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Abstract 

Current market laws ask for new product development methods and tools dealing with both technological and 
interaction related issues. Starting from this, the research described in this paper aims at finding and exploiting some TRIZ 
tools in interaction design field of practice. TRIZ theory offers well defined and structured methods and tools, and allows 
generation of generic guidelines for innovative design of a huge variety of products. Interaction design focuses on studying 
and developing a correct interaction between users and products, in order to maximize cognitive compatibility. Real goal of 
this research is developing a new design method where systematic approach to innovation of TRIZ compensates for some 
lacks of the user centered interaction design process. Starting from similarities and differences between tools currently 
used in these two domains, the research considers the TRIZ thirty-nine features, the forty inventive principles, and the 
contradiction matrix. These elements are adapted to the requirements of the interaction design field of practice, obeying to 
classic usability rules. 
 
These new elements contribute to the definition and development of a new design framework named interaction design 
guidelines - IDGL. The effectiveness of these elements has started to be tested in a case study focused on the interaction 
design of a new DVD recorder. 
© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Nowadays, industries obey to fast and continuously evolving market laws asking them for an always shorter 
time to market, sometimes with scarce resources. In the meantime, customers want innovative products. These 
must be cost effective, embedding state of the art technology, portable and multifunctional, customizable 
and easy to use [1]. All of this implies a revision of classic design methods, because focusing on functionalities 
and technological issues is not enough anymore. Real users' needs must be accounted for, otherwise products 
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could be refused, even if correctly designed and developed [2]. Soft reliability is the name of a special branch of 
interaction design specifically addressing this topic [3]. 

 
Then, new methods and tools are required, in order to consider both technological and interaction aspects 

during product design. All of this suggests looking for a possible synergy between systematic approach to 
innovation of TRIZ theory and current interaction design procedures. The ultimate goal would be to enrich 
both domains, by adding some systematic nature to interaction design methods, and enlarging the application 
coverage of TRIZ theory. 

After this introduction, paper runs as follows. First, state of the art of TRIZ and interaction design is 
summarized. After that, a possible interaction/integration/synergy between them is considered, and some new 
design tools are presented. Then, a case study is performed, as first stage of testing and validating the research 
results. Finally, some discussion deals with possible improvements that can occur in the two domains, and 
paper ends with some hints about future research directions. 

2. Tools and methods 

This paragraph summarizes meaningful features of the two domains considered in this research: TRIZ theory 
(with its evolutions) and interaction design. 

1.1. TRIZ theory 

TRIZ is the Russian acronym for the inventive problem solving theory, developed by G. Altshuller starting 
from the fifties [4]. It aims at generalizing and systematizing the design process, in order to boost the generation 
of innovative ideas, concepts, and products. 

Modern design problems are more complex than when TRIZ was born. Today more domains are 
involved, and focusing on technological issues is not enough anymore. Moreover, classic TRIZ manages one 
problem at a time, while today the requirement is in dealing with many of them contemporarily. 

For all these reasons TRIZ has evolved towards a more articulated theory named OTSM. This is the Russian 
acronym for general theory of powerful thinking [5,6,7,8]. OTSM revises the bases of TRIZ in a formal way, 
while keeping contradictions as central element. 

Now, contradictions describing a complex problem are ordered and related each other in a network. At the 
beginning, the network of problems relates sub-problems and partial solutions. Then, technical 
contradictions are extracted and related each other in the network of contradictions. Finally, parameters that 
rule the relationships between contradictions are collected in the network of parameters. This 
representation of the complex problem is the starting point for the generation of design solutions [5,7]. This 
activity exploits classic TRIZ tools as ariz, contradiction matrix and trends of evolution. They are conveniently 
modified to manage more than one contradiction simultaneously. 

Research presented in this paper mainly focuses on the feasibility of TRIZ exploitation in interaction design 
field of practice, so only classic release of three TRIZ tools has been considered at the moment: forty inventive 
principles, contradiction matrix and thirty-nine features. 

