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Met Activating Genetically Improved Chimeric Factor 1 (Magic-F1) is a human recombinant protein,
derived from dimerization of the receptor-binding domain of hepatocyte growth factor. Previous ex-
periments demonstrate that in transgenic mice, the skeletal muscle specific expression of Magic-F1 can
induce a constitutive muscular hypertrophy, improving running performance and accelerating muscle
regeneration after injury.

In order to evaluate the therapeutic potential of Magic-F1, we tested its effect on multipotent and
pluripotent stem cells. In murine mesoangioblasts (adult vessel-associated stem cells), the presence of
Magic-F1 did not alter their osteogenic, adipogenic or smooth muscle differentiation ability. However,
when analyzing their myogenic potential, mesoangioblasts expressing Magic-F1 differentiated sponta-
neously into myotubes. Finally, Magic-F1 inducible cassette was inserted into a murine embryonic stem
cell line by homologous recombination. When embryonic stem cells were subjected to myogenic dif-
ferentiation, the presence of Magic-F1 resulted in the upregulation of Pax3 and Pax7 that enhanced the
myogenic commitment of transgenic pluripotent stem cells.

Taken together our results candidate Magic-F1 as a potent myogenic stimulator, able to enhance
muscular differentiation from both adult and pluripotent stem cells.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Muscle diseases are a group of heterogeneous disorders, due to
structural or functional abnormalities in the skeletal muscle, which
then lead to muscular waste and force decrease. Although muscle
diseases still lack an effective therapy, several novel strategies are
entering into clinical trials, including gene replacement, exon
skipping, stem cell therapies and treatments to induce muscle hy-
pertrophy [1,2]. Previous studies have been shown that inducing
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hypertrophy (through loss of myostatin or IGF upregulation) ame-
liorates the muscular regeneration and attenuates the severity of
the disease in animal model of muscular dystrophy [3,4]. Therefore,
the possibility to induce muscular hypertrophy has also a potential
clinical implication for the treatment of both genetic and acquired
muscle diseases [5]. We previously showed that Magic-F1 (Met-
Activating Genetically-Improved Chimeric Factor 1) is a recombi-
nant protein able to induce a beneficial effect in dystrophic mice,
due to the constitutive hypertrophy, that partially rescues the
muscle phenotype [6]. Magic-F1 is derived from a repetition of the
high-affinity receptor-binding domain of human hepatocyte
growth factor (HGF). Thanks to its peculiar structure, Magic-F1
binds Met, HGF receptor, and elicits a selective pattern of biolog-
ical responses, enhancing the myogenic differentiation process,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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protecting the muscle precursors against apoptosis, without stim-
ulating cell proliferation.

Mesoangioblasts (MABs), vessel-associated progenitors, have
been described in murine, canine and human skeletal muscle
[7e9]. When transplanted, they are able to cross the blood vessels
and differentiate into skeletal muscle in vivo [7,8]. A phase I/II
clinical trial is ongoing to test the safety of intra-arterial allogenic
transplantation of MABs in Duchenne muscular dystrophy patients.
Moreover, the technology of reprogramming adult somatic cells
into induced pluripotent stem cells (iPSC) [10,11] has opened awide
range of future possibilities in terms of personalized medicine.
Patient-specific iPSC could be corrected and induced to differen-
tiate into skeletal muscle progenitors, offering an autologous and
expandable source for cell transplantation. To reach this aim,
different protocols have been described for the differentiation of
murine pluripotent stem cells towards myogenic progenitors, by
overexpressing the paired-box transcription factors Pax3 and/or
Pax7 or by particular culture conditions [12e16]. Pax3-induced
cells, derived from embryonic stem cells (ESCs) and isolated as
PDGFRaþ/Flk1� population, engrafted in skeletal muscles of
dystrophic mice, improving contractility [12,13]. The same results
were obtained from iPSC, by overexpressing Pax7 [14]. Further-
more, Pax7-positive satellite-like cells, derived from ESCs or iPSC
differentiation, have been isolated by fluorescence-activated cell
sorting (FACS), using a novel antibody (SM/C-2.6). These muscle
progenitors were able to differentiate into skeletal muscle fibers
both in vitro and in vivo [15,16].

