
 
 
 

Aerosol and Air Quality Research, 20: 800–809, 2020 
Copyright © Taiwan Association for Aerosol Research 
ISSN: 1680-8584 print / 2071-1409 online 
doi: 10.4209/aaqr.2019.08.0414 
 
Assessment and Comparison of Multi-annual Size Profiles of Particulate Matter 
Monitored at an Urban-industrial Site by an Optical Particle Counter with a 
Chemometric Approach 
 
Sabina Licen1*, Sergio Cozzutto2, Pierluigi Barbieri1 
 
1 Dept. of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy 
2 ARCO SolutionS s.r.l., spin-off company of the Dept. of Chemical and Pharmaceutical Sciences, University of Trieste, 
34127 Trieste, Italy 
 
 
ABSTRACT 
 

The size of airborne particles is a key air quality parameter that is related to their composition, transport properties and 
effects on human health and the environment. Optical particle counters (OPCs) are increasingly used to dynamically 
characterize the size of ambient air particles. Monitoring campaigns lasting several months or even years generate millions 
of individual data values that must be effectively processed to extract information. Data mining algorithms as Self-
Organizing Map (SOM) can support exploratory data analysis and pattern recognition in aerosol science. The use of SOMs, 
which offer powerful visualization features using 2D maps, allows us to interpret a large amount of data while avoiding any 
loss of information on variability from pre-treatments, such as compacting data recorded every minute to hourly or daily 
means. In the present study, we processed the data collected with an OPC during a long-term monitoring campaign (almost 
3 years) conducted near residential buildings positioned very close to a steel plant and used them to assess and compare 
particulate matter (PM) profiles. About 12 million individual recorded values in total were handled. The current approach 
enabled us to identify four main PM profiles, follow their variation over time, and relate the differences to changes in the 
plant management and processes. Furthermore, it is potentially broadly applicable in high-frequency, long-term air quality 
monitoring campaigns employing different types of instruments to characterize the particle size and chemical composition 
of both PM and gases. 
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INTRODUCTION 

 
Air particulate matter (PM) is a key air quality parameter 

which can be related to composition, exposure and effects 
on humans (WHO, 2013; Chen et al., 2016; Yang et al., 
2019) and it can be characterized with several different 
metrics. PM can be vehicle of pollutants such as heavy 
metals and/or persistent organic pollutants (POPs) that can 
be transferred to biota (Kodnik et al., 2015; Fellet et al., 
2016; Popek et al., 2017; Kłos et al., 2018). It is renown that 
PM dimensions are a key parameter which is related to the 
ability of PM to retain and transport specific pollutants 
(Bernardoni et al., 2017; Barbas et al., 2018; Giungato et al., 
2018; Shen et al., 2019). 

Optical particle counters (OPCs) are increasingly used for  
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ambient air characterization in the particle size low micrometer 
range. They are easy to use and can be run with little on-site 
maintenance for long-term monitoring. In OPCs the light is 
scattered by sampled PM providing information about 
particle number and dimensions. 

Moreover, nowadays there is a growing interest in 
assessing the reliability of low-cost OPCs aiming to integrate 
the existing air quality regulatory networks (Bulot et al., 2019; 
Feinberg et al., 2019).  

The most part of commercially available OPCs are able to 
record data per minute, or minute fraction. Thus a monitoring 
campaign lasting several months or years produces millions 
of single values to be elaborated for extracting information 
and knowledge to reach the specific aim of the study (city air 
quality assessment, hot spot industrial monitoring, comparison 
between different instruments, etc.). 

