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a b s t r a c t

In this work, form birefringence physics and the mechanisms
of Si/SiO2 dielectric concentric optical rings are investigated.
The optical rings are modeled by means of a Bragg reflector.
Similarly to a negative uniaxial crystal, the dielectric concentric
pattern admits two preferred propagation directions defined by
an extraordinary and an ordinary refractive index representing
two field polarizations. The circular grating profile splits the
electromagnetic field into a radial (extraordinary field) and a
tangential (ordinary field) component which represent two modes
of the periodic structure. These two modes are characterized by
the refractive index ellipse obtained by the Huygens principle. The
model is developed through the wave front propagation inside
the anisotropic structure. The Bragg theory and conservation of
momentum vectors provide the Bragg angles of the ordinary and
extraordinary rays for different optical wavelengths. The Bragg
theoretical model is validated by the finite difference time domain
(FDTD) approach for a wavelength of λ = 0.98 µm.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The birefringent properties of crystals may be explained in terms of the anisotropic electrical
properties of the molecules of which the crystals are composed. Birefringence may, however, arise
from anisotropy on a scale much larger then molecular, namely when there is an order arrangement
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Fig. 1. (a) Birefringence form in optical dielectric rings. (b) Wave front and refractive index ellipse related to the dielectric
rings at a particular propagation time.

of similar particles of optically isotropic material whose size is large compared with the dimensions
of molecules, but small compared with the wavelength of light. We then speak of form birefringence.
The form birefringence performs the important function of separating an incident beam into two
orthogonally polarized outgoing parallel beams. Such function can be accomplished by isotropic
periodic dielectric structures that can split an incident beam into two preferred directions as in a
uniaxial crystal, Bragg reflectors, and polarization splitters [1–15]. Previous works have analyzed
the form birefringence effect generated in thin dielectric parallel plates [2,5] or in an oblique
deposited film composed of dielectric microcolumns and voids [4]. In this work we study the same
anisotropic effect generated in dielectric rings: the circular pattern is well suited for applications
where degenerate modes, correlated to the polarization [10,11], are confined in a central microcavity
with different wavelengths. As in Bragg reflectors, by applying the Bragg theory to the dielectric
rings, we consider these degenerate modes as Bragg reflected modes. The presence of degenerate
modes such as ordinary and extraordinary modes is explained by the form birefringence effect. From
optical theory [2,5], the form birefringence is analyzed by considering the idealized case of a regular
assembly of particles that have the form of thin parallel plates. In this case two types of thin dielectric
film, with low and high refractive indices, alternate periodically, and the thicknesses of the layers
are sufficiently small compared with the working optical wavelength λ0. With respect to the ring
configuration of Fig. 1(a), the same birefringence effect is obtained for particular incidence angles
α of the wave source represented by a vector K [11]. The wave vector K, with incidence angle α,
generates in the circular pattern an ordinaryEo component (characterized by the ordinaryno refractive
index) and an extraordinary Ee one (characterized by the extraordinary ne refractive index) which
are tangential and radial to the rings, respectively (see Fig. 1(a)). The ordinary and the extraordinary
refractive indices are evaluated by the refractive index ellipse of Fig. 1(b) defined by the wave front at
a particular propagation time and incidence angle α [11]: the ne axis is defined along the x-direction
and coincides with the optical axis which is orthogonal to the dielectric rings of Fig. 1(a) and defined
by the incidence angle α, while the no axis is defined along the z-direction. The n = ne(χ) value
changes with the direction of K and characterizes the split angle φ of the two modes for a particular
incidence angle α.
In this work we analyze the form birefringence in Si/SiO2 dielectric rings through the wave

front propagation (described by the Huygens principle) and the Bragg diffraction theory. The Bragg
theory and the conservation of momentum vectors provide the Bragg angles of the ordinary and
extraordinary rays for different optical wavelengths. The Bragg angles, which display maximum
intensity as a result of constructive interference, are verified through two-dimensional (2D) finite



A. Massaro et al. / Superlattices and Microstructures 47 (2010) 219–224 221

difference time domain (FDTD)modeling. We summarize the presented work in the following points:
(i) we analyze the form birefringence of the Si/SiO2 dielectric rings through the form birefringence
theory by providing the analytical expressions of the refractive indices; (ii) we analyze the Bragg
condition and the conservation momentum vector of the Si/SiO2 dielectric ring for different ring
thicknesses and different working wavelengths; (iii) finally we validate the theoretical by means of a
2D FDTD numerical simulation.

