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Abstract 

The paper presents a two-stage approach for solving a calibration-based problem for the ultimate purpose of detecting 
leakage hotspots. This is compared with a one-stage approach. A Genetic Algorithm is used to solve optimization 
problems of searching for calibration parameters values, while minimizing the differences between observations and 
model predictions. The approach takes into account suspect valves with unknown status, as well as pipes with incorrect 
roughness values and nodal leakage. The methodology also takes advantage of a new approach to reducing solution 
search space size for the optimisation problems. These problems are then solved for different leakage scenarios. 
Artificial calibration data are generated by means of hydraulic modelling employed to mimic planned hydrant 
discharges during a low demand period, combined with step tests. The case study demonstrates the improved leakage 
detection and model calibration of the two-stage calibration approach relative to the one-stage approach, which 
considers all calibration parameters together. This can result in a useful practical network operation tool. 
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1. Introduction 

Leakage from Water Distribution Networks (WDNs) is becoming a great concern for water utilities around the 
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world. Quantifying and localizing leaks within WDNs is of significant importance to a water company. However, the 
whole leakage detection process may still have shortfalls in speed of detections with a significant volume of water 
being lost before the leak is found. To avoid these inconveniences, leakage detection based on mathematical models 
may be used by “comparing” and analysing the network monitoring data, with the network model simulated outputs.  

Currently, the calibration of hydraulic models is based on trial-and-error adjustments for pipe friction factors and 
nodal demands, due to the lack of major advances from the practitioner’s perspective. This is to simulate pressures 
within an accuracy of ±1 metre relative to observations [1], which is too coarse criterion for supporting operational 
work at the distribution mains level. This is a result of system and data anomalies associated with accidentally left 
closed (or open) valves, which are unreported in the Geographic Information Systems, incorrect pipe state information 
and undetected leaks, which cause a considerable effect on how accurately can the model simulate WDN hydraulics. 
Sophocleous et al. [2] suggested that a calibration process combining smarter field testing along with staged 
optimization analyses can provide a promising solution to solving such complex problems. Here, an improved two-
stage optimisation-based calibration approach is applied to a real WDN for the ultimate purpose of detecting leakage 
hotspots, supported by improved reconciliation of observed pressure and flow data collected during night fire flow 
field tests. The staged approach is then compared to a one-stage calibration method. Both approaches take into account 
candidate unknown status valves, pipes with incorrect roughness values and suspect leakage nodes. Different leakage 
scenarios are tested for each of the two approaches to determine the number of leaks that best represents losses within 
the WDN. Using a preliminary topological analysis and sensitivity-based methods the search for leakage hotspots in 
the network is reduced, simplifying the calibration problem. Then, optimisation analyses are carried out. The paper is 
organized as follows: section 2 provides literature review on calibration-based leakage detection, section 3 describes 
the two-stage calibration approach and the search space reduction method, section 4 presents the case study, section 
5 discusses the calibration results and compares between the one- and two- stage approaches, followed by conclusions. 

2. Background 

Model-based studies for the detection of leakage hotspots in WDNs have always attracted significant attention in 
water systems research. A variety of techniques, including inverse transient analysis, Bayesian identification method 
and belief-rule-based expert system have been applied to locate leaks with inverse transient modelling being the most 
attractive research area. More recent developments include non-transient model-based leakage detection techniques, 
which analyse the difference between measurements and estimated values from leaky scenarios to signal the 
probability of a zone to contain leakage. However, some of these model-based methodologies assume the hypothesis 
of a single leak in the network [3]. Calibration-based methods can leverage steady state hydraulic models and 
optimisation tool technology, such as Genetic Algorithms (GAs), to improve on the detection of leaks. Wu et al. [4] 
calibrated leakage as a pressure-driven demand using a competent GA. Similarly, Sage [5] carried out leakage hotspot 
optimization analyses in a real system using a pressure-dependent calibration-based method, suggesting that leakage 
detection accuracy was significantly affected by the sizes and ranges of the demand, pipe roughness and valve status 
groups. This comes into opposition with the current modelling assumptions with respect to valve location and status, 
which compromise existing calibration methods. Traditional calibration methods assume that the network topology 
associated with closed/open valves is perfectly known, but in reality this is uncertain. Wu et al., [6] highlighted the 
imperative need of determining the status and/or settings of valves, in order to adequately calibrate a WDN model, 
especially for those valves on critical flow paths. Walski et al., [7] recommended practical methods for field 
measurements collection, in order to improve model calibration by finding leaks and the correct status of valves in the 
network. Furthermore, additional errors in model calibration for leakage detection can result from incorrect pipe 
roughness values, as a result of custom-and-practice approaches that do not take uncertainty into consideration (Alvisi 
and Franchini [8]). Sophocleous et al. [2] implemented a two-stage calibration-based approach on a real WDN model, 
considering unknown valve status detection and leakage localization. The inclusion of field test planned hydrant 
discharges and concurrent tactical valve operations demonstrated an improved detection of unknown status valves and 
subsequently more accurate pipe roughness values and leakage hotspots. 
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3. Methodology 