In scientific literature there are several examples of 
multivariate analysis approaches for elaborating OPC data 
recorded in ambient air. Khan et al. (2015) present a study 
regarding minutely resolved data recorded in a 25-day 
monitoring campaign in a semi-urban tropical environment. 
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In Dominick et al. (2015) a study on a 3-month survey 
recording data per minute during a northeast monsoon in 
Malaysia is discussed. Agudelo-Castañeda et al. (2016) 
monitored PM size classes near a highway recording data 
every 15 min for 2 years. All the above mentioned studies 
perform principal component analysis (PCA) on hourly 
averages and show the resulting PC loadings by a table, no 
graphs showing PC scores are present. Etzion and Broady 
(2018) study concerns a 5-month monitoring in an urban 
neighborhood in which minutely resolved OPC data are 
elaborated by wavelet analysis. Ranalli et al. (2016) propose 
the use of functional exploratory data analysis of data 
collected every 6 seconds for 45 days in an urban site, but 
with a rather long computing time (several hours on a 
general-purpose desktop computer). 

To our knowledge studies involving ambient air OPC data 
elaboration by neural networks are not present in literature. 

In a recent publication we proposed a chemometric 
approach based on Self-Organizing Map (SOM) algorithm 
to elaborate OPC data recorded during a 3-month survey to 
assess the difference of PM profiles perceived at two 
different residential sites positioned near an industrial site 
(Licen et al., 2019). The Self-Organizing Map is an artificial 
neural network algorithm for unsupervised pattern recognition 
(Kohonen, 2001). SOMs have been applied to analyze 
ambient air data collected with monthly, weekly or irregular 
frequency (Astel et al., 2013; Zhong et al., 2017; Romanić et 
al., 2018; de Oliveira et al., 2019), handling few thousands of 
data points. A much challenging task is represented by data 
with higher frequency, as it is the case of “quasi-real-time” 

air monitoring; first case studies have been proposed 
considering few months for odor nuisance characterization 
by electronic noses (Licen et al., 2018a, b). In several studies, 
to simplify data handling, the data are reduced to hourly or 
daily means, discarding information on intra-hour variability. 
The use of SOM algorithm allows instead to elaborate a high 
number of data without omitting information on data variability 
associated with data pre-treatments. Respect to PCA also 
possible non-linear relationships between variables can be 
detected, the data noise is reduced by the intrinsic properties 
of SOM algorithm and, additionally, SOM provides relevant 
visualization features using 2D maps (Kohonen, 2001) 
whereas in the presence of a very high number of samples 
visualizing PCA scores in a graph with a clear appearance is 
rather complex. Moreover, the approach permits to relate the 
model outcomes with data recorded by institutional air quality 
monitoring stations, providing meteorological data and 
pollutant concentrations by normed methods.  

In the present study we describe the OPC data elaboration 
for PM profile assessment and comparison of a long monitoring 
(nearly 3 years) carried out near residential buildings positioned 
very close to a steel plant. About 12 million recorded single 
values have been handled on the whole.  
 
METHODS 
 
Site 

The optical particle counter was positioned near dwellings 
(Fig. 1, A) which are distant approximatively 200 m from an 
integral cycle steel plant in the city of Trieste (NE Italy). The  

 

 
Fig. 1. Map of the area of interest. The location of Trieste in NE Italy is shown on the upper right corner of the figure. The 
sampling site (A), the regional environmental protection agency sampling site (B), the boundary of the steel plant (black 
line), the position of the coke oven batteries (c.o.), the position of the blast furnace (b.f.), the raw material storage areas 
(white line polygons; c.s.a. = carbon storage area, m.s.a. = mineral storage area) are highlighted. 
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main renown sources of particulate matter of the integrated 
cycle steel plant are the blast furnace, the raw material 
storage areas, and the coke oven batteries (Aries et al., 2007; 
Boscolo and Padoano, 2011; Boscolo et al., 2019). In the 
past years, studies were conducted on the site to assess 
impacts on civil dwellings by carcinogenic pollutants and 
odor emissions (Cozzi et al., 2010; Licen et al., 2016; Licen 
et al., 2018c). 
 