2. Form birefringence and wave propagation in dielectric optical rings

The split angle φ reported in Fig. 1(a) and (b) defines the directions of the ordinary and
extraordinary modes of the proposed Bragg reflector. The relationship between the split angle
φ and the incidence angle α is estimated by means of the Huygens principle, starting from the
ordinary and extraordinary wave fronts [2,3,5]: the ordinary and the extraordinary wave fronts can
be superimposed to the indices’ ellipse for particular τ values (τ is the propagation time of the wave
front in the periodic structure). As reported in Fig. 1(b),61 is the envelope, at time t + τ , of wavelets
emitted from the various points of the wave front6 at time t . We see that ON/τ is the velocity of the
wave and OQ/τ is the propagation velocity of the ray. By considering the reference system of Fig. 1(a)
and a wavelet centered at O, the refractive index ellipse is defined by χ1 = π/2 − χ , dχ = −dχ1,
x = −n ·cosχ , z = −n ·sinχ , where n = ne(χ) = OB = OA is the refractive index of the6 envelope.
The ellipse equation in the x–z-plane of Fig. 2(b) for an optical axis orientation χ is

cos2 χ
n2e
+
sin2 χ
n2o
=
1
n2
. (1)

We observe that the fictitious axis of Fig. 1(b) characterizes the refractive index ellipse for a generic
incidence angle α.
By differentiation, we get [3,5]

dn
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1
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)
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where the relation between the angle φ (the split angle between the ordinary and the extraordinary
optical ray) and the variation of the refractive index nwith respect to the angle χ is as follows [3,5]:
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where f1 = 1−f2, and f2 represent the dielectric filling factors [2,11]. For a particular value of incidence
angleα and positions P (see Fig. 1(a)), the filling factors f1 and f2 of the ring structure are obtained by [2,
11]

f1 =

∑
n
dn1∑

n
dn1 +

∑
m
dm2

,

f2 =

∑
n
dn2∑

n
dn1 +

∑
m
dm2

(6)



222 A. Massaro et al. / Superlattices and Microstructures 47 (2010) 219–224

a b

Fig. 2. Anisotropic Bragg scattering and momentum vectors in the ring structure.

where dn1 and dm2 (see Fig. 1(a)) are the segments defined through the intersection between the line
corresponding to the wave vector (line of equation x = (z + OP) tanα) and the circles of the rings.
We observe that for a particular incidence angles (ordinary Bragg angles) α = θo the split angle φ

is equal to θo − θe, where θe is the extraordinary Bragg angle obtained by the Bragg scattering theory.

3. Bragg theory and results

The concentric rings generates, as in a birefringent device, an ordinary and an extraordinary optical
ray. For a particular incidence angle α in the z–x-plane, the ordinary and the extraordinary rays
are characterized by momentum conservation, which defines the Bragg diffraction condition. This
condition provides themaximum intensity of these two generatedmodes (ordinary and extraordinary
modes) as a result of constructive interference. The relationships between the ordinary θo and the
extraordinary θe Bragg angles reported in Fig. 2(a) are obtained by the following considerations.
The circular structure presents different gratings with the angle α varying in the plane, so the light
diffraction by gratings can be pictured as an interaction process between the incident wave and the
diffracted wave [7–9]. In a birefringent medium, the refractive index associated with a light beam is
dependent on the propagation direction. The diffracted light beam propagates in a different direction
from the incident beam and so we can associate the ordinary index no with the incident beam
(wave vector |K| = noω/c) and the extraordinary index ne with the diffracted beam (wave vector
|K′| = ne(χ)ω/c). Momentum conservation requires that the incident wave vector, the diffracted
wave vector and the grating wave vector of the ring structure Kg (2π/h) form a triangle, where h is
the sum h1 + h2. Let θo and θe be the angles between the light beams and the Kg-wave vector of the
grating. The Bragg diffraction conditions are obtained from the triangle of Fig. 2(b), and are given by [5,
7,8]

2h sin θo =
λ0

no
−
h2

noλ0
(n2e (χ1)− n

2
o) (7)

2h sin θe =
λ0

ne(χ1)
−

h2

ne(χ1)λ0
(n2e (χ1)− n

2
o). (8)

