sliding window encloses exactly
the frames containing the gesture, the corresponding NN
provides the maximum answer, while when the window
overlaps the ending or starting portions of the gesture
some false positive answers can rise. The obtained results
are very encouraging as the number of false positives is
always smaller than that of true positives. Furthermore by
filtering on the number of consecutive concordant answers
of NNs, the correct final decision is always taken. Off-line

Figure 15. Some RGB images acquired by the Kinect
cameras placed in different positions of he environment with the
corresponding segmented images. On the top the image and
the detected silhouette and skeleton of the person who takes the
control of the robot (Initialization gesture).

Figure 16. A snapshot of the robot which reaches the goal
position.

tests have proved the ability of the system to recognize the
gestures even if users different from those in the training
set perform the gestures. The gesture recognition system

www.intechopen.com :
A Kinect-based Gesture Recognition Approach for a Natural Human Robot Interface

9

Figure 15. Some RGB images acquired by the Kinect cameras placed at
different positions in the environment with the corresponding segmented
images. At the top of the image is the detected silhouette and the skeleton
of the person who took the control of the robot (initialization gesture).

Figure 16. A snapshot of the robot reaching the goal position

5. Discussion and conclusions

In this paper, we propose a gesture recognition system
based on a Kinect sensor which - in an effective way -
provides both the people segmentation and the skeleton
information for real-time processing. We use the quatern‐
ion features of the right shoulder and elbow nodes and
different NNs to construct the models of 10 different
gestures. Offline experiments demonstrate that the NNs are
able to model the gestures in both cases: people either

included or else not-included in the training set. Further‐
more, as knowledge of the initial frame and the lengths of
the gestures are not always guaranteed, we propose the use
of the FFT for the period analysis and a sliding window
approach to generate a decision-making process. In this
way, when the sliding window encloses exactly the frames
containing the gesture, the corresponding NN provides the
maximum answer; meanwhile, when the window overlaps
the ending or starting portions of the gesture, some false
positive answers can arise. The obtained results are very
encouraging, as the number of false positives is always
smaller than that of true positives. Furthermore, by filtering
the number of consecutive concordant answers of the NNs,
the correct final decision is always taken. Offline tests have
proved the ability of the system to recognize the gestures
even if users different from those in the training set perform
the gestures. The gesture-recognition system is used in a
human-robot interface to remotely control a mobile robot
in the environment. Each recognized gesture is coded into
a proper command sent to the robot for navigation.
Moreover, the system is supplied with a people re-identi‐
fication module to ensure that only one person at a time can
take control of the robot.

The main limitation of the proposed system is the need to
observe additional repetitions of the same gesture in order
to make a decision. This limit depends mainly on the noise
and low precision of the skeleton data extracted by the
Kinect sensor. More executions of the same gesture
guarantee that aggregate behaviour can be extracted to
characterize the gesture. In addition, gesture repetitions are
necessary in order to extract the period and make the
system independent of gesture length. Future work will
address both the evaluation of different features directly
extracted on the depth map and the use of different
methodologies to align the signals, thereby allowing
recognition upon the first execution of the gesture.

6. . References

[1] I. Almetwally and M. Mallem. Real-time tele-
operation and tele-walking of humanoid robot Nao
using Kinect depth camera. In Proc. of 10th IEEE
International Conference on Networking, Sensing and
Control (ICNSC), 2013.

[2] M. Van den Bergh, D. Carton, R. de Nijs, N. Mitsou,
C. Landsiedel, K. Kuehnlenz, D. Wollherr, L. Van
Gool, and M. Buss. Real-time 3D hand gesture
interaction with a robot for understanding direc‐
tions from humans. In Proc. of 20th IEEE international
symposium on robot and human interactive communi‐
cation, pages 357–362, 2011.

[3] S. Bhattacharya, B. Czejdo, and N. Perez. Gesture
classification with machine learning using kinect
sensor data. In Third International Conference on
Emerging Applications of Information Technology
(EAIT), pages 348–351, 2012.

10 Int J Adv Robot Syst, 2015, 12:22 | doi: 10.5772/59974



[4] Biao Ma, Wensheng Xu, and Songlin Wang. A robot
control system based on gesture recognition using
Kinect. TELKOMNIKA Indonesian Journal of Electri‐
cal Engineering, 11(5):2605–2611, May 2013.