Forty inventive principles are one of the results of Altshuller's patent mining activities [9,10]. The 
definition of these principles is general enough to be effectively exploited in many different domains, for solving 
many different types of design problems. These principles help a lot in clearing psychological inertia, since 
they allow exploiting results coming from domains sometimes very far from designers' ones. Together with the 
forty principles, another element of interest here is the contradiction matrix [10,11]. 

When two engineering requirements - named features in TRIZ theory – generate a contradiction, the entry of 
the contradiction matrix corresponding to row and column of the two requirements suggests the best inventive 
principles that could help in solving the contradiction. 

TRIZ features are thirty-nine, and they allow the physical characterization of product under development 
[11,12]. 
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In the last decade TRIZ has become one of the fundamentals for systematic and innovative design. Some 
software packages are on the market, directly implementing classic TRIZ theory or belonging to several 
specific design domains but in any case referring to it. Among them, there is Goldfire developed by Invention 
Machine [13], TRISolver by TriS Europe GmbH [14], IWB - Innovation WorkBench by Ideation International 
[15], and Triptych by the Statistical Design Institute [16]. On the contrary, OTSM is less present in commercial 
software packages; up to now it has been implemented only in research prototypes. 

2.1. Interaction Design 

Interaction design - ID - focuses on correct interpretation and implementation of user-product dialogue. It 
allows generating products ready to be easily and intuitively used since the beginning, and accepted by the most 
of the users, thus avoiding soft reliability problems [3]. It is quite young as a research field, and full of methods 
and tools based on the usability concept. As the ISO 9241 standard says, usability is "the effectiveness, 
efficiency and satisfaction with which specified users achieve specified goals in particular environments" [17]. 
Specifically, ID methods and tools focus on user satisfaction because new definitions of product quality are 
heavily based on it. Unfortunately designers' conceptualization of possible users rarely matches with reality; 
this is why more than often real users are directly involved in design activities. Literature describes 
existing ID approaches focused on generalizing specific users' needs, complaints, and problems, highlighted 
before and during the use of specific products. All of this in order to generate an actual starting point for the 
generation of interaction design guidelines. Among recent approaches, DCART [18] is the software 
implementation of a procedure that translates raw input data into usability problems, in order to highlight the 
correct ones, mainly by not so skilled usability practitioners. This translation comes through intermediate 
stages, named usability problem instances - UPI. They are generated in an automatic way, and aim at 
recognizing, classifying, and generalizing users' requirements. 

LINK-UP [19] has the same goals as DCART, but follows a different procedure. First, interaction 
designers formally describe the product under development. Starting from this description, LINK-UP builds 
scenarios and suggests task models, aiming at understanding interaction requirements as best as possible. Task 
models are collected in a database and could be reused in similar situations. Once again, LINK-UP helps 
usability experts in correctly identifying interaction requirements. 

Inner complexity of these two approaches seems to be quite high, so their adoption is not straightforward. 
Moreover, when the product under development is completely different from the ones analyzed before, too 
much knowledge about their mechanisms and structure seems needed in order to use them properly. Finally, 
none of them deal with the generation of some sort of explicit, ready-to-use interaction design guidelines. 
This is one of the real challenges, because guideline generation is mainly a creative and subjective task, and for 
this reason very difficult to deal with in an analytic way. 

Interdisciplinary approach with a user-system focus described in [3,20] is more complete. It collects input 
data and elaborates them towards the generation of real design solutions. Collected data regard product 
usage and users' behavior and impressions during it. Collecting activities come thanks to a software 
package running in the product itself, the dynamic product usage information system - D'PUIS. Process mining 
- ProM - techniques allow analyzing these data, while the compromise decision-support- problem - cDSP - tool 
is devoted to the generation of interaction design guidelines [21]. cDSP allows associating the right 
information to the right stakeholder (interaction designer, quality expert, marketing agent, etc.) at the right 
time. The main difficulty in adopting this design approach seems to be the setup and use of D'PUIS software 
package. 