According to Eqs. (7) and (8), the angles of both light beams are function of (λ0/h) when no and ne(χ1)
are fixed. Bragg diffraction is only possible when [5,7,8]

|no − ne(χ1)| ≤ λo/h ≤ |no + ne(χ1)| (9)
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Fig. 3. Ordinary (θo) and extraordinary (θe) angles as function of the ratio between the working wavelength λ0 and the radial
period h = h1 + h2 in the case of concentric SiO2 rings (n1 = 1.465) and Si rings (n2 = 3.24) for α = π/3 rad, χ = 1.25 rad,
OP = 39.29 µm (θe1 and θo1 plots), for α = π/6 rad, χ = 0.93 rad, OP = 38.5 µm (θe2 and θo2 plots), and for χ = 0, OP = 0
(θe3 and θo3 plots). The ring structure is characterized by h1 = 0.2 µm, h2 = 0.1 µm and A = 40 µm. Inset: superposition of
the refractive index ellipse defined in Fig. 1(b) with the Bragg reflector of Fig. 1(a).

Table 1
Calculated φc and numerical φn split angles. The numerical values are obtained by the 2D FDTD approach. The ring structure is
characterized by h1 = 0.2 µm, A = 40 µm, α = π/3 rad, χ = 1.25 rad, and λ0 = 0.98 µm.

h2 (µm) OP (µm) no ne ne(χ) φc (deg.) φn (deg.)

0.1 39.29 2.220 1.708 1.744 0.170 0.156
0.15 39.92 2.392 1.804 1.844 0.297 0.260
0.2 40.12 2.514 1.887 1.929 0.403 0.375
0.25 40.31 2.605 1.961 2.005 0.495 0.462
0.3 40.54 2.675 2.026 2.070 0.573 0.551
0.35 40.8 2.731 2.084 2.129 0.647 0.620

and the angles θo and θe are real. We observe that, for a source S placed at O, the extraordinary
refractive ellipse degenerates in a circumference with radius no and θo = θe (K′ and K are collinear)
according to conservation of momentum reported in Fig. 2(b). In Fig. 3 we show the calculated Bragg
angles of the proposed Si(n2 = 3.24)/SiO2(n1 = 1.465) Bragg reflector of Fig. 1(a) versus theworking
wavelengths and versus the parameter h = h1 + h2. The Bragg angles of Eqs. (7) and (8) are obtained
for different χ angles defined by the source position and by the incidence angle α. The ordinary and
the extraordinary refractive indices of Eqs. (7) and (8) are calculated by Eqs. (3), (5) and (6) through
the refractive index ellipse construction of Fig. 1(b) (reported also in the inset of Fig. 3).
We validate the Bragg angle calculation through a 2D FDTD approach. Fig. 4 shows the calculated

and the simulated split angles φ = θo − θe versus h2 by considering λ0 = 0.98 µm, h1 = 0.2 µm
and A = 40 µm: according to Fig. 3 the split angle φ increases with the parameter h2. Moreover,
Fig. 4 shows the ordinary and the extraordinary ray intensities and the FDTD modeling. The FDTD
split angles are obtained by considering the geometrical construction reported in the inset of Fig. 4,
which considers the distance L of the ordinary and the extraordinary intensity (L is distance between
the intensity peaks) shown in a reference plane placed at the output of the Bragg reflector. A low error
of 0.02 rad between the simulation and the calculation is observed, thereby confirming the accuracy of
the analytical model. Table 1 shows all parameters obtained during the calculation of the split angles
of Fig. 4.
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Fig. 4. Calculated and simulated (FDTD approach) split angles φ = θo − θe versus h2 , by considering the Bragg condition. The
ring structure is characterized by h1 = 0.2 µm, A = 40 µm, α = π/3 rad, χ = 1.25 rad, and λ0 = 0.98 µm. Inset: ordinary
and extraordinary rays and 2D FDTD modeling.

4. Conclusion

In this work we have presented a theoretical model by which the birefringent effects of concentric
dielectric rings at optical frequencies can be analyzed. Particular Bragg incidence angles select two
mainmodes, indicated as ordinary and extraordinarymodes,which propagate in the proposed Si/SiO2
Bragg reflector. The Bragg angles and the split angles of the two modes for different wavelengths and
incidence angles have been computed with the developed model. The theoretical computations have
been validated with numerical results obtained using the finite time domain (FDTD) method. This
model can also be applied to circular photonic crystals with microcavities.
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