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Abstract
The influence of localized charge distributions at the interfaces of spherical colloidal particles in aqueous 

suspension is discussed in the light of the effective medium approximation theory of heterogeneous systems. The 
approach is shown to give analytical results in the case of shelled particles with the presence of two distinct interfaces. 
The whole dielectric response of the system gives rise to different relaxation contributions, falling in different frequency 
regions and attributed to different polarization mechanisms, at a molecular level. In particular, the number and the 
strength of the dielectric relaxations associated with the presence of localized charges is discussed.
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Introduction
The dielectric relaxation spectra of aqueous suspension of spherical 

colloidal particles, covering an exceptional wide frequency window, 
reflect the occurrence of different relaxation mechanisms which interest 
different regions of the whole system, from the polarization of the 
ionic atmosphere, at lower frequencies, to the interfacial polarization 
at intermediate frequencies, up to the orientational polarization of the 
aqueous medium at higher frequencies.

These different relaxation regions generally present a complex 
structure, being due to more than a single dielectric mechanisms that 
partially overlap. This exceptional rich phenomenology, if on one side 
offers the possibility of investigating what happens in the presence of 
an external electric field, on the other hand, makes the interpretation 
of the dielectric spectra of colloidal particle aqueous suspensions rather 
difficult and, in some cases, questionable.

The general problem we facing with when we are dealing with the 
analysis of a dielectric relaxation spectrum is that of separating the 
influence of the different polarization mechanisms, at a molecular level, 
assigning to each of them a particular relaxation region together with 
the extraction of the dielectric parameters which govern that particular 
polarization mechanism.

In this note, we will treat, in a rather general scenario, the influence 
of charge distributions localized at the particle surface on the dielectric 
spectra of charged colloidal particle suspensions. We will consider a 
composite spherical particle built up by a core covered by a concentric 
shell bearing at each of its boundaries a superficial charge distribution. 
Charges are constrained to move on the surfaces under the gradients 
of the electrical potential and the charge density. We will do this taking 
advantage of the dielectric model proposed by Prodan et al. [1] some 
years ago to describe the dielectric behavior of spherical live cell in 
suspension, assuming the presence of charge distributions at the outer 
and inner faces of the cell membrane. These charge distributions have 
been introduced by Prodan et al. [1] and Bot et al. [2] to justify in a 
quantitative way the presence of the membrane potential in biological 
cells, whose value is related to the conductivity of the superficial charges 
through the relationship 

= B

v

K TdV
D e
γ
ε ε

∆    (1)

where γ is the surface conductivity of ions with diffusion coefficient 

D moving at the surface of a medium of permittivity ε, d is the membrane 
thickness and e is the elementary charge and KBT the thermal energy 
and ev the dielectric constant of free space.

However, the same picture can be applied to any colloidal particle 
characterized by an internal core covered by a concentric shell with 
a localized charge distribution at each of the two interfaces. The 
model is rather general and can be applied to a variety of different 
colloidal particles by simply defining, from a dielectric point of view, 
their relevant electrical and/or geometrical parameters. They are the 
permittivities ek and the electrical conductivity σk (k=0,1,2) of each of 
the dielectric medium that describes the system from an electrical point 
of view and the surface conductivity γ and the diffusion coefficient 
D that characterize the electrical polarization of the surface charge 
distributions.

The general solution of the dielectric problem can be obtained, 
in the light of the effective medium approximation theory, from the 
solution of the Laplace equation in the dipolar approximation (far-field 
approximation) with the appropriate boundary conditions, that, in this 
case, beyond the usual electrical and geometrical constrains, must take 
into account the presence of the two localized charge distributions at 
the particle interfaces.

In the case of particles dispersed in an aqueous solution of 
moderate to high electrical conductivity, such as for example biological 
cell suspensions, the Debye screening length may be rather small (of 
the order of 0.5 nm for bulk ionic concentration of about 0.15 mM). 
In these systems, we expect a uniform ionic distribution outside the 
membrane particle, except in a very thin layer close to the membrane 
itself, with a thickness of the order of some Angstroms. Consequently, 
the model is particularly suitable to describe the dielectric behavior of 
a biological cell suspension and the numerical simulations have been 
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carried out considering values of the electrical parameters typical of 
these systems.

Our results furnish the full description of the whole dielectric 
spectrum of charged colloidal particles in aqueous suspension. 
In particular, the present analysis predicts the presence of some 
unexpected and interesting results, for instance the ones concerning 
the role played by the charge distributions and their shielding effects, 
providing valuable information for the interpretation of experimental 
data.