Another important help for interaction design comes from eco-sustainability. Energy waste can be heavily 
reduced thanks to suggestions about correct use of products. These suggestions are translated into design rules in 
order to generate products that best support energy saving, thanks to the optimization of their user interaction. 
Eco-feedback theory [22,23] suggests the correct behavior to the users, thanks to messages written on labels. 
Scripting principle [22,23] tries to maximize affordance, in order to make correct actions available and to 
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prevent unwanted ones. These approaches give only suggestions at the moment; they don't appear as structured 
as the previous ones, and for this reason they cannot be exploited in interaction design as they are. 

Finally, some usability rules are of interest here, mainly because correctness of TRIZ tool customization for 
interaction design has been controlled using them. They are seven dialogic ISO principles [24], eight 
Shneiderman's golden rules [24], ten Nielsen's heuristics and interaction paradigms of Dix, Finlay, Abowd e 
Beale [25]. 

3. Activities 

This paragraph describes the definition of three tools for interaction design derived from TRIZ theory. These 
tools will contribute to the generation of a complete interaction design framework named IDGL - interaction 
design guidelines. 

3.1. Analogies and differences between TRIZ and ID 

Highlighting analogies and differences between TRIZ and ID is important, because it allows finding those 
contact points that will be exploited in the following. Table 1 summarizes meaningful analogies. 

Inventive principles can be put into relationship with laws of interaction design, Nielsen’s heuristics, and 
Norman’s design principles, in terms of design guidelines that can be generally used for finding the best 
solutions of a design problem. Besides, these guidelines can be applied in different contexts and for different 
kinds of problems. There are also some correspondences between TRIZ laws of system evolution and 
interaction paradigms and metaphors. When the interaction designers imagine future developments of the 
interaction of a product, they set a sketch of technology forecasting enforced by the use of metaphors. Another 
correspondence can be identified between TRIZ Ideal Final Result and usability evaluation and testing 
methods. This correspondence is intended as the will of interaction designers to develop products as usable 
as possible or, in other words, ideally usable. Moreover, TRIZ functionality and trimming may be related to ID 
metaphors. In fact, interaction designers set some sort of functional representation of the system interface during 
the definition of metaphors. This representation is not as structured as a TRIZ system functional model; anyway 
it is an interesting contact point between these two domains. Finally, an analogy can be identified between TRIZ 
multi screen approach and the ID metaphors  and  interaction  paradigms.  These  two  ID  items  allow  
designers  analyzing  the product regarding its status in time (present, past and future) and space (itself, 
subsystems/subfunctions, environment), exactly as it happens thanks to the nine box approach. 

Table 1. Analogies between TRIZ and ID 
TRIZ ID 

Inventive Principles Laws of interaction design 
Nielsen’s Heuristics 
Norman’s design principles 

Laws of system evolution Interaction paradigms 
Metaphors 

Ideal Final Result Usability Evaluation &Testing methods 
Functionality and trimming Metaphors 
Multi Screen or Nine box Metaphors 
Approach Interaction paradigms 

 
Together with the analogies shown in table 1, it could be useful to highlight main differences between the two 

domains as well, because the search of synergies may effectively start from them, in trying to compensate 
lacks of ID with peculiarities of TRIZ, and vice versa. For example, a close correlation between TRIZ 
contradictions and any ID item was not found. We have only found a soft correlation between TRIZ 
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contradictions and Nielsen’s heuristics. Every time a usability heuristic is violated in the interface of a product 
under development, a sort of behavioral contradiction may be highlighted. 