Optical Particle Counter Monitoring 

The time- and size-resolved monitoring of particulate 
matter has been performed by an OPC with eight channels 
(Model 212 Eight Channel Particle Counter; Met One 
Instruments, Inc., Rowlett, Texas, USA). The instrument 
permits to discriminate eight size ranges (< 0.3, > 0.3–0.5, > 
0.5–0.7, > 0.7–1.0, > 1.0–2.0, > 2.0–3.0, > 3.0–5.0, > 5.0–
10.0 µm). Channels will be named from now on in the text 
respectively as PM03, PM05, PM07, PM1, PM2, PM3, PM5 
and PM10. The monitoring period lasted nearly 3 years 
starting from January 2014 and ending in October 2016. 
Data count per minute for each channel has been provided 
with air sampling at 1 L min–1. 

 
Wind Direction Data 

Hourly wind direction data representative of the 
meteorological conditions of the city have been collected from 
a synoptic weather station (Molo Fratelli Bandiera (MFB)) 
in an open position by the sea 2 km from the plant, and they 
are available from the regional environmental protection 
agency (ARPA-FVG) website (OSMER). These data have 
not been used to build the models described in the study, 
thus we will refer to them in Sec. 3 as wind “external data.”  
 
PM10 Hourly Data 

The hourly PM10 concentration data (µg m–3; measured by 
normalized method EN 12341) collected at Site B (Fig. 1) 
positioned at the fence of the steel plant about 200 m from 
Sampling Site A, were obtained from the ARPA-FVG 
website (ARPA; ARPA-FVG, 2016). These data have not 
been used to build the models described in the study, thus 
we will refer to them in Sec. 3 as PM10 “external data.” 
 
Self-Organizing Map 

The SOM unsupervised algorithm works with no need of 
a priori data grouping or classification. A Self-Organizing 
Map is organized as a bi-dimensional array of neurons (or 
units), which are vectors of scalars related to the experimental 
variable data, that in the present study are the particle count 
responses of the channels. The array dimensions and starting 
values of the neurons are set according to heuristic rules 
proposed by Vesanto et al. (2000). During the training, the 
model “learns” from the data, adjusting the neuron values 
according to the Euclidean distance from the experimental 
vectors. In this way a new set of vectors (neurons) which still 
represent the variability of the processed data is obtained. The 
neuron vectors show simple geometric relationships (distances) 
and have the same number of variables as the experimental 
data. This algorithm is able to handle also non-linear 
relationships between variables and reduces data noise. 

Details on the SOM algorithm and its general analytical 
features can be found elsewhere (Zupan et al., 1997; Himberg 
et al., 2001; Kohonen, 2001; Ballabio and Vasighi, 2012). 

The neurons can be represented as hexagons stuck together 
in a bi-dimensional map allowing visual exploration of the 
data (Vesanto, 1999). In the present specific application, the 
neuron vectors represent recurrent PM profiles perceived at 
the monitoring site. According to Vesanto (1999) and Himberg 
et al. (2001) the Self-Organizing Map can be explored to 
observe the distribution of the values of every single modeled 
experimental variable on the map (heatmap), showing how 
each one of the original variables relates to the others in the 
SOM. Moreover, the number (hits) of experimental vectors 
which are represented by every single map unit can be 
evaluated.  

The recurrent profiles can be further grouped using, e.g., a 
k-means clustering algorithm (Vesanto and Alhoniemi, 2000) 
on SOM neurons data set. The second-level clusterization can 
be represented on the SOM map by a color code to identify 
regions with relatively homogeneous properties. In this 
application the clusters represent air type profiles observed 
at the receptor. 

Moreover, as shown in Licen et al. (2019) the results of 
the model and the cluster assignment can be coupled with 
other data collected on site by other instruments matching 
them by date/time, allowing cluster characterization. 
 
Calculations 

SOM building and k-means clustering were performed in 
the Matlab 6.5 (MathWorks, Inc.) computing environment, 
implementing the SOM toolbox (2000). Algorithm results 
exploration and 2D map visualization of the outputs were 
performed using in-house scripts in R software environment 
(R Core Team, 2016) implemented by the openair package 
(Carslaw and Ropkins, 2012). In addition, wind direction data 
and pollutant data were elaborated in R environment. The 
site map was prepared in R environment implemented by the 
ggplot2 package (Wickham, 2016) and ggmap package (Kahle 
and Wickham, 2013). Circlize package (Gu et al., 2014) has 
been used to produce Fig. 4. The trajectory animation presented 
in the supplementary material was prepared in R environment 
implemented by the animation package (Xie, 2013). 