The Dielectric Model
We will consider a spherical particle of complex dielectric constant 

*
2 2 2( ) = / ( )viε ω ε σ ε ω+ , radius R2, covered by a concentric shell of 

complex dielectric constant *
1 1 1( ) = / ( )viε ω ε σ ε ω+  and thickness d = R1-

R2 and dispersed in an aqueous medium of complex dielectric constant 
*
0 0 0( ) = / ( )viε ω ε σ ε ω+ . Here, ω is the angular frequency of the applied 

external electric field.

At each of the two interfaces, i.e., the outer and inner shell surfaces 
(of radii R1 and R2, respectively), the presence of two localized charge 
distributions ρ1 and ρ2, being the charges obligated to move at the 
membrane surfaces, produces two surface current densities described 
by 

= ( = 1,2)k k S k S kk k
J D kγ ρ− ∇ Ψ − ∇ 		   	               (2)

 Here, γk and Dk are the surface conductivities and the diffusion 
coefficients, respectively, of the bound charges at the two interfaces Sk.

This model is appropriate enough to describe, by a dielectric point 
of view, a biological cell, at least in a spherical geometry, where the 
particle core models the cytosol, the shell models the cell membrane 
and the aqueous medium the extracellular medium. Moreover, the 
surface currents generated by the surface charge distributions assume 
a biological meaning since they influence the membrane potential ΔV, 
as extensively discussed by Bot and Prodan [2,3]. Finally, in biological 
cells, the surface charge distributions are originated by the effective 
membrane structure where the presence of small charged molecules 
and a variety of organic ions free to move in the direction tangential to 
the membrane surface with the consequent increase of the tangential 
membrane conductivity. However, the same model yields to describe, 
in a rather general way, the behavior of any colloidal particle in 
aqueous suspension and most of the results obtained in the biological 
framework can be transported in the colloidal one by simply changing 
the meaning of the characteristic parameters.

A sketch of the above stated dielectric model is shown in Figure 1.

The presence of the two charge distributions produces a rather 
intricate dielectric response and the dielectric spectra show at least 
two different relaxation regions. They are located, the first (named 
α-dispersion), in the low-frequency range and is due to the polarization 
induced by the bound charge distributions, and the second (named 
β-dispersion), located at higher frequencies and due to the usual 
Maxwell-Wagner effect, typical of highly heterogeneous systems. The 
interplay between the two above stated dispersions, when the values of 
the electrical parameters of the different media involved cause a more 
or less overlap, is basically the origin of the complexity of the dielectric 
response of a colloidal particle suspension.

Moreover, this partial overlap makes the deconvolution of the 
spectra difficult and in some cases prejudices the correct extraction of 
the values of the dielectric parameters (in the case of a biological cell, 

the membrane permittivity and the membrane conductivity).

In the light of the mean-field approximation, the complex dielectric 
constant ε*(ω) of a collection of dielectric objects uniformly dispersed 
in a continuous phase is given by 

*
* *

0 *
( )( ) = ( ) 1

( )1
3

α ωε ω ε ω
α ω

 
 Φ +

Φ − 
 

				                   (3)

where Φ is the particle volume fraction (defines as Φ =Nvp/Vtot, 
with vp the volume of each particle at the numerical concentration N/
Vtot) and α*(ω) is the frequency dependent polarizability defines as 

*
* 1 0

*
0

( ) ( )1( ) = ( )
( ) pvpp

E n nd dv
v

ε ω ε ωα ω
ε ωΩ

 −
⋅ Ω 

 
∫ ∫

  
		                     (4)

 where ( )E n
 

 is the total electric field acting on the single dielectric 
object with direction E

 and dΩ indicates the solid angle element 
generated by direction E

. The evaluation of the electrical polarizability 
α*(ω) is the main roblem of our task.