 
 
 

Table 2. Main differences between TRIZ and ID 
TRIZ ID 

Highly structured approach Loosely structured approaches 

Focus on functionality and technical issues Focus on interaction aspects and users’ needs 
Emphasizes abstraction Emphasize the real context 
Describes ‘what’ and ‘how’ Describe ‘why’ 

 
As summarized in table 2, main differences between these two domains can be identified in the 

following aspects. First of all, there is a highly structured approach to problem solving in TRIZ theory, against 
a loosely structured problem solving strategy in ID. Absence of a systematic design approach is highlighted by 
the different aims. TRIZ focuses on functionality and technical aspects of problems, while ID is oriented to 
interaction and user’s needs. Moreover, TRIZ theory and concepts emphasize abstraction, while ID methods 
emphasize real contexts. Finally, in ID practices innovation is intended as a consequence of skill and experience 
of the design team members. For this reason, results of ID reasoning refer to description of the ‘why’ aspects of 
design process, but often all of this does not suggest solutions. On the other hand, TRIZ, thanks to its structured 
approach and leveraging of other successful results, may suggest ‘what‘ and ’how‘ aspects of design problems 
and, in this way, it can prescribe real solutions. 

3.2. Development of new tools 

New interaction design tools can be created now, thanks to analogies and differences highlighted in 
previous paragraph. The IDGL framework is introduced first, because it is the place where new tools are 
exploited. Then, the three TRIZ-derived tools are described in detail. 

IDGL overview 

IDGL is an interaction design framework where innovative interactive products can be developed in an 
effective way, thanks to a set of guidelines generated semi-automatically. It is composed by several 
modules linked each other and working in synergy, and its architecture is based on classic design 
structures, as the house of quality coming from quality function deployment theory [26]. 

IDGL adoption has well defined steps. First, features of the product under development are described, so as 
so the final users' characteristics. Then IDGL generates a questionnaire in order to collect and refine users' needs 
and expectations. All these pieces of information go to fill the house of interaction, the main data structure of the 
IDGL derived from the house of quality. Thanks to it, interaction requirements are highlighted, and design 
guidelines are generated accordingly. In doing so, other knowledge is exploited, derived directly from the 
classic TRIZ components described in tools and methods section, modified and customized according to 
interaction design requirements. 

Interaction principles 

Customization of TRIZ tools starts with the generation of interaction principles. The forty principles of TRIZ 
theory have been used as source for this. As TRIZ principles come from the analysis of engineering patents, they 
strictly refer to that domain. For this reason, they have had to be translated into something closer to interaction 
issues. In doing so, classic usability rules acted as a check to evaluate congruity and validity of the result. The 
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experience in the field of some usability experts has been exploited as well. They have been involved because 
it would have been impossible to replicate the huge work that Altshuller performed in the technological field, 
given current time, material and available resources in general. The same consideration is worth for 
definition and validation of the other tools described hereafter. 

The result consists in a list of forty-seven interaction principles. Each principle has some examples of 
application, to make its comprehension and adoption easier. The resulting amount of principles is not equal 
to forty because some TRIZ principles generated more than one interaction principle, while not all TRIZ 
principles were suited for the generation of corresponding interaction principles. Complete list of principles is 
in appendix. 

For example, fifth TRIZ principle "Merging" suggests to "Bring closer together (or merge) identical or similar 
objects, assemble identical or similar parts to perform parallel operations" [11]. In the interaction design 
domain, this principle becomes "Combine more elements in order to generate forced paths avoiding multiple 
selections". One of the related examples sounds as "Programming a VHS recorder, allow the use of a single 
numerical code (e.g. the ShowView), instead of demanding manual input of recording date, time, program, 
etc.". 

Interaction principles have been classified into four different categories, using a two-dimensional grid. First 
dimension refers to physical vs. psychological aspects of design or, in other words, to interface issues vs. 
cognitive compatibility and problem solving; second dimension tells if principles aim at increasing vs. 
decreasing some interaction aspects. The same interaction principle could fall in more than one category. 
Regarding the previous example, the "Merging" interaction principle is categorized as physical/decreasing. 
In fact, it aims at lowering the number of actions during the problem solving process. This categorization is 
important because it allows mapping interaction principles with other pieces of information that will be 
defined in the next paragraphs. 