 
RESULTS AND DISCUSSION 
 
Monitoring Results Overview 

In the present paragraph we illustrate an overview of 
results obtained during the 3 years’ monitoring, using basic 
statistics applied to OPC channel counts. The results are 
shown in Table 1 where mean, median, max and min for 
each PM dimension split by year are reported. 

The variation of PM channel counts for each year by hour 
of the day, day of the week and month, obtained using 
timeVariation function present in openair package are 
reported in the supplementary material. 
 
Self-Organizing Maps Evaluation 

An independent SOM model has been evaluated for each 
year. For all the three models the algorithm parameters were
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Table 1. Basic statistics for each PM dimension split by year and expressed in counts min–1 L–1.  
  PM03 PM05 PM07 PM1 PM2 PM3 PM5 PM10 
2014 min 2.94 10+2 6 0 0 0 0 0 0 
 median 4.77 10+4 2.70 10+3 6.69 10+2 3.56 10+2 1.63 10+2 3.20 10+1 7 0 
 mean 7.89 10+4 7.47 10+3 1.45 10+3 6.53 10+2 2.78 10+2 5.50 10+1 1.30 10+1 1 
 max 9.12 10+5 1.82 10+5 6.00 10+4 4.62 10+4 2.80 10+4 8.84 10+3 2.77 10+3 3.18 10+2 
2015 min 0 0 0 0 0 0 0 0 
 median 5.42 10+4 2.89 10+3 6.77 10+2 3.32 10+2 1.28 10+2 1.80 10+1 3 0 
 mean 8.62 10+4 6.89 10+3 1.15 10+3 5.28 10+2 2.10 10+2 3.20 10+1 6 0 
 max 8.36 10+5 3.37 10+5 1.40 10+5 1.05 10+5 5.70 10+4 1.01 10+4 2.38 10+3 1.74 10+2 
2016 min 5.04 10+2 4.30 10+1 8 2 0 0 0 0 
 median 2.62 10+4 1.48 10+3 4.05 10+2 2.26 10+2 7.70 10+1 1.40 10+1 3 0 
 mean 5.17 10+4 4.07 10+3 7.55 10+2 3.79 10+2 1.29 10+2 2.60 10+1 7 1 
 max 9.56 10+5 1.44 10+5 4.46 10+4 2.05 10+4 9.17 10+3 4.29 10+3 2.04 10+3 3.59 10+2 

 
set accordingly to Vesanto et al. (2000). The number of 
neurons was initially determined as 5 times the square root 
of the number of experimental vectors and divided by 4. The 
square root of the ratio between the two largest eigenvalues 
of the data set was evaluated and it was used to set the ratio 
between the map side lengths. Finally, the actual side lengths 
of the map were set to have their product as close as possible 
to the initially evaluated number of map units. We obtained 
SOM maps with a 39 × 21, a 37 × 22 and a 37 × 21 lattice 
for year 2014, 2015 and 2016 respectively. 

In the left part of Fig. 3 the distribution of the modeled 
experimental variables on the map (heatmaps) are shown for 
each year. Four gray hues characterize quartiles of a single 
variable. Black color represents values higher than the 95th 
percentile. 

It can be seen that for all years the upper part of the 
heatmaps shows lower number of counts for all the variables. 
For year 2014 higher number of counts for small PM 
dimensions are present in the lower left corner of the map 
while higher counts for large PM dimensions are present in 
the lower right corner. Heatmaps for year 2016 show a 
similar behavior while heatmaps for year 2015 seem to be a 
“mirror” with respect to the other years (Fig. 2). 
 