We recently reported that Magic-F1 is expressed in developing
tissues of mesenchymal origin in Magic-F1 transgenic mice, where
also Pax3 is expressed [17]. The fact that Magic-F1 could be
responsible of muscular hypertrophy, cooperating with Pax3 signal
pathway, in skeletal muscle precursor cells encouraged us to
explore the myogenic potential of Magic-F1 in adult and embryonic
stem cells.

Therefore here we investigated novel strategies to improve
myogenic differentiation in adult and pluripotent stem cells with
recombinant proteins, which in principle can be used as adjuvant
compounds for a plethora of skeletal muscle regenerative
applications.
2. Materials and methods

2.1. Cell cultures

C2C12 cell line was maintained in Dulbecco's modified Eagle's
medium (DMEM) high glucose supplemented with 2 mM gluta-
mine, 100 mg/ml streptomycin and 100 U/ml penicillin, 1 mM so-
dium pyruvate and 10% FBS (all from GBCO).

MABs have been isolated, established and expanded as previ-
ously described [18,19]. The growing medium contains 20% Fetal
Bovine Serum (FBS), 2 mM glutamine, 100 mg/ml streptomycin,
100 U/ml penicillin and 1 mM sodium pyruvate.

Mouse ESCs KH2 were grown on feeder layer of mitotically
inactivated Mouse Embryonic Fibroblasts (MEF) or feeder free, on
gelatin-coated dish. Cells were passaged every 2e3 days and grown
in medium containing 20% FBS, recombinant mouse leukemia
inhibitory factor (1000 U/ml), MEK inhibitor (1 mM, PD0325901 Axon
Medchen) and GSK inhibitor (3 mM, Chir99021 Axon Medchen).
2.2. Plasmids

Magic-F1 cDNA was cloned in pTRIPZ lentiviral vector (Thermo
Scientific). Magic-F1 and GFP cDNA were cloned in pBS31 vector.
The plasmids were sequenced using the Big Dye Terminator V3.1 kit
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(ABI) and prepared by following standard procedures of PureLink
HiPure Plasmid Filter Maxiprep Kit (Invitrogen).

2.3. Viral production and infection

293 cells were transfected with 6 mg of packaging plasmid
(psPAX2, #12260 Addgene), 2 mg of envelope plasmid (pMD2G,
#12259 Addgene) and 4 mg of transfer vector (pTRIPZ-Magic-F1 or
pWPT-nlsLacZ, #12261 Addgene), using Lipofectamine 2000
(Invitrogen), following manufacturer's protocol. Virus containing
supernatants were harvested 36e48 h post-transfection, filtered to
remove cell debris and added into the well, where the day before
C2C12 cells or MABs were plated. Medium was replaced 24 hafter
infection and after 48 h the antibiotic was added to select the
infected cells.

2.4. ESCs inducible cell lines

KH2 transgenic lines have been generated following manufac-
turer's instruction (Gene targeting kit, Thermo Scientific). Briefly,
KH2 cells, which contain two FRT-sites and an ATG-less, promoter-
less hygromycin cassette, were nucleofected with 15 mg of pBS31-
GFP or -Magic-F1 (carrying the cDNAs, the PGK promoter and the
ATG start codon) and 7.5 mg of pCAGG-Flp plasmid (for the flippase
enzyme expression), in a Nucleofector™ 2b Device (Lonza),
following the instructions of Mouse ES cell Nucleofector® Kit
(Lonza). Homologous recombination allowed the cDNA insertion,
conferring hygromycin resistance. After 24 h, ESCs were re-plated
on hygromycin-resistant MEF, with 150 mg/ml of hygromycin.
Expression of the transgenes was induced adding doxycycline
(1 mg/ml) to the medium.

2.5. Mesodermal differentiation assays

Myogenic differentiation of C2C12 cells was obtained by serum
starvation in differentiation medium (DMEM with 2% heat-
inactivated horse serum (HS), 2 mM glutamine, 1 mM sodium py-
ruvate), in presence of doxycycline (1 mg/ml) when indicated.
Myotube formationwas evaluated by immunofluorescence analysis
for sarcomeric myosin heavy chain (MyHC). Fusion index was
calculated counting the nuclei inside the myotube, divided by the
total number of nuclei. At least 4 different pictures for each con-
dition and each time point were counted, using Image J software
(http://rsbweb.nih.gov/ij/).