Interaction requirements 

Once defined the principles that could suggest hints for generating interaction design solution concepts, now 
there is the need to develop elements where to build these concepts on. Their role consists in making usability 
evaluation as objective as possible, by providing a set of quantitative indices and minimizing the influence of 
personal judgments. Moreover, they should boost a homogeneous management of different classes of products, 
by representing interaction aspects in a general way. For this reason, they are defined a priori, and their list is 
one more piece of information in the IDGL knowledge base. 

Up to now, thirty-one interaction requirements have been highlighted and categorized. They come from 
the analysis of many projects where interaction design had a major role, and from the suggestions of thirty-nine 
TRIZ features. They are quite different from these features, because information content is richer and more 
articulated. As it happens for engineering requirements in the house of quality, each interaction requirement 
is numbered, has a title, an improvement direction, a unit of measurement, and a category. This categorization 
is exactly the same used for interaction principles described before. Appendix reports full list of the 
interaction requirements. 

An example of interaction requirement is "Universal symbols". Its improvement direction is "up" 
because as the number of universal symbols rises, users interact more easily with the product by 
exploiting their own experience. The unit of measurement is "#" and the category is 
"physical/psychological/increasing", because it regards both the psychological and the physical aspects of 
interaction and refers to the growth of universal symbol amount. Another example is "Data needed to be 
memorized to perform actions", direction is "down", unit "#", and category 
"physical/psychological/decreasing". 

Relationship matrix 

Any interaction requirement could be accomplished thanks to the help of one or more interaction 
principles. For example, the requirement "Default settings", representing the amount of chunks of 
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information that the product can supply automatically, could be implemented at best thanks to hints coming 
from the principle "Merging". In fact, this one encourages grouping data and the resulting groups allow product 
users a heavy exploitation of default entries because the simple indication of a specific group determines the 
input of multiple values automatically. 

The data structure named relationship matrix has been chosen as the best way to collect relationships 
between requirements and principles. Rows and columns contain the same list of all interaction requirements, 
as shown in figure 1. 

Entries of the main diagonal contain links to the principles directly related to each requirement. These 
relationships have been set up thanks to hints coming from the TRIZ theory and with the help of the shared 
categorization cited in the previous paragraphs. 

The other entries of the relationship matrix are as important as main diagonal ones. They refer to 
relationships between couples of requirements. Analogously with the TRIZ contradiction matrix, where a 
contradiction expressed by two antagonist engineering requirements could be solved thanks to some 
suggested TRIZ principles, here the concept has been exploited first, and further developed afterwards. 

As it happens in engineering domain, interaction design can highlight contradictions between requirements 
as well. In this case, IDGL behavior borrows as-it-is from TRIZ; some interaction principles are suggested in 
order to solve a contradiction. Links to these principles appear in so called "contradictory half entries" of the 
relationship matrix. For example, consider requirements "Time to perform actions" and "Time for messages 
before they disappear". First one should decrease, while the second should increase or, in any case, should 
allow the complete comprehension of message by the product user. Linked principle "Partial or excessive 
actions (about increase potentiality)" suggests "Set persistence of system messages according to user type. 
Younger users or skilled ones need shorter time than beginners or elder people". 

Figure 1. The relationship matrix 

Regarding the further development, improvement stands in the fact that IDGL considers positive 
interactions too. In other words, for sure two requirements could obstacle each other, but two requirements 
could as well contribute to enhance quality of interaction design if considered together, in synergy. For 
example, requirements "Universal symbols" and "Data visibility" could be positively related, because 
enhancement of first one makes the second better as well. Suggested interaction principles exist even for 
positive relationships between requirements, and their links appear in the "positive half entries" of the 
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relationship matrix. Regarding last example, "Partial or excessive actions (about decrease potentiality)" and 
“Local quality” principles could help, given that they recommend "a) the use of symbols already present 
in the product application domain, and b) to differentiate symbols enough to avoid misunderstandings". 

Analogously with single examples associated to interaction principles, relationships encoded in the half 
entries of the relationship matrix have "combined examples". They are collected in two different lists, one for the 
contradictory relationships and the other for positive ones. 