SOM Maps Clusterization 

SOM algorithm allowed to reduce the starting data sets to 
approximatively 800 recurrent profiles (units) for each year. 
In order to group the units representing akin PM size profiles, 
a k-means clustering algorithm (Vesanto and Alhoniemi, 
2000) was operated on the matrix composed by the vectors 
characterizing the SOM units. The algorithm was iterated for 
200 epochs for a range of clusters from 2 to 10. In order to 
select the best clusterization we used the Davies-Bouldin index 
(Davies and Bouldin, 1979) which is function of the ratio of the 
within-cluster scatter to the between-cluster separation. The 
number of clusters for which the corresponding DB index was 
lower was 4 for each SOM model. The grouping of the units 
by cluster is reported in the right part of Fig. 2. It can be seen 
that the larger part of the maps is enclosed in Cluster 1, while 
Clusters 2–4 are located in the lower part of the maps.  

 
Cluster Characterization with External Data 

Aiming to relate the clusters to wind direction and PM10 

concentration recorded by the regional EPA (see Sec. 2.3 
and 2.4), we built a series of box plots grouping the external 
data variables by clusters. Every experimental vector 
recorded by OPC was assigned to the more similar unit, in 
terms of Euclidean distance, which is called “best matching 
unit” (BMU). As every unit is assigned to a specific cluster, 
the cluster value is in this way associated to all the 
experimental vectors assigned to that specific unit. Recording 
“date-time” was the only common variable between the 
OPC data and the external data, thus we were able to assign 
a cluster value to the “external data” recorded at the same 
“date-time” to OPC data. At the end of this process the 
“external-data” were grouped by cluster and represented as 
box plots, which are shown in Fig. 3 for PM10 and in Fig. 4 
for wind direction. In Fig. 4 the interquartile ranges of box 
plots are laid on a wind rose. Each wind rose represents the 
extent of the interquartile range separately by year and 
corresponding to the same cluster. 

In Fig. 3 it can be noticed that Cluster 1 is neatly related 
to low values of PM10, whereas the other clusters are related 
to higher values of PM10. In particular, Cluster 3 is related 
with the highest median values in year 2014 and 2016, while 
in year 2015 an inversion in the behavior of Cluster 3 and 4 
can be observed.  

Considering the interquartile ranges of wind direction 
reported in Fig. 4, a similar extent can be observed along the 
years for each cluster. Moreover, comparing the wind direction 
with the relative positioning of the monitoring site and the 
plant reported in Fig. 1, it can be noticed that Cluster 1 is 
related with wind blowing from the city, conversely the other 
clusters are associated with wind blowing from the plant. 

It is possible to explore and compare the cluster particulate 
matter profiles representing the variables, as modeled in the 
SOM units, by box plots. Each box plot is generated 
gathering together all the values of a variable assumed by 
the units classified in the specific cluster. The PM profiles 
are shown in Fig. 5, the values are normalized by variable 
and the box plot whiskers are omitted for the sake of the 
readability of the figure. In the supplementary material it is 
reported another possible representation of Fig. 5 in which a 
box plot of each modeled variable split by cluster is shown 
without normalization of the channel counts. 

The Cluster 1 to 3 profiles show a similar behavior among  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2. Heatmaps for each SOM model: (a) year 2014, (c) year 2015, (e) year 2016. The filling of the hexagons represents 
the basic statistics (quartiles = gray scale, upper outliers > 95th percentile = black) of each modeled variable. SOM map for 
each model: (b) year 2014, (d) year 2015, (f) year 2016. The filling of the hexagons represents the cluster split of the units. 
The cluster numbers are positioned at the units which are the centroids of the clusters respectively. 
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 (a) (b) (c) 
Fig. 3. Box plots of PM10 data, recorded by the regional environmental protection agency at B site, split by cluster for each 
year: (a) year 2014, (b) year 2015, (c) year 2016. The box represents the interquartile range; the thick black line represents 
the median value; the dashed whiskers extend to the data extremes. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Interquartile range of wind direction data, recorded by the regional environmental protection agency at MFB site, 
split by cluster and year: (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d) Cluster 4. The thick black line represents the median 
value. 
 

 
Fig. 5. Particulate matter profiles of units split by clusters for each year represented by box plots. 
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the 3 years, with Cluster 1 displaying low values of counts 
for all the PM sizes, Cluster 2 moderately higher values from 
PM07 to PM3 and Cluster 3 high values from PM03 to 
PM07. 