3.1. Optimization problem formulation 

A MATLAB optimization code was developed for model calibration and was linked to the EPANET2 tool-kit [9]. 
The optimization process uses a non-dominated sorting genetic algorithm II (NSGA II) [10]. Valve status, pipe 
roughness, leakage location and leakage coefficients were considered as decision variables. The calibration was 
defined as a nonlinear optimization problem with the single objective to minimize the weighted sum of squared 
differences between the field observed and simulated values of nodal heads and pipe flows. The calibration problem 
was subject to two sets of constraints: (1) the set of implicit type constraints considering mass and energy balance 
equations; and (2) the set of explicit constraints used as bounds for the algorithm solution search space for each 
decision variable. The optimization problem is formulated as follows: 

Search for:    )                  (1) 

                  (1) 

Minimize:                          (2) 

 

Subject to:              (3)                            (4)                (5) 

Where represents a set of model calibration parameters,  is the status of a valve k at time step t, belonging to a 
vector with values 0 and 1,  is the leakage node index for node i within demand group n, is the emitter 
coefficient for the corresponding leakage location V for the number of possible leaks i from the vector of candidate 
nodes n with 0 and being the minimum and maximum values the emitter coefficient for the group can take, is 
the set of nodes within group n, NGroup is the number of node groups, is the number of specified leakage 
nodes to be identified for the leakage group n, is the roughness coefficient for pipe j in group g with and being 
the upper and lower limits a roughness coefficient,  is the number of candidate valves to calibrate,  is the number 
of candidate roughness groups, is the objective function to be minimized, corresponding to weighted ( , 

) goodness-of-fit between the field observed and the model simulated values for heads ( ) and flows 
( ), respectively. 

3.2. Artificial field data generation using fire flow hydrants and step testing 

A hydraulic simulation analysis was carried out in EPANET2 considering the “true” state of the network (Figure 
1), i.e., the expected calibrated model. This created an artificial set of field pressure and flow measurements, without 
accounting for noise. The artificial data were generated to emulate situation when data are collected by means of 
planned hydrant discharges during night fire flow field tests (NFFFT). The hydrants are, opened to cause a controlled 
hydraulic stress to the system. Water discoloration risks were also taken into consideration with regards to maximum 
hydrant velocities (Boxall and Saul, [11]). Planned closures of valves near the hydrants were introduced while the 
hydrants were open, to cause a controlled alteration of flow direction in the network and variation in velocities of 
pipes adjacent to hydrants. A number of nodes and pipes of the network were selected as monitoring locations for 
pressure and flow, with the NFFFT observations being used in the calibration process.  