The nature of the relationship, contradictory vs. positive, depends from the context where relationships are 
considered. As an example of double content in the same matrix entry, the two requirements "Self- tuning 
functions" and "Customizable functions" can be in a contradictory or positive relationship as follows. 
Contradictory relationship could happen when using, for example, a word processor. The problem is that 
the customization of the automatic corrector of typos could be very hard to be reached or, even worse, 
impossible. In this case, interaction principle "Preliminary actions - Add actions that run automatically by 
forecasting user behavior" is suggested. Thanks to this suggestion, designers can think about a smart algorithm 
that memorizes the way users interact with the word processor and how they correct their mistakes, and then 
can customize typo corrector automatically. On the other hand, a positive relationship between the two 
requirements can be found when dealing with a modern vacuum-cleaner. The user customizes some 
parameters, like power, and cleaning type and frequency. Meanwhile, the product performs a self-tuning 
during cleaning to prevent breakdowns. Interaction principle "Anti-weight 

- Lower the amount of data to be memorized by users, by exploiting default values and/or tracing of 
system states", could suggest the development of a fully-automatic vacuum-cleaner, self-moving, able to decide 
autonomously where, when, and how to clean, without the need of an explicit training performed by the user. 
This way, the cognitive load lowers, thanks to automatisms that make the system self-tuning given the 
environmental situation. Of course, some interaction would be still possible, but it is not strictly required as 
before. An implementation of all of this can be found in modern robot vacuum-cleaners. 

The whole relationship matrix is reported in Appendix. 

4. Case study 

A case study focused on interaction design of a new DVD recorder is conducted as a starting point to test 
and validate the results of the research. Actually the whole IDGL framework is exploited, but only information 
related to the new TRIZ-derived tools is reported here for space reasons. 

Twenty users were required to answer a questionnaire. They have been classified regarding functionalities 
they usually use. Five people simply watch DVD movies; six are able to record a TV program while 
watching it too; five are good at managing the content of the internal hard disk; four, the most skilled ones, are 
familiar with recording timing too. 

Questionnaire contained 17 multiple-choice questions covering many topics, from users' characteristics to 
problems that they usually face with. Analysis of the answers highlighted 63 interaction aspects that represent 
users' requirements and expectations about the product under development. 

The house of interaction has filled automatically with these aspects and with other pieces of information 
available in the IDGL knowledge base. The outcomes were 20 interaction requirements meaningful for the 
DVD recorder. Two of them are "Visibility of interaction components", and "Universal language". They 
represent the input for exploiting the relationship matrix. First step consisted in looking at the main diagonal. 
For any requirement it highlights the interaction principles that give single examples to build the list of 
design guidelines. Then, designers could generate concepts that implement the requirements and this 
happened thanks to these examples. 

All together, 159 new single examples were offered. Two of them, coming from REQ5 - "Universal 
symbols", are: 

 "Use symbols already used in similar products (VCR, CD players, etc.)"; 
 "Use symbols compatible with user category (young people, elder ones, skilled vs. beginners, etc.)". 
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Once exploited single examples, relationship matrix was considered again. This time, cells other than the 
main diagonal were exploited. They contain positive and negative relationships between requirements. Again, 
each of them contains the interaction principles involved, together with combined examples to be potentially 
exploited in order to complete the final list of guidelines. Designers could develop more articulated 
concepts than before, because more requirements are involved. 

135 combined examples were offered. For example, starting from two requirements "Feedbacks of system 
state changes", and "Helping messages during actions needed to perform functions", positive relationship 
between them suggested the combined example: 

"Feedbacks can appear as popup windows containing messages. Attributes of window background (color, 
transparency, etc.) could be exploited to contextualize messages at best, for example when they refer to some 
important current or future change of system state (warnings about possible errors, notifications of interrupts 
that made the system unstable, etc.)". 

IDGL collects all the pieces of information described up to now and represents them as reports, where all data 
related to the product under development are collected. They contain the product features, the house of 
interaction, the single and the combined examples acting as interaction design guidelines, and many other 
useful data. 