Polarizability α*(ω) for a generically shaped dielectric particle

 The determination of the electrical polarizability α*(ω) of a particle 
requires solving the electrostatic problem where the particle is in a 
uniform applied electric field E


. In the present case, besides the surface 

charge density polarization σp at the interface due to the mismatch of 
the complex dielectric constants (the polarizations which originates 
the classical Maxwell-Wagner effect), we have to consider the localized 
charge density distribution σl, once the equilibrium is attained, due to 
the charges bounded to the particle surfaces. Taking into account the 
polarization charge distribution and that the difference of the normal 
component of the electric displacement at the interface must equal the 
localized surface charge density, the total contribution at the interface 
can be written as 

0 1= = ( )tot p l v E E nσ σ σ ε+ − ⋅
  

 		                 (5)

 where 0E


 and 1E


 are the electric fields outer and inner the 
dielectric particle, respectively and n



 is the unit normal vector directed 

Figure 1: A sketch of the dielectric model representing a spherical particle of 
complex dielectric constant *

1 1 1( ) = / ( )viε ω ε σ ε ω+  covered by a concentric 
shell of complex dielectric constant *

1 1 1( ) = / ( )viε ω ε σ ε ω+  in a medium of 
complex dielectric constant *

0 0 0( ) = / ( )viε ω ε σ ε ω+ .
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outword the interface.

Consequently, the total potential ( )rΨ


, due to the sum of the 
surface charge contributions (localized charge and polarization charge 
distributions), takes the form 

'
'

'
( )1( ) = =

4 | |
tot

S
v

rr dS
r r

σ
πε

Ψ
−

∫


  				                 (6)

0 1 '
'

1 ( )
4 | |S

E E n dS
r rπ
− ⋅

−
∫

  

 

By applying the Gauss theorem, in the absence of bulk charge 
distribution, the potential can be written as an integral over the volume 
V of the particle 

'
0 1 '

1 1( ) = ( )
4 | |V

r E E dV
r rπ

 
Ψ − ⋅∇ − 

∫
  

	  	                (7)

and, in the dipolar approximation, the polarizability α*(ω) of the 
particle is given by 

0 1* 1 ( )( ) =
V

E E n dV
V E n

α ω − ⋅
⋅∫

  

  			                  (8)

 Equation 8, depending on the electrical fields outside and inside 
the the particle generated by the applied electric field E


, represents the 

general expression of the polarizability of a generic particle.

In the absence of localized surface charge distribution, equation 8 
reduces to 

* *
* 1 0

12 *
0

( ) ( )1( ) =
( )V

E EdV
VE

ε ω ε ωα ω
ε ω

 −
⋅ 

 
∫

 
		                (9)

taking the form of a weighted average with weight given by the 
difference in the permittivities between the media inside and outside 
the particle.

In this framework, the dielectric problem is turned into the 
calculation of the polarizability α*(ω) (equation 4). Following the 
procedure suggested by Sebastian et al. [4,5], this quantity can be 
written as 

*
* 1 0

2 * *
0 0

( ) ( )1( ) = ( )
( ) ( ) pvpp

Edv
E v

ε ω ε ω ρα ω
ε ω ε ω

  −
−∇Ψ + ⋅  

   
∫

 
             (10)

 This general expression includes the case in which an electrical 
charge distribution  is present at the particle interfaces, through the 
addition of the term in the volume integral of equation 10.

The problem of the polarizability of a shelled sphere (and also of 
shelled particles of arbitrary shape) has been recently considered by 
Sebastian et al. [4,5] who show that, within the dipolar approximation, 
the complex polarizability of shelled particles can be written as an 
appropriate weighted average of the electric field inside the particle, 
where the weights are determined by the differences in the complex 
dielectric constants between the different adjacent dielectric media 
involved in the construction of the cell. Also in this case, however, 
these authors limited ourselves to the charge distributions originated at 
the interfaces under the influence of the external electric field, without 
considering any added (localized) charge distributions.

In the present case, besides the surface charge polarizations at 
the two interfaces due to the mismatch of the complex dielectric 
constants (the polarization which originates the classical Maxwell-
Wagner effect), we have to consider the localized charge distributions, 
once the equilibrium is attained, due to the charges bounded to the 
two membrane surfaces. Taking into account the polarization charge 
distribution and that the difference of the normal components of the 
electric displacement at any interface must equal the localized surface 

charge density, the two total contributions at the two interfaces can be 
written as 

1 0
1 1 1

0 0

( ) = v
v bE Nε ε ετ ω ε τ

ε ε
−

⋅ +
 

			                 (11)

 at the surface of radius R1 and as 

2 0
2 2 2

0 1

( ) = v
v bE Nε ε ετ ω ε τ

ε ε
−

⋅ +
 

			                    (12)

 at the surface of radius R2, respectively. Here, τb1 and τb2 are the 
surface charge distributions at the two membrane interfaces of radius 
R1 and R2, respectively.