3.3. Model pre-processing for solution search space reduction 

A systematic preliminary analysis of the existing network topology was performed and was combined with 
sensitivity analysis, which provided insight to the topological observability of the different parts of the WDN 
according to the location of available measurements. This model pre-processing approach was carried out to have as 
few calibration model parameters as possible and avoid unnecessary simulation of solutions that do not cause any 
impact on model fitness. Based on this preliminary analysis of observability, the search space size for either unknown 
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status valves, leakage hotspots and incorrect pipe roughness can be reduced significantly. Any pipe, or node that was 
monitored for flow or pressure, respectively, was assumed to have its state and status known and thus, was excluded 
from the search space. All valves that were step tested during NFFFT were also assumed to have a known status and 
no leakage, thus, were removed from the search space along with their upstream and downstream nodes. In addition, 
all hydrant nodes that were opened during NFFFT were assumed to have no leakage. Any branched component, where 
no pressure measurements at terminal nodes were available were classified as unobservable from the available 
measurements and, thus, were also excluded, as calibration cannot be actually performed. From the remaining valves, 
only those on loops were included in the search space. This is because, in reality, unknown fully closed valves on any 
branch of the network would be sensed by the customer. Moreover, from the remaining nodes, candidates for leakage 
were restricted to pipes longer than 20 metres. A sensitivity analysis was, then, performed to assess the effect of any 
change in topology (e.g., valve closure) or system state (e.g., nodal leakage, pipe roughness change) on the remaining 
parameters. The candidate valves and leakage nodes were restricted to pipes and nodes with large sensitivity. The 
remaining valves and nodes were considered as calibration parameters for the optimization problems. 

3.4. Calibration Approach 

Two calibration problems were solved for the ultimate purpose of leakage detection. One that considered all 
decision variables together, i.e., a one-stage calibration approach where valve status, leakage hotspot locations, 
emitters and pipe group roughness are calibrated together and a second one, that considered a staged approach. The 
second calibration problem involves two stages including two separate optimization problems. During the first stage 
of the approach only the candidate valves are calibrated for the detection of their initial status. The aim of the first 
stage is to determine the correct topology of the observable part of the WDN model by minimizing the differences 
between the observed and simulated heads and flows. Following the first optimization analysis it is expected that the 
model topology matches the true topology of that part of the WDN. The initial incorrect WDN model is, then, updated 
accordingly. A second stage optimization analysis follows, using the updated model, which is still uncalibrated for 
unknown leaks and incorrect pipe roughness. Calibration parameters for this stage involve the index and emitters for 
the candidate leakage nodes for each demand group and the roughness coefficient for the candidate pipes in each pipe 
group. Here, a single demand group was used, as the nodal demand mainly involves domestic consumption, along 
with a group of emitter coefficients. Pipes were grouped according to material with consequent ks coefficient ranges. 
This stage involves several optimization runs, where the number of leakage nodes to be identified by the GA, is 
specified. At each optimization run the number of leakage nodes to be identified increases and the change in the total 
objective error is compared with the previous analyses. The fittest scenario should best represent the system losses 
and locations. A similar approach was used for the one-stage calibration process. Five optimization problems were 
solved for both calibration problems. The first optimization analysis was undertaken for the identification of a single 
leak location and corresponding emitter in the WDN. Subsequent optimization runs were carried out to identify 
additional leaks up to a maximum of five. Following the second optimization stage it is expected that the simulated 
model predictions for pressure and flow match the field test data as closely as possible, while all leaks within the 
observable part of the network have been accurately detected and located.  
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4. Case Study 

4.1. The “true” system state 

The network layout of the system is shown in Figure 1. 
It involves a real-life District Metered Area (DMA). The 
WDN contains 460 junction nodes, 389 pipes, 104 valves 
and has one reservoir source with a head of 213.19 m. The 
total mains’ length is 14.28 km. Flow from the source 
node varies between 12.16 l/s at Minimum Night Flow 
and 17.33 l/s at morning peak demand. Four leakage 
hotspots (Figure 1) were introduced at nodes j111, j142, 
j192, j203 (Table 1) leading to a global leakage of 9.89 
l/s during minimum domestic demand. Moreover, two 
valves (T51 and T18) were closed and one (T73) was 
opened (Table 2). In addition, 21 pipes from the base 
model, associated with three different pipe material 
groups (e.g., 15 Cast Iron (CI) pipes, three Cast Iron 
Cement Lined (CICL) pipes and three Ductile Iron (DI) 
pipes) were considered for the calibration problem. The rest were assumed to have a known ks coefficient. The larger 
number of pipes chosen for the CI group was based on the fact that it is the dominant pipe material in the specific 
WDN. The selected pipes in each group were chosen to occur on major flow routes following the model hydraulic 
analysis, as well as on flow routes to the hydrants. Table 3 provides information for the pipe ks roughness values. The 
ks for each pipe group represents the roughness for the pipes considered and not all pipes in the network for that 
material. This was considered as the true system state for artificial field data generation. Six planned field tests, 
included in the EPANET model as nodal demands, were operated at nodes j60, j218, j416, j417, j438 and j457 between 
00:30 – 07:30 and flows up to a maximum 8 l/s. Generated field test data was obtained from 16 locations recording 
pressures every 15 minutes, while flows from the inlet main, the pipes supplying the six hydrants and the pipe p375, 
supplying the upper right-hand corner part of the network were also obtained (Figure 1). A total of 96 data sets over 
24 hrs, from midnight to midnight, have been used for the calibration process. 