5. Discussion and conclusions 

This research started from exploring a possible exploitation of some TRIZ tools in the interaction design 
field of practice. Analogies and differences between these two disciplines allowed identifying three tools as 
the starting point of this synergy, that in the end resulted in the development of the IDGL, a complete framework 
for interaction design. The resulting new items - interaction principles, interaction requirements, and 
relationship matrix -, could become one of the ways to make TRIZ familiar to a wider community, to associate 
a more structured approach to interaction design (thanks to the whole IDGL framework too), and to add 
important engineering contents to the management of usability issues during product development. 

TRIZ theory might somehow benefit from this research as well. For example, TRIZ features could be 
enhanced looking at the richer current format and content of the interaction requirements. In fact, they have 
units of measurement, trends, a classification, and they focus not only on physical aspects but consider also 
conceptual issues related to user-product dialogue. Moreover, interaction principles could suggest some 
extension of the TRIZ vocabulary, in widening the collection of possible application domains. Maybe, 
relationship matrix is the new tool that could better contribute to some TRIZ enhancement. This matrix 
synthesizes the set of principles and the contradiction matrix in a unique entity. Moreover, it introduces the new 
concept of positive relationship, not present in TRIZ. 

Results of a first case study seem to validate the structure and content of IDGL and, in particular, they start to 
witness the effectiveness of the new three TRIZ-related tools. 

Some other research is needed, to make IDGL a robust design tool and to widen its coverage to a larger 
collection of product types. First of all, a quantitative evaluation of IDGL performance would be required. The 
results of other researchers' work, as the evaluation method proposed by Verhaegen et al. in [27], could be 
exploited in this sense. Moreover, each IDGL adoption could enrich its knowledge base. In fact, one of the 
current research topics is the development of a mechanism able to translate solution concepts generated by 
designers thanks to the IDGL into single and combined traceable examples, to be added to existing ones and 
made available for next adoptions of the IDGL framework. Finally, the large number of single and combined 
examples generated by IDGL and offered as guidelines suggests and requires studying how to browse and 
exploit them in the most usable way. 
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Appendix A. Interaction principles, interaction requirements and relationship matrix. 

Table 3. Interaction principles 

# TRIZ Name Meaning in ID Categories 

1 1 Segmentation Decompose complex actions into simpler ones Ph/In 
2 2 Taking out Trim functions or components not important from the users' point of 

view. Focus on those ones that could generate dissatisfaction if missing 
Ph/In 

3 3 Local quality Make system behaviors really different each other, in order to be 
recognized immediately, without misunderstandings 

Ph/Ps/In 

4 4 Asymmetry Make components performing different functions very different each 
other, to enhance recognition easiness 

Ph/In 

5 5 Merging Combine more elements in order to generate forced paths avoiding 
multiple selections 

Ph/De 

6 6 Universality Make components in order to perform parallel functions, triggered by 
simple user actions 

Ph/In 

7 7 Nested doll Embed functions one another in order to perform all of them with the 
same actions as before 

Ph/De 

8 8 Anti-weight Lower the amount of data to be memorized by users, by exploiting 
default values and/or tracing of system states 

Ph/Ps/De 

9 9 Preliminary anti-action Insert automatic actions performed by the system to avoid 
dangerous/error states 

Ph/In 

10 10 Preliminary action Add actions that run automatically by forecasting user behavior Ph/In 

11 11 Beforehand cushioning Provide messages and hints every time a possible error state is going to 
occur 

Ph/In 

12 12 Equipotentiality Limit variations about user skill requirements Ps/De 

13 13 The other way round (actions) Switch actions each other to lower interaction complexity Ph/De 

14 13 The other way round 
(components) 

Switch components each other to enhance learnability and memorability Ph/De 

15 14 Curvature Differentiate shapes of interaction components to enhance affordance Ph/In 

16 15 Dynamics (components) Dynamize shapes and positions of interaction components to enhance 
usability 