The MABs obtained were differentiated into adipocytes, osteo-
cytes, smooth muscle, and skeletal muscle following protocols
already present in the lab [18,19]. To test their myogenic potential,
MABs were differentiated alone or in co-culture with nLacZ-C2C12
cell in DMEM containing 2% HS. After one week, immunofluores-
cence analysis for MyHC and X-gal staining were performed to
check myotubes formation and label the C2C12 nuclei. The fusion
index has been calculated comparing the immunofluorescence and
the bright field images, counting the MABs nuclei (negative for X-
gal staining) inside the myotubes, divided by the total number of
MABs nuclei.

KH2 cells were detached with trypsin, counted and diluted at
10000 cells/ml in differentiation medium (DMEM high glucose
with 0.1 mM nonessential amino acids, 100 mg/ml streptomycin and
100 U/ml penicillin, 0.1 mM 2-mercaptoethanol, 5% HS and 10%
FBS). 1000 cells were plated into each well of an ultralow attach-
ment 96-wells plate (Corning). Forced aggregation was induced by
centrifugation at 1600 rpm for 6 min. After 48 h the medium was
changed, adding doxycycline (1 mg/ml). EBs were collected at day 0,
3, 5 and 7 for RNA analysis. At day 7, EBs were collected and
analyzed by FACS Canto or plated in fibronectin-coated 48 well
n of adult and pluripotent stem cells using recombinant proteins,
.doi.org/10.1016/j.bbrc.2015.07.022
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plate, to induce the myogenic differentiation in DMEM containing
5% HS. Myogenic differentiation was evaluated as number of
myotubes per well.

2.6. LacZ staining

Cells were washed in PBS and with a fixing solution, containing
glutaraldehyde, EDTA and MgCl2. Wells were washed with washing
buffer (with NP40 and deoxycholate). The LacZ staining was per-
formed at 37 �C overnight, adding a solution with X-gal, potassium
ferrocyanide and potassium ferricyanide.

2.7. Immunofluorescence analysis

Immunofluorescence analysis was performed as previously
described [6]. Cells were incubated with primary antibodies against
MyHC (MF20, hybridoma bank, University of Iowa), Nanog (14-
5761-80, eBioscience), Oct4 (sc-8628, Santa Cruz) and Sox2 (ab
5603, Millipore) or isotype control and then with the appropriate
FITC- or TRITC-conjugated secondary donkey antibodies (1:500,
Invitrogen). Images were taken by Eclipse Ti microscope (Nikon)
and merged by Image-Pro Plus 6.0 software.

2.8. Western blot analysis

Western blot was performed as previously described [6].
Membranes were incubated with antibodies against: HGF (sc-1357,
Santa Cruz), Beta-Tubulin (05-661, Millipore), GFP (ab-5450,
Abcam) and later with donkey horseradish peroxidase-coupled
secondary antibody (1:5000, Invitrogen). Specific bands were
detected with Chemiluminescent Peroxidase Reagent and pictures
were taken with GelDoc (Biorad).

2.9. RNA extraction and analysis

Total RNAwas extracted using GeneElute Mammalian Total RNA
Miniprep Kit (Sigma), following the manufacturer's protocol. After
reverse transcription (SuperScriptTM III First-Strand Synthesis
SuperMix kit, Invitrogen), Real-Time qPCR was performed,
following the Syber Green Mix (Invitrogen) protocol, on real time
system Realplex2 Master Cycler (Eppendorf) or on ViiA 7 Real-Time
PCR system (Invitrogen).