Table 1. Leakage hotspot information 

Label Emitter Coefficient 
Pressure at 
04:45 (m) 

Leakage at 
04:45 (l/s) 

Pressure at 
08:15 (m) 

Leakage at 
08:15 (l/s) 

j111 0.50 42.86 3.27 32.37 2.84 
j142 0.35 45.83 2.40 35.32 2.08 
j192 0.60 22.02 2.82 13.55 2.21 
j203 0.25 31.35 1.40 20.73 1.14 
    Total 9.89 Total 8.27 

4.2. The leakage detection model 

The hydraulic model that was considered for leakage detection assumed all valves are open, except from known 
closed boundary valves (Table 2), and that no leaks exist in the network. Furthermore, the ks coefficients for each pipe 
group were set to the assumed “correct” pipe roughness (Table 3). Following model pre-processing using the 
topological and sensitivity analyses the population of candidate calibration parameters was reduced. Candidate valves 
were reduced by 71% (from 104 to 30), while candidate leakage nodes were reduced by 79% (from 460 to 97). The 
following GA parameters were determined experimentally and used for multiple optimisation runs: population size of 
300, 1,000 generations, binary tournament selection operator, random-by-gene mutation with the probability of 0.25 
and single-point crossover with the probability of 0.90.   

 

Figure 1. The true District Metered Area system 
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Table 2. Valve Initial Status Information   Table 3. Pipe roughness Information 
Valve ID True Simulated  Pipe Material Group True Ks (mm) Simulated Ks (mm) 

T18 0 1  CI 1 3.0 5 
T51 0 1  CICL 2 1.5 4 
T73 1 0  DI 3 1.5 3 

5. Results 

5.1. Number of leaks in the Water Distribution Network 

Table 4 compares the outcome of the five leakage scenarios between the one-stage and two-stage approaches. The 
values involve the best objective function errors out of three 1,000 generation optimization runs for each leakage 
scenario for the task of calibrating for the correct leakage hotspot location and emitter coefficient with and without 
considering a staged approach to valve status detection. For both approaches a four-leak scenario attains the lowest 
objective error relative to the rest and, thus, can be considered the most likely, which also matches with the “real” 
number of leaks in the WDN. However, there is a large difference between the best optimization runs for each scenario 
between the two approaches. A staged approach for a four-leak scenario, resulted in a much improved objective error 
of F = 2.4, relative to the one stage approach where the best run lead to an error of F = 475. The four-leak scenarios 
for each approach are further analyzed and compared in the next section. 

Table 4. Comparison of the best runs for each leakage scenario between the two calibration approaches 

Approach used One-stage Two-Stage 

Leakage Scenario 1 2 3 4 5 1 2 3 4 5 

Best run 116,146 56,408 12,939 475 27,070 35,988 1,486 181 2.4 4.3 

5.2. One-stage calibration approach 

Figure 2 illustrates the best optimization outcome for the four-leak 
scenario when considering all calibration parameters together. 
Following a 1,000 generation run the optimizer failed to sufficiently 
calibrate the model. Table 5 outlines the optimization results for the 
leakage hotspots. The location and emitters of leakage hotspots were 
incorrectly detected, while only two out of three unknown status valves 
were successfully identified. Valve T18 was falsely reported as open. 
Pipe roughness calibration was also generally unsuccessful (Table 6). 
CICL pipe material roughness was correctly calibrated and suggested 
ks values for CI pipes were reduced relative to the initial uncalibrated 
models with values very close to the true ks of the pipe groups. On the 
other hand, ks for DI was increased relative to the starting uncalibrated 
model. The suggested adjustments lead to a reasonable simulation of 
the global leakage in the WDN during minimum demand conditions of 
9.84 l/s, compared to true water losses of 9.89 l/s, however, give a false sense of being correct.  