[5] L. Cruz, F. Lucio, and L. Velho. Kinect and RGBD
images: Challenges and applications. In XXV
SIBGRAPI IEEE Confernce and Graphics, Patterns and
Image Tutorials, 2012.

[6] D. Di Paola, A. Milella, G. Cicirelli, and A. Distante.
An autonomous mobile robotic system for surveil‐
lance of indoor environments. International Journal
of Advanced Robotic Systems, 7(1), 2010.

[7] T. D’Orazio and C. Guaragnella. A graph-based
signature generation for people re-identification in
a multi-camera surveillance system. In International
Conference on Computer Vision Theory and Applica‐
tions (VISAPP), pages 414–417, Rome, Italy, Febru‐
ary 2012.

[8] T. D’Orazio and G. Cicirelli. People re-identification
and tracking from multiple cameras: a review. In
IEEE International Conference on Image Processing
(ICIP 2012), Orlando, Florida, Sept 2012.

[9] J. Fasola and M.J. Mataric. Using socially assistive
human-robot interaction to motivate physical
exercise for older adults. Proceedings of the IEEE,
100(8):2512–2526, August 2012.

[10] Tatsuya Fujii, Jae Hoon Lee, and Shingo Okamoto.
Gesture recognition system for human-robot
interaction and its application to robotic service
task. In Proc. of the International Multi-Conference of
Engineers and Computer Scientists (IMECS), volume
I, Hong Kong, March 2014.

[11] M. A. Goodrich and A. C. Schultz. Human-robot
interaction: A survey. Foundations and Trends in
Human-Computer Interaction, 1(3):203–275, 2007.

[12] Y. Gu, H. Do, Y. Ou, and W. Sheng. Human gesture
recognition through a kinect sensor. In IEEE
International Conference on Robotics and Biomimetics
(ROBIO), pages 1379–1384, 2012.

[13] T. Hachaj and M.R. Ogiela. Rule-based approach to
recognizing human body poses and gestures in real
time. Multimedia Systems, 20:81–99, 2013.

[14] I. I. Itauma, H. Kivrak, and H. Kose. Gesture
imitation using machine learning techniques. In

Proc. of 20th IEEE Signal Processing and Communica‐
tions Applications Conference, Mugla, Turkey, April
2012.

[15] M. G. Jacob and J. P. Wachs. Context-based hand
gesture reognition for the operating room. Pattern
Recognition Letters, 36:196–203, 2014.

[16] K. Lai, J. Konrad, and P. Ishwar. A gesture-driven
computer interface using kinect. In IEEE Southwest
Symposium on Image Analysis and Interpretation
(SSIAI), pages 185–188, 2012.

[17] L. Miranda, T. Vieira, D. Martinez, T. Lewiner, A.W.
Vieira, and M.F.M. Campos. Real-time gesture
recognition from depth data through key poses
learning and decision forests. In 25th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRA‐
PI), pages 268–275, 2012.

[18] J.Oh, T. Kim, and H. Hong. Using binary decision
tree and multiclass svm for human gesture recog‐
nition. In International Conference on Information
Science and Applications (ICISA), pages 1–4, 2013.

[19] Kun Qian, Jie Niu, and Hong Yang. Developing a
gesture based remote human-robot interaction
system using kinect. International Journal of Smart
Home, 7(4), July 2013.

[20] M. Sigalas, H. Baltzakis, and P. Trahanias. Gesture
recognition based on arm tracking for human-robot
interaction. In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems(IROS),
Taipei, Taiwan, October 2010.

[21] N. Tomatis, R. Philippsen, B. Jensen, K. O. Arras, G.
Terrien, R. Piguet, and R. Y. Siegwart. Building a
fully autonomous tour guide robot. In Proc. of The
33rd International Symposium on Robotics (ISR). ETH-
Zürich, Oct. 2002.

[22] D. Xu, Y.L. Chen, C.Lin, X. Kong, and X. Wu. Real
time dynamic gesture recognition system based on
depth perception for robot navigation. In Proc. of
IEEE International Conference on Robotics and Biomet‐
rics, pages 689–694, 2012.

[23] Headquartes Department of the Army. Visual
signals: Arm-and-hand signals for ground forces.
Field Manual 21-60, Washington, DC, September
1987.

11Grazia Cicirelli, Carmela Attolico, Cataldo Guaragnella and Tiziana D'Orazio:
A Kinect-based Gesture Recognition Approach for a Natural Human Robot Interface