Ph/In 

17 15 Dynamics (actions) Dynamize towards "intelligent" systems, able to make decisions 
autonomously 

Ph/In 

18 16 Partial or excessive actions 
(about increase potentiality) 

Enhance functional capability according to user skill Ph/In 

19 16 Partial or excessive actions 
(about decrease potentiality) 

Lower functional capability if too much cognitive load is required Ph/De 

20 17 Another dimension (actions) Avoid the need of messages/helps/hints in performing actions by 
moving on the affordance dimension 

Ph/In 

21 17 Another dimension 
(components) 

Move from a physical interaction to a contact-free one Ph/In 

22 18 Mechanical vibration Exploit vibrations to enhance feedback quality Ph/In 
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Table 4. Interaction requirements 

# Name Units Impr. Categories 

1 Visibility of interaction components % Up Ph/In 
2 Shapes of interaction components # Down Ph/De 

3 System dimensions mm3 Down Ph/De 

4 Feedback of system state changes # Up Ph/In 

5 Universal symbols % Up Ph/Ps/In 

6 Symbols # Down Ph/De 

7 Shape reuse in symbols # Down Ph/De 

8 Universal language % Up Ph/Ps/In 

9 Language uniformity % Up Ph/Ps/In 

10 Abbreviations # Down Ph/De 

11 Action visibility (affordance) % Up Ph/In 

12 Data visibility % Up Ph/In 

13 Parameters able to be changed without breaking the problem solving # Up Ph/In 

14 Functions that, once finished, come back home # Up Ph/In 

15 Data needed to be memorized to perform actions # Down Ph/Ps/De 

16 Needed steps to perform actions # Down Ph/De 

17 Default settings # Up Ph/In 

18 Actions to preserve important system data # Up Ph/In 

19 Self-tuning functions # Up Ps/In 

20 Customizable functions # Up Ph/In 

21 Interaction components for fast exit from functions # Up Ph/In 

22 Error messages % Down Ph/De 

23 Helping messages during actions needed to perform functions # Up Ph/In 

24 Messages after actions explaining consequences # Up Ph/Ps/In 

25 Time to perform actions sec Down Ph/De 

26 Time for messages before they disappear sec Up Ph/In 

27 Matching between real action sequences and user manual ones % Up Ph/In 

28 Matching between real functions and user manual ones % Up Ph/In 

29 Missing functions # Down Ps/De 

30 Interchangeable interaction components # Up Ph/In 

31 Time for substitution of interaction components sec Down Ph/De 

 

 

 

 

 

 

 

 

 



83 Stefano Filippi and Daniela Barattin  /  Procedia Engineering   131  ( 2015 )  71 – 85 

 

Table 5. Relationship matrix 

Req. 1  

1 3,14,15,21,3
6 

2  

2 4,33,34 2,4,15,21,41 3  

 

3   2,5,16,31,41 4  

2,15,35  

4    21,22,28,36 5  

  22,34,41 

5    8,12,28 5,7,13,33,47 6  

    

6 4,12     5,25,33,47 7  

    5,8,21 

7 4,12,37      5,19,25,47 8  

    5,21,25 5,37 

8    8,12,28    7,33,47 9 

       

9         33,47 

       12,38,39 

10 4,12,19         

       12,38,39 8,17,19 

11     3,8,19 8,19 8,12,19 8,21,38 12,18,20 

  5,8,17       

12    8,12,28 3,8,19 8,12,19 8,12,19 8,21,38 12,18,20 

  5,17,25       

13          

         

14          

         

15          

         

16          

         

17          

         

18          

         

19          

         

20          
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21 4,37,38 4,12,37   12,19,24     

  4,5,25       

22    9,10,19    9,38,39 9,38,39 

         

23    9,10,19    9,38,39 9,38,39 

         

24    9,10,19    9,38,39 9,38,39 

         

25          

         

26          

         

27          

         

28          

         

29          

         

30 2,4,6 2,5,8 2,6,7       

         

31          
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