 

 

 

 

Figure 2. Visualization of the one-stage 
approach optimisation outcome 
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Table 5. One-stage optimization results for leakage   Table 6. Roughness calibration result 

Reported 
leak location 

Closest real 
leak (m) 

Emitter 
Coefficient 

Pressure at 
04:45 (m) 

Leakage at 
04:45 (l/s)   

Pipe 
Material 

True Ks 
(mm) 

Calibrated 
Ks (mm) 

j8 161 0.40 39.45 2.51   CI 3.0 2.0 
j179 235 0.45 31.11 2.51   CICL 1.5 1.5 
j274 515 0.40 37.78 2.46   DI 1.5 4.0 

j377 100 0.50 22.35 2.36         
      Total 9.84         

5.3. Two-stage calibration approach 

Following the staged optimization, the calibration of the hydraulic 
model was improved. During the first stage of the optimization the two 
unknown closed valves and the open cross connection were 
successfully detected (Figure 3). This provided insight into the correct 
network topology. No false positives were detected by the optimizer. 
After successful detection of unknown status valves, the optimization 
outcome for the second stage lead to an objective error of F = 2.4. Two 
out of four leak locations were successfully detected on the spot, while 
the rest were reported within 150m distance away from the true leakage 
location (Table 7). The corresponding leakage emitter coefficients 
were simulated very close to the real values, which lead to a successful 
representation of the global leakage in the WDN. On the other hand, 
the optimization outcome for pipe ks coefficients did not lead on to 
correct calibration (Table 8). However, as in the one-stage calibration the suggested ks values for CI-based pipes were 
reduced relative to the initial uncalibrated model, while DI pipe material group roughness was further increased.  

6.  Discussion 

6.1. One-stage vs Two-stage approach 

The inverse calibration problem is often under-determined in real-life conditions, due to a larger number of 
calibration parameters relative to the number of available measurements, which must be grouped to produce an even- 
or over- determined problem. This issue can often lead to non-uniqueness of the identified parameter values. Through 
topological and sensitivity-based analyses, important benefits were secured, as unobservable network components 
were removed from the search space causing a significant reduction to the number of calibration parameters and 

Table 7. Two-stage optimization results for leakage   Table 8. Roughness calibration result 

Reported 
leak location 

Closest real 
leak (m) 

Emitter 
Coefficient 

Pressure at 
04:45 (m) 

Leakage at 
04:45 (l/s)   

Pipe 
Material 

True Ks 
(mm) 

Calibrated 
Ks (mm) 

j111 0 0.60 42.83 3.93   CI 3.0 1.5 
j142 0 0.35 45.79 2.37   CICL 1.5 1.5 
j145 149 0.50 21.08 2.30   DI 1.5 6.0 

j449 121 0.25 26.45 1.29         
      Total 9.89         

Figure 3. Visualization of the two-stage 
approach optimisation outcome 
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avoidance of unnecessary solution generations. In theory, an over-determined optimization problem including 
observable parts of the network as calibration parameters should be able to be solved with a reasonable accuracy.  

Further improvements can be achieved by using a staged approach to solve the calibration problem, as demonstrated 
by the optimal solutions between the applied calibration methods. A first stage optimization analysis which only 
considered candidate valves, followed by second stage repeated analyses for different possible leak-scenarios and pipe 
ks calibration, achieved over-determined problems in both instances. This initially led to a successful topological 
calibration. Such step was essential for the improved detection of leakage hotspots. The two incorrectly detected leak 
locations lead to a compromised sub-optimal pipe ks calibration. The low flows in pipes leading to hydrant j457, 
where leak j203 is located, have impacted its correct localization, while the near-correct emitter detection of the leak 
close to j192, has also possibly caused its incorrect localization. However, when all calibration variables were 
considered together for the optimization analysis, the larger number of solution combinations lead to sub-optimal 
leakage detection. Only two out of three topological anomalies were detected. The incorrect network topology was 
compromised by incorrect assignment of leakage hotspot locations and emitters, as well as pipe ks coefficients. 