Oct4 Fw 500 e CCAGGCAGGAGCACGAGTGG e 300

Oct4 Rv 500 e CCACGTCGGCCTGGGTGTAC e 300

Eomes Fw 500 e AGAACCGTGCCACAGACCAA e 300

Eomes Rv 500 e TGGTCACAGGTTGCTGGACA e 300

Mxl1 Fw 500 e ACCACCAGGCCTGACAACCT e 300

Mxl1 Rv 500 e TGGGTGCACACCATACCACA e 300

T-Bra Fw 500 e GTCAGACCAAGATCGCTTCT e 300

T-Bra Rv 500 e GATCGCTTCTGTCAGACCAA e 300

Pax3 Fw 500 e TCCATCCGACCTGGTGCCAT e 300

Pax3 Rv 500 e TTCTCCAGCTCAGGCGTTG e 300

Pax7 Fw 500 e GCCTTCAACCACCTTCTGC e 300

Pax7 Rv 500 e ACTGTGCTGCCTCCATCTTG e 300

Gapdh Fw 500 e CGAGACCCCACTAACATCAAA e 300

Gapdh Rv 500 e CATTGCTGACAATCTTGAGTGA e 300

2.10. FACS analysis

EBs were dissociated using Cell dissociation buffer enzyme free
Hank's based (Invitrogen) counted and incubated with biotinylated
anti-SM/C-2.6 antibody (kindly provided by Dr. Fukada) or with
biotinylated Rat IgG isotype. After two washes in PBS, cells were
incubated with APC-conjugated streptavidin. Samples were
analyzed on Canto Flow cytometer (BD bioscience) or sorted with
Please cite this article in press as: I. Perini, et al., Myogenic induction
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FACSAria Flow cytometer (BD bioscience). Sorted cells were plated
on matrigel in growing medium and, once confluent, differentiate
into myotube in DMEM 5% HS.

2.11. Statistical analysis

The results are expressed as average ± standard deviation (SD).
When data distribution approximated normality and two groups
were compared, a Student's t-test was used. When three or more
groups were compared a two-way ANOVA was used. All statistical
tests were performed via Prism software (GraphPad). Significance
was set at p < 0.05 or p < 0.001.

3. Results

3.1. Generation and validation of inducible lentiviral vector for
Magic-F1 expression

C2C12 were transduced with lentiviral particles carrying Magic-
F1 cDNA and were differentiated into myotubes, in presence or
absence of doxycycline. Immunofluorescence analysis for MyHC
was performed at day 3, 5 and 7 (Fig. 1A). The efficacy of the
inducible system and the expression of transgenic protein were
verified by Western-blot analysis (Fig. 1B). In presence of Magic-F1,
the myogenic differentiation was accelerated and C2C12 cells
formed larger myotubes, withmore nuclei compared to the control,
as showed by fusion index analysis (Fig. 1C).

3.2. Effect of Magic-F1 expression on adult mesoangioblasts

Next we tested the effect of Magic-F1 expression on MABs,
which were infected with lentiviral particle, for an inducible
expression of the transgenic protein. The presence or absence of
Magic-F1 did not alter their ability to differentiate towards adipo-
cytes, osteocytes or smooth muscle (Fig. 2A). However, Magic-F1
expression was able to induce the differentiation of MABs into
myotubes (Fig. 2A), evenwithout the presence of myoblast cell line,
normally required to stimulate the myogenic differentiation. When
MABs were co-cultured with C2C12, Magic-F1 expressing cells
better contribute to myogenic differentiation, as shown by their
increased fusion index (Fig. 2B).

3.3. Generation of an inducible Magic-F1 or GFP transgenic ESC line

KH2 cells were nucleofected with targeting vectors containing
Magic-F1 or GFP cDNA and cells, in which recombination has
occurred, were selected with hygromycin. Induction of the
transgene was achieved adding doxycycline in the medium and
checked by Western Blot analysis (Suppl. Fig. 1A). Gene expres-
sion analysis, for self-renewal-controlling genes (Oct4, Sox2,
Nanog, Tbx3, Rex1 and Stella), confirmed that the targeting did
not alter their pluripotency (Suppl. Fig. 1B). The presence of Oct4,
Nanog and Sox2 at protein levels was checked by immunofluo-
rescence analysis on GFP KH2 and Magic-F1 KH2 ESCs
(Suppl. Fig. 1C).

3.4. Effect of Magic-F1 expression on ESCs myogenic differentiation

ESCs were grown in feeder free conditions on gelatin-coated
dishes and plated in ultralow attachment plate to generate
embryoid bodies (EBs), after forced aggregation by centrifugation.
At day 2, doxycycline was added to the medium and EBs were
cultured for 7 days (Suppl. Fig. 2A). The RNAs isolated fromMagic-
F1 and GFP EBs were analyzed at different time points (day 0, 3, 5
and 7) for the expression of markers of primitive streak and early
of adult and pluripotent stem cells using recombinant proteins,
.doi.org/10.1016/j.bbrc.2015.07.022