Consequently, the total potential, as the sum of the two surface 
charge contributions (localized charge and polarization charge 
distributions), takes the form 

* *
'1 0 1

1 1'*
1 0 0

1 1( ) =
4 | |

b
S

r E N dS
r r

ε ε τ
π ε ε

 −
Ψ ⋅ + 

− 
∫

  
  		                (13)

 The two charge distributions τb1 and τb2 can be written, according 
to the derivation of Prodan et al. [1], as a function of the external 
electric field 0E



, in the form 

01 1=b q E Nτ ⋅
 

					                     (14)

 
02 2=b q E Nτ ⋅

  	           (15)

 where q1 and q2 are given by equation 30 of the work by Prodan 
et al. [1].

Following the procedure proposed by Sebastian et al. [4,5], 
equation 13 becomes

* *
'2 0 1 2

2 0 '* *
2 0 0

1 1
4 | |V

q qE E dV
r r

ε ε
π ε ε

 − +
+ + ⋅∇ 

− 
∫

  
  		              (16)

* *
'2 0 1 2

2 0 '* *
2 0 0

1 1
4 | |V

q qE E dV
r r

ε ε
π ε ε

 − +
+ + ⋅∇ 

− 
∫

  
 

 By comparing equation 16 to the potential created by a dipole in 
vacuum, the polarizability α*(ω) can be written as 

*
1 0 2 02

1 20

1( ) = [..] [..]
V V

F E F E dV
VE

α ω  ⋅ + ⋅ 
 ∫ ∫

   
	                              (17)

 where the functions 
1[..]F


 and 2[..]F


 are given by 
* *
1 0 1

1 1 0* *
0 0

[..] = qF E Eε ε
ε ε

 −
+ 

 

  
				                   (18)

* *
2 0 1 2

2 2 0* *
0 0

[..] = q qF E Eε ε
ε ε

 − +
+ 

 

  
			                     (19)

The knowledge of the electric fields 1E


, 1E


 and 2E


 furnishes 
the total polarizability of the shelled particle in the presence of the 
localized charged distributions and, according to equation 4, the 
complex dielectric constant of a collection of these composite particles 
uniformly distributed in an aqueous medium.

A further comment is in order. Equation 19 contains the term 
2∇ Ψ  that is lacking in the original work by Prodan et al. [1]. This term 

corrects some inconsistences found in the original derivation of these 
authors. We have discussed in detail this important point in an our 
previous work [6,7].

Finally, although equation 3 has been derived for spherical particles 
in the limit Φ = 1, it can be employed for non-spherical particles too, 
provided that the fractional volume is maintained moderately low, 
widening the applicability of this model to differently shaped dielectric 
objects.
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The shelled sphere: the electrical fields

 The electric field inside and outside the particle is obtained by 
solving the Laplace equation for the electrical potential Ψ. In spherical 
coordinates (r,θ,ϕ), the general solution of the Laplace equation 

2∇ Ψ

=0 is given by 

=0
( , ) = ( )( cos sin )n n

n n nn
n

Br A r C n D n
r

θ θ θ
∞

Ψ + +∑ 	                (20)

 The solution for a uniform electric field E


 applied along the 
x-axis, because the axial symmetry, is much simpler and can be read as 

2 2( , ) = cosr A rθ θΨ 			                                    (21)

 for r > R1 and 

2 2( , ) = cosr A rθ θΨ 				                (22)

 for r < R2, and 

2
1 1 2( , ) = cos cosBr A r

r
θ θ θΨ + 			                  (23)

 for R2 < r < R1 where the constants A1, B1, A2, and B2 are appropriate 
constants to be determined through the boundary conditions. They 
imply that the potential must be continuous across the boundary (for 
r = R1, r = R2) and the displacement in the normal direction to the 
boundary surfaces must obey to the condition 

2 2
1 = ( = 1,2)k k k kk k

D i kγ ρ ωρΣ Σ∇ Ψ + ∇ 	  	             (24)

 where the quantities ρk must satisfy the conditions 
2 2

1 = ( = 1,2)k k k kk k
D i kγ ρ ωρΣ Σ∇ Ψ + ∇ 	                                    (25)

 After some cumbersome algebra, the constants A1 and B1 are given 
by 

1 1 22 2 12

11 22 12 21

=A b b
E

α α
α α α α

−
−

				                     (26)