  This method is also applicable to larger WDNs, however, its accuracy depends on the number and locations of 
available measurements. It is expected that a staged calibration approach would perform better than a one-stage 
method, due to the optimization problem dimensionality. Nevertheless, a drawback of the presented method is that 
the possible number of leaks to be identified has to be specified a priori. The results suggest that multiple optimization 
runs for different leakage scenarios prove beneficial for getting a reasonable representation for the number of leaks in 
the network. This involved increasing the coded chromosome genes of the GA, each time by two, one representing an 
additional leakage location and one for the corresponding leakage emitter coefficient. However, running several 
optimization analyses for many leakage scenarios can be time consuming, especially for larger systems.  

6.2. Improved calibration field test data using hydrants and step testing 

Optimisation can be a powerful tool for leakage hotspot detection. Thus, systematic approaches that leverage 
hydraulic models along with optimization techniques can be beneficial for network operations, if accompanied by 
good quality field data. A large amount of accurate observation data is a necessary step for estimating calibration 
parameters with sufficient confidence [1]. However, this often comes to opposition with reality, because of financial 
and time constraints for field measurement collection. Apart from that, the impact caused by small unknown leaks, or 
the local effect caused by unknown closed/open valves can be often insufficient to allow detection due to the 
measurement noise levels compared to model accuracy. Current WDN models are calibrated to simulate observed 
pressures within ±1 metres, whereas field pressure transducer accuracy lies within an order of magnitude less (e.g., 
±0.1m). Thus, hard-to-find leaks and topological anomalies can remain undetected due to small head losses. This can 
be improved by introducing known interventions during field tests, such as fire flow hydrant discharge during low 
demand periods, along with planned valve closures on pipes close to the hydrant locations. Taking into account 
discoloration risk, such approaches cause a controlled hydraulic stress on the WDN. As leakage is at its highest value 
during minimum domestic demand due to higher pressures in the WDN, opening of fire flow hydrants at key low-
discoloration risk locations will increase head losses (or gains) arising from the topological and leakage-related errors, 
able to highlight the anomalies. This will lead to improved opportunities for more successful detection of those 
previously undetected model anomalies, in association with new optimisation-based modelling methods.  

7. Conclusions 

This paper presented an improved staged calibration approach that uses a WDN hydraulic model along with an 
optimization method to determine the location and flows of leaks which were modelled, as flow emitters. Moreover, 
discussions were made on how improved calibration can be achieved through the use of field data that involve 
controlled stress in the WDN from fire flow hydrant discharge and step testing. A desktop study of a real WDN was 
undertaken, where unknown status valves, leakage and incorrect pipe roughness were introduced. Artificial calibration 
data were generated by means of planned hydrant discharges during a low demand period, combined with step tests. 
Two calibration problems were solved, comparing a one-stage approach with a two-stage approach. Preliminary 
topological and sensitivity analyses of the hydraulic model lead to a reduced solution search space in excess of 70%. 



176   Sophocles Sophocleous et al.  /  Procedia Engineering   186  ( 2017 )  168 – 176 

Calibration parameters included unknown status valves, leakage location and emitter coefficients, as well as grouped 
pipe roughness coefficients. Several optimization analyses were implemented to determine the best leakage scenario.  

The results obtained suggested that relative to a one-stage approach, a two-stage approach where the status of 
candidate valves is firstly detected to provide insight in WDN topology, can lead to an improved leakage detection. 
The staged approach has fulfilled the purpose of the paper, being successful detection of unknown valve statuses, 
leakage hotspot detection and pipe roughness calibration. In practice, the promising approach can be lead to a useful 
tool for network operations. Future work include the implementation of the approach using real field test data.  
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