Fig. 1. Magic-F1 inducible lentiviral vector tested on C2C12. (A) Immunofluorescence analysis for MyHC expression on Magic-F1 C2C12 in absence (�Dox) or presence of doxy-
cycline (þDox) after 3, 5 and 7 days of culture in differentiation medium. Nuclei were stained with DAPI. Scale bar ¼ 50 mm. (B) Western Blot analysis for Magic-F1, upon induction
with doxycycline in Magic-F1 C2C12; b-tubulin was used as loading control. (C) Graph showing the fusion index of C2C12 cells differentiated in presence (þDox) or in absence
(�Dox) of Magic-F1 at day 3, 5 and 7; n ¼ 5, *p < 0.05.
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mesoderm differentiation (Eomes, Mixl1 and T-Bra), in order to
confirm the transition from a pluripotent to a mesodermal state
(Suppl. Fig. 2B). In presence of Magic-F1, the expression of these
markers shows an up-regulation at day 3 of differentiation, if
compared to the control. Moreover, when Pax3 and Pax7
expression was evaluated at day 5, 7 and 9 of differentiation, the
Real Time PCR (qRT-PCR) analysis showed a higher expression of
these paired-box transcription factors, when Magic-F1 was pre-
sent, especially at day 7 (Fig. 3A). At day 7, EBs were plated onto
fibronectin-coated plates. After EBs-adhesion, cells spread out and
Fig. 2. Effect of Magic-F1 expression on adult mesoangioblasts. (A) Alkaline phosphatase stai
adipocytes, osteocytes, smooth muscle and myotubes in absence (�Dox) or presence of doxy
MABs in co-culture with nLacZ C2C12 cells: immunofluorescence for MyHC and X-gal stain
negative nuclei inside the myotubes, versus the total number of X-gal negative nuclei Scale
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grow as a monolayer. To induce terminal differentiation, medium
containing 5% of serum was added to the cells, as soon as they
reached confluence. In presence of Magic-F1, the myogenic
commitment of ESCs was enhanced, as shown by spontaneous
myotubes formation (Fig. 3B), suggesting that Magic-F1 could
increase the amount of muscle progenitors in differentiating EBs.
The analysis of the number of MyHC positive myotubes per well
confirmed the myogenic differentiation potential of the recom-
binant protein (Fig. 3C). In order to quantify and purely isolate
these myogenic precursors from Magic-F1 induced EBs, SM/C-2.6
ning of Magic-F1 transduced MABs and analysis of their differentiation abilities towards
cycline (þDox). Scale bar ¼ 50 mm. (B) Myogenic differentiation of Magic-F1 transduced
ing were compared to calculate the fusion index, as the ratio of the number of X-gal
bar ¼ 50 mm; n ¼ 5, *p < 0.05.

n of adult and pluripotent stem cells using recombinant proteins,
.doi.org/10.1016/j.bbrc.2015.07.022



Fig. 3. Enhanced myogenic potential of Magic-F1 expressing ESCs. (A) qRT-PCR results for the expression of Pax3 and Pax7 in Magic-F1 and GFP-derived EBs in presence of
doxycycline at day 0, 5, 7 and 9. Shown are Mean ± SD of absolute quantification for the indicated genes, normalized using Gapdh (logarithmic scale, n ¼ 3, *p < 0.05, **p < 0.001).
(B) Immunofluorescence analysis for MyHC showing myotubes formation in Magic-F1 or GFP KH2-derived EBs. Nuclei were stained with DAPI. Scale bar ¼ 100 mm. (C) Quanti-
fication of MyHC positive myotubes per well in Magic-F1 or GFP KH2 derived-EBs, n ¼ 3 *p < 0.001.
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antibody was used to detect satellite-like cells. Differentiated EBs
were collected from the 96 wells on day 7 and stained for SM/C-
2.6 antibody. FACS analysis showed that in presence of Magic-F1,
SM/C-2.6 positive cells were detected on an average of 14%,
Fig. 4. Purification of SM/C-2.6 from ESCs subjected to myogenic differentiation. (A) Quantifi
without doxycycline at day 7; n ¼ 5, *p < 0.05. Representative scatter plots showing the distri
Pax3, Pax7 and Myf5 in sorted SM/C-2.6 positive cells. Nuclei were stained with DAPI; sca
positive cells subjected to myogenic differentiation. Nuclei were stained with DAPI; scale b
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differently from their control (~2%, Fig. 4A). Finally, SM/C-2.6
positive cells were also positive for myogenic markers, as Pax3,
Pax7 and Myf5 (Fig. 4B) and able to fully differentiated in myo-
tubes (Fig. 4C) as previously reported [15].
cation of SM/C-2.6 positive cells by FACS on disaggregated EBs of Magic-F1 KH2 with or
bution of SM/C-2.6 positive cells are also reported. (B) Immunofluorescence analysis for
le bar ¼ 50 mm. (C) Examples of immunofluorescence analysis for MyHC in SM/C-2.6
ar ¼ 100 mm.