1 2 11 1 21

11 22 12 21

=B b b
E

α α
α α α α

−
−

	         (27)

 where the quantities αij and bi are defined as 

11 1 1= 3 qα ε 					                (28)

1 1
12 0 13 2

1 1

2 2= ( )q
R R

γα ε ε− +    				                (29)

3 3
1 1

21 2 2 2 2 1 2 2 13 3
2 2

= 2 (1 ) ( ) ( 2 )R RR q q
R R

α γ ε ε ε ε− + − − + 	 	               (30)

2 2 2
22 2 13 3

2 2

2= ( 2 )R q
R R
γα ε ε+ + 				                   (31)

1 1 1 1 0 1= 2 (2 )b R qγ ε ε− + 				                    (32)
3 3
1 1

2 2 2 2 2 13 3
2 2

= 2 ( 2 )R Rb R q
R R

γ ε ε+ + 			                 (33)

 where qk are defined as 
2= 2 ( = 1,2)k k kq D i R kω+ 			                    (34)

 Finally, the other constants that define the potentials are given by 
3 3

2 1 1 1 1
3 3 3
2 2 2

= 1A A R B R
E E R ER R

 
− + − 

 
			                    (35)

3 32 1 1
1 1=B B A R R

E E E
− − 	         (36)

 The knowledge of the coefficients A1, B1, A2, and B2 allows 
the electric fields to be completely defined and consequently the 
polarizability α*(ω) can be obtained and hence, from equation 3, the 

whole dielectric relaxation of the system.

In the following, we will present some characteristic spectra over 
a wide enough frequency range, paying attention to the role played 
by the localized surface charge distributions in the whole dielectric 
response of the system.

Results and Discussion
The typical spectrum of the dielectric permittivity ε´(ω) and the 

electrical conductivity σ(ω) as a function of frequency of the applied 
electric field of a suspension of spherical shelled particles (fractional 
volume Φ =0.10) is shown in Figure 2.

Depending on the choice of the values assumed by the dielectric 
phase parameters, at least two different dielectric relaxation regions 
appear, falling in well-separated frequency range. The first is 
unequivocally attributed to the polarization effect induced by the 
charge motion at the particle membrane surfaces, which adds to the 
usual Maxwell-Wagner polarization, due to the mismatch in the 
dielectric properties of the media adjoining the interfaces. This latter 
relaxation occurs in the higher frequency range without overlapping, 
because of the values of the parameters employed, with the relaxation 
at lower frequencies. However, in some cases, for particular values of 
the dielectric phase parameters, the two relaxation partially overlap. 
This situation may lead to serious problems in the deconvolution of the 
entire spectrum when the values of the dielectric parameter (or only 
some of them) must be evaluated from the whole spectrum. In this case, 
in the fitting procedure, one is obliged to take into consideration the 
whole spectrum and the analysis of the data must necessarily involve 
the contribution of the surface charge distribution.

The influence of the surface charge distributions at the two 
interfaces on the whole dielectric response of the system is shown in 
Figures 3 and 4, where the dielectric spectra (the permittivity ε´(ω) and 

Figure 2: Permittivity ε´(ω) of a concentric shelled spherical particle suspension 
as a function of the frequency for localized surface charge distributions 
γ1=γ2=1 × 10-9. The dielectric phase parameters are: Φ=0.10, ε0=80, σ0=0.0001 
mho/m; ε1=20, σ1=106 mho/m; ε2=10, σ2=1 × 107 mho/m. The charge diffusion 
coefficients are varied from D1 = D2=10-10, 10-9, 10-8, 10-7 and 10-6 m2/s, (marked 
in the increasing order by the arrow). The sphere is modeled with R1=10-6 m, 
R2=0.5 × 10-6 m. The inset shows the electrical conductivity σ(ω) as a function of 
frequency, for the same set of values of the parameters. The numbers represent 
SI units.
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the electrical conductivity σ(ω) in two different extreme cases, i.e.,γ1 
=0 and γ2 varied from γ2=10-11 to γ2=10-8 and γ2=0 and γ1 varied from 
γ1=10-11 to γ1=10-8, are reported. The numerical values are given in SI 
units.

As can be seen, the dielectric response is rather different in the 
two cases, evidencing how the surface charge distributions exert a 
different effect not only in dependence of their magnitude but also in 
dependence of their geometrical localization. These results make even 
more evident the fact that the shielding effect of the external surface 
charge distribution is partial and that the influence of the inner charges 
even in presence of outer charges cannot be neglected. In order to 
make more evident this mutual interconnection between the different 
charge distributions present in the system, in Figure 5, we show a panel 
where the permittivities and the electrical conductivities for γ1=0 and 
two extreme values of γ2 and for γ2=0 and two extreme values of γ1 are 
collected together.