Cluster 4 shows a similar behavior for years 2014 and 
2016, with the latter displaying absolute lower values with 
respect to the former year. The behavior of Cluster 4 in year 
2015 shows not very high values of PM3 to PM10 with 
respect to the trend of the other years. This evidence can be 
explained considering that in 2015 a change in the plant 
management and process occurred. In particular, a revamping 
of the blast furnace has been operated thus the casting 
activity of the plant has been stopped during some periods 
of the year to allow makeover operations. As the blast furnace 
is a renowned source of coarse PM fraction (Boscolo and 
Padoano, 2011) the effect of the abovementioned changes 
can be seen in year 2015 were the PM coarse fraction in 
Cluster 4 is lower and in year 2016, during which, after the 
setting up of the blast furnace activity, the profile of Cluster 
4 shows a similar behavior as in year 2014 but with lower 
absolute values. 

 
Cluster Frequency Evaluation 

Every experimental vector is associated to a best matching 
unit as described in Sec. 3.3, thus, considering the units 
grouped into the same cluster, we can count the experimental 
vectors associated to that cluster and eventually evaluate the 
recurrence of that cluster during the monitoring period in 
terms of percentage frequency. In Table 2 the frequency for 
each cluster for each year is shown. 

Clusters show similar frequencies among the year, except 

for Cluster 3. Going into detail and exploring the frequency 
distribution per cluster for every month of the year (see 
tables reported in Appendix A) it can be noticed that Cluster 
3 shows higher frequency in autumn and winter for years 
2014 and 2015. Thus, considering that in 2016 the 
monitoring ended in October, it is possible that difference in 
frequency with respect to the previous years is due to the 
lower number of experimental data recorded in the autumn 
season. 

 
PM Profiles’ Temporal Evolution 

The temporal evolution of the PM cluster profiles can be 
represented by stacked bar graphs in which each day is 
represented by a stacked bar built according to the 
percentage of each cluster assigned to the experimental data. 
An example regarding the period January–March 2014 is 
reported in Fig. 6. 

The temporal evolution can be followed at a finer detail 
representing the trajectory (sequence of the BMU assigned 
to each experimental sample). In the supplementary material 
we present a graphical animation of 1-day trajectory as well 
as the minutely normalized PM profiles plotted in the same 
graph as the profile of the assigned cluster. In this way the 
cluster profiles can be used as a “reference” to interpret the 
single recorded experimental sample. 

 
CONCLUSIONS 
 

The approach we presented allowed us to extract variable 
profiles from millions of individual recorded data and to 
support model outcomes using data recorded with other  

 
Table 2. Percentage frequency distribution among the clusters of the experimental data for each year. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
2014 82.4  8.8 7.2 1.5 
2015 80.4  8.8 9.0 1.8 
2016 85.0 10.4 2.9 1.7 

 

 
Fig. 6. Example of daily stacked bar graph (Jan–Mar 2014) built according to the percentage of each cluster assigned to the 
experimental data for each day (Y-axis = percentage, ND = not determined (experimental data not recorded)). 
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instruments. Three independent Self-Organizing Maps 
constructed from data collected during years 2014, 2015 and 
2016 showed overall coherence, highlighting typical PM 
size patterns identified as clusters of recurrent profiles 
recorded annually at the monitoring site. The variability 
between the 3-year models was associated with i) the wind 
direction, which identifies the sources of PM affecting the 
site, and ii) independent PM10 data measured with a beta 
gauge PM monitor. Slight changes in the PM size profiles 
between the years were attributed to changes in the 
management of the nearby steel plant. Our method is 
potentially broadly applicable in high-frequency, long-term air 
quality monitoring campaigns employing different types of 
instruments to characterize the particle size and chemical 
composition of both PM and gases. 
 
SUPPLEMENTARY MATERIAL 
 

Supplementary data associated with this article can be 
found in the online version at http://www.aaqr.org. 
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