of adult and pluripotent stem cells using recombinant proteins,
.doi.org/10.1016/j.bbrc.2015.07.022
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4. Discussion

HGF is a pleiotropic cytokine that plays a role in a variety of
normal cellular processes. HGF activates a tyrosine kinase-
dependent signaling cascade, after binding the proto-oncogenic
Met receptor [20]. During embryogenesis, this cytokine is
involved in the detachment of myogenic precursor cells from the
lateral dermamyotome and their subsequent migration into the
limb buds [21], while in the adult, the HGF-Met pathway is acti-
vated in muscle regeneration after injury, activating satellite cells
proliferation [22]. However, HGF administration to muscle cells
inhibits muscle differentiation both in vitro and in vivo [22,23]. To
overcome this limitation we generated Magic-F1 as human HGF-
derived protein and showed that differently from HGF, Magic-F1
activates AKT, but not ERK signaling pathway [6]; thus, the trans-
genic protein does not have any mitogenic activity. In vivo studies
have demonstrated that, following cardiotoxin treatment, regen-
erating centrally nucleated fibers in Magic-F1 transgenic mice
appear to have a greater cross-sectional area compared to wild-
type animals. This can be explained by the enhanced differentia-
tion potential of satellite cells, which indeed displayed an earlier
differentiation program in vitro compared to cells isolated from
wild-type mice [6].

In this work we looked into the effect of Magic-F1 during the
differentiation of adult and pluripotent stem cells toward skel-
etal muscles. Lentiviral vectors were generated for an inducible
expression of Magic-F1 and tested in C2C12 cells, a useful model
for myogenic differentiation, where the expression of the
transgenic protein accelerated the process of myotube
formation.

We previously reported the presence of myogenic precursors,
named mesoangioblasts, which differ from satellite cells and
express pericyte markers [7e9]. We also speculated that MABs
could be positively affected by Magic-F1 and actively participate
to the muscle hypertrophy observed in transgenic mice [6]. Here
we proved that indeed the recombinant protein was able to
induce myogenic differentiation in MABs, in absence of C2C12 or
satellite cells. These results in adult stem cells encourage us to
study the effect of the transgenic protein in pluripotent stem
cells. Several protocols have been proposed to generate skeletal
muscle progenitors from ESCs. Unfortunately, the efficiency of
these protocols is limited by the insufficient signals that induce
patterning of the paraxial mesoderm. Due to this limitation, the
majority of published protocols depend on forced Pax3 or Pax7
transgene expression [12e14] or on isolation of ES-derived sat-
ellite-like cells by SM/C-2.6 antibody [15]. We decided to
generate transgenic ES cell line, where the expression of Magic-
F1 or GFP could be induced by doxycycline. The new transgenic
lines were differentiated towards skeletal muscle, adapting the
protocol from Ref. [15]. In presence of Magic-F1, primitive streak
markers (Mixl1, T and Eomes) showed an upregulation on day 3,
while Pax3 and Pax7 on day 7, suggesting the ability of the
transgenic protein to enhance the myogenic commitment of
ESCs. This observation was confirmed by FACS analysis for SM/C-
2.6, which showed a strong increase of positive cells in the
Magic-F1 expressing EBs. Sorting for SM/C-2.6 allowed us to
isolate myogenic progenitors, expressing satellite cells markers
(Pax3, Pax7 and Myf5), and able to differentiate into myotube.

In conclusion, our results demonstrate that Magic-F1 is an
engineered factor that provides pro-differentiative clues to-
wards myogenic commitments in both adult and embryonic
stem cells. This ability makes Magic-F1 a potential candidate for
regenerative medicine and a valuable tool to counteract muscle
wastage in muscular diseases, such as cachexia and muscular
dystrophies.
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