As can be seen, the influence of the charge localization (on the 
outer or on the inner interfaces of the shelled particle) is rather marked, 
depending on its absolute value. For instance, when the value of γ is low 
(of the order of γ =5 × 10-11), the localization of the charge distribution 
on the inner or outer interface does not influence markedly the 
dielectric response, neither in the permittivity ε´ nor in the electrical 
conductivity σ(ω), (Figure 5, left panels). On the contrary, when γ is 
moderately high (of the order of γ=5 × 10-9), the charge localization 
produces a rather different dielectric response, (Figure 5, right panel). 
In particular, in the second case, when the the external distribution is 
absent, the charge distribution at the inner surfaces gives rise to a further 
relaxation region, which is absent in the opposite case. This behavior is 
a clear example of the shielding effect of a charge distribution on the 
appearance of a dielectric relaxation in the whole dielectric spectrum.

The number of interfaces and the associated dielectric relaxations 
in heterogeneous systems has been discussed many years ago by Hanai 
et al. [8], who stated that the dielectric relaxations are equal to the 
interfaces in the number. This sentence is rigorously correct in the 
absence of any localized charge distribution, the surface charge being 
due to the interfacial polarization effect. On the contrary, when charges 
originated by different effects are also present, as in the cases we have 
simulated in the present note, the situation is even more intrigued, the 
whole effect depending on the geometrical charge localization too.

Conclusions
 On the basis of the Prodan et al. model [1], in the light of the 

effective medium approximation, we have investigated the influence 
of localized charge distributions at the interfaces of spherical shelled 
particles dispersed in aqueous solution on the dielectric relaxation 
spectra, over a wide frequency range.

The system described in this note is appropriate enough to 
model the dielectric behavior of biological cell suspensions, where 
the membrane potential is originated by the presence of charge 
distributions at the membrane interfaces. In this case, we show how 
the high-frequency relaxation due to the Maxwell-Wagner effect 
is influenced by the low-frequency relaxation region caused by the 
presence of interfacvial localized charge distributions. The partial 
overlap of these two relaxation regions may cause uncertainties in the 
derivation of dielectric phase parameters from dielectric spectra of 
such highly dispersed heterogeneous systems.

Figure 3: Permittivity ε´(ω) of a concentric shelled spherical particle suspension 
as a function of the frequency for a localized surface charge distributions 
characterized by γ2 =0, for different values of γ1 (1 × 10-11, 5 × 10-11, 1 × 10-10, 5 × 
10-10, 1 × 10-9, 5 × 10-9, 1 × 10-8, marked in the increasing order by the arrow). The 
dielectric phase parameters are: Φ=0.10, ε0=80, σ0=0.0001 S/m; ε1=20, σ1=10-6 
S/m; ε2=10, σ2 =1 × 10-7 S/m. The charge diffusion coefficients are assumed to 
be D1 = D2=10-8. The sphere is modeled with R1=10-6 m, R2=0.5 × 10-6 m. The 
inset shows the electrical conductivity σ(ω) as a function of frequency, for the 
same set of values of the parameters. The numbers represent SI units. 

Figure 4: Permittivity ε´(ω) and electrical conductivity σ(ω) of a concentric shelled 
spherical particle suspension as a function of the frequency with the presence of 
a single localized surface charge distribution localized alternatively at the inner 
or outer interface. Left panels: Low values of γ (γ =5 × 10-11) at the outer or at the 
inner interface. Upper panel: the permittivity ε´(ω); bottom panel: the electrical 
conductivity σ(ω). Insets show the dispersion curves in an enlarged scale. Right 
panels: high values of γ (γ =5 × 10-9) at the outer or at the inner interface. Upper 
panel: the permittivity ε´(ω); bottom panel: the electrical conductivity σ(ω). The 
dielectric phase parameters are: Φ=0.10, ε0=80, σ0=0.0001 S/m; ε1=20, σ1=10-6 
S/m; ε2=10, σ2=1 × 10-7 S/m. The charge diffusion coefficients are assumed to 
be D1 = D2=10-8. The sphere is modeled with R1=10-6 m, R2=0.5 × 10-6 m. The 
numbers represent SI